SlideShare a Scribd company logo
INDETERMINATE
FORMS
OBJECTIVES:
• define, determine, enumerate the
different indeterminate forms of
functions;
• apply the theorems on differentiation
in evaluating limits of indeterminate
forms of functions using L’Hopital’s
Rule.
.
( )( )
( ) 2313-xlim
1x
3x1-x
lim
1x
3x4x
lim
:followsasnumeratorthefactorweexist,tolimit
theforandform,ateindeterminanislimitthe
0
0
11
3)1(4)1(
1x
3x4x
lim
1x
3x4x
limofitlimtheEvaluate:callRe
1x1x
2
1x
22
1x
2
1x
−=−==
−
−
=
−
+−
=
−
+−
=
−
+−
−
+−
→→→
→
→
2
1x
3x4x
lim,thus
2
1x
−=
−
+−
→
used.bewillRulesHopital'L'onTheoremslimit
saidtheevaluateToexample.secondthetoappliedbelonger
nocanproblemsprevioustheinappliedprincipletheObviously,
0
0
0
)0sin(
)0(2
)0(2sin
2x
2xsin
lim
2x
2xsin
limtheevaluatingconsiderusLet
0x
0x
===→
→
.
∞
∞
∞∞
∞⋅
∞
∞
1,,05.
and-4.
03.
:FormsSecondaryB.
2.
and
0
0
1.
:FormsPrimaryA.
:formsateindeterminofKinds
00
.
Theorem 3.6.1 (p. 220) L'Hôpital's Rule for Form 0/0
.
Applying L'Hôpital's Rule (p. 220)
Theorem 3.6.2 (p. 222) L'Hopital's Rule for Form ∞/∞
.
2x
2xsin
lim.1 0x→
EXAMPLE:
Evaluate the following limits.
( )
( )
( )
0
0
0
0sin
02
02sin
2x
2xsin
lim0x
===→
( )
( )
( )
( )
( )
10cos
2
02cos2
12
2x2cos
lim
2x
dx
d
2xsin
dx
d
lim
2x
2xsin
lim
:Rules'Hopital'LgsinuBy
0x0x0x
===
== →→→
1
2x
2xsin
lim
0x
=∴
→
.3ysin-y
3y-ytan
lim.2 0y→
( ) ( )
( ) ( ) 0
0
00
00
0sin3-0
03-0tan
3ysin-y
3y-ytan
lim0y
=
−
−
==→
( )
( )
( )
( )
( )
1
2
2
31
31
03cos-1
30sec
33ycos-1
13ysec
lim
3ysin-y
dx
d
3y-ytan
dx
d
lim
3ysin-y
3y-ytan
lim
:LHRBy
2
2
0y0y0y
=
−
−
=
−
−
=
−
=
−
== →→→
1
3ysin-y
3y-ytan
lim
0y
=∴
→
.
( )
( )2
4
x x4
2xsinln
lim.3
−ππ
→
( )
( )
( )
( )
( )
( )( )4x42
2x2cos
2xsin
1
lim
x4
dx
d
2xsinln
dx
d
lim
x4
2xsinln
lim
:LHRBy
4
x2
4
x
2
4
x −−π
=
−π
=
−π π
→
π
→
π
→
( ) ( )
.ateminerdetinstillisThis
0
0
08
2
2cot
4
48
4
2cot2
x48
2x2cot
lim
4
x






−
π
=











 π
−π−





 π
=
−π−π
→
( )
( ) 0
0
0
2
sinln
4
4
4
2sinln
x4
2xsinln
lim 22
4
x
=





 π
=











 π
−π











 π
=
−ππ
→
( ) 01ln
:Note
=
( ) ∞=∞ln
( ) −∞=0ln
.
[ ]
( )[ ]
( )
32
x2csc4
lim
)4(8
2x2csc2
lim
x48
dx
d
2xcot2
dx
d
lim
:LHRpeatRe
2
4
x
2
4
x
4
x
−
=
−−
−
=
−π−
π
→
π
→
π
→
( )
8
1
1
8
1
4
2csc
8
1
x2csc
8
1
lim
2
2
2
4
x
−=−=










 π
−=−⇒ π
→
( )
( ) 8
1
x4
sin2xln
lim 2
4
x
−=
−
∴
→ ππ
.
x
2
x
e
x
lim.4 +∞→
( )
∞+
∞
=
∞+
=⇒ ∞++∞→
ee
x
lim
2
x
2
x
[ ]
[ ] ( )
( )
∞+
∞+
=
∞+
=== ∞++∞→+∞→+∞→
e
2
1e
2x
lim
e
dx
d
x
dx
d
lim
e
x
lim
:LHRBy
xx
x
2
xx
2
x
[ ]
[ ]
( )
( )
0
2
e
2
1e
12
lim
e
dx
d
2x
dx
d
lim
:LHRpeatRe
xx
x
x
=
∞+
====⇒ ∞++∞→+∞→
0
e
x
lim x
2
x
=∴
+∞→
.
3xtanln
3xcosln
lim.5
6
x
π
→
( )
( ) ∞
∞
=
∞
=
π
π
=





 π





 π
=⇒ π
→
-
ln
0ln
2
tanln
2
cosln
6
3tanln
6
3cosln
3xtanln
3xcosln
lim
6
x
( ) 01ln
:Note
=
( ) ∞=∞ln
( ) −∞=0ln
[ ]
[ ]
( )
( )3x3sec
x3tan
1
3x3sin
cos3x
1
lim
3xtanln
dx
d
3xcosln
dx
d
lim
3xtanln
3xcosln
lim
:LHRApply
2
6
x
6
x
6
x
−
== π
→
π
→
π
→
x3cos
1
3xcos
x3sin
lim
x3sec
x3tan
lim
3x3sec
x3tan
1
3xtan3
lim
2
2
2
6
x
2
2
6
x26
x
π
→
π
→
π
→
−=





−=
•





−
( ) 1
6
3sinx3sinlim
2
2
6
x
−=










 π
−=⇒ π
→
1
3xtanln
3xcosln
lim
6
x
−=∴
→
π
.
( ) ( ) ( )
( )
( ) ( )
( ) ( )
( )
( )
applies.RulesHopital'L'casetheof
eitherIn.or
0
0
toresultmaywhichevaluatedislimitthethen
xg
1
xf
limxgxflim
,Henceone.equivalentantodtransforme
isproductstheirlimit,suchevaluateTolimit.itsapproaches
xas0or0formthehavingundefinedisxgandxf
ofproducttheunsigned),orsignedbecould(which0xglimand
0xflimthatsuchfunctionsabledifferentitwoarexgandxfIf.A
:onDefininiti
axax
ax
ax
∞
∞
=•
•∞∞•
=
=
→→
→
→
∞∞∞• -and0FORMSATEINDETERMINThe
.
( ) ( ) ( )
( ) ( )[ ]
( ) ( )[ ] ( ) ( )
Rule.sHopital'L'applyThen.or
0
0
toresultmay
evaluatedwhenlimitwhosequotientequivalentaninto
differencethengtransformibyevaluatedbecouldlimitThe
.xglimxflimxgxflimisThat.-
formtheofateindeterminbetosaidisxgxflimthe
then,positivebotharewhichxglimand,xflimIf.B
axaxax
ax
axax
∞
∞
∞−∞=−=−⇒∞∞
−
∞=∞=
→→→
→
→→
∞∞∞• -and0FORMSATEINDETERMINThe
.
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )[ ] ( )
LHR.thenandlogarithm
ofpropertiestheapplythenfunction,theforyvariable
alettingbyevaluatedbemayformsateindeterminThese
ly.respective,1,,0formsateminerdetintheassumed
xflimexpressionthethenorapproachesxasor
xglimand,1xflim
or,0xglimand,xflim
or,0xglimand,0xflim
:ifand,xgandxffunctionstwoGiven
:Definition
00
xg
ax
axax
axax
axax
∞
→
→→
→→
→→
∞
∞−∞+
∞==•
=∞=•
==•
∞
∞ 1and,,0FORMSATEINDETERMINThe 00
.
EXAMPLE:
Evaluate the following limits:
[ ]2xcscxlim.1 0x→
[ ] [ ] ∞•==→
00csc02xcscxlim0x
[ ]
0
0
0sin
0
sin2x
x
lim2xcscxlim
:functionrationalequivalentantofunctionthegminTransfor
0x0x
=== →→
[ ]
[ ] ( )( )
[ ]
2
1
2xcscxlim
2
1
)0(cos2
1
2cos2x
1
lim
2cos2x
1
lim
sin2x
dx
d
x
dx
d
lim
sin2x
x
lim
:LHRApply
0x
0x0x0x0x
=∴⇒==
===
→
→→→→
.
[ ]xlnxlim.2 0x→
[ ] ( ) ( )∞−==→
00ln0xlnxlim0x
[ ]
∞
∞−
=== →→
0
1
0ln
x
1
xln
limxlnxlim
:functionequivalentantofunctiongiventhegminTransfor
0x0x
[ ] 0xlnxlim
0x
=∴
→
[ ] ( )
( ) 0xlim
x
1
1
x
1
lim
x
1
dx
d
xln
dx
d
lim
x
1
xln
lim
:LHRApply
0x
2
0x0x0x
=−=
−
=




= →→→→
.




−
−→
1x
1
xln
1
lim.3 1x
∞−∞=−=
−
−=



−
−→
0
1
0
1
11
1
1ln
1
1x
1
xln
1
lim1x
( )
( )
( )
( ) 0
0
1ln1-1
1ln11
xln1-x
xln1x
lim
1x
1
xln
1
lim
:fractionsimpleaotgminTransfor
1x1x
=
−−
=
−−
=



−
− →→
( )[ ]
( )[ ]
( )
( ) ( ) ( )( )1xln1
x
1
1x
1
x
1
1
lim
xln1-x
dx
d
xln1x
dx
d
lim
1x
1
xln
1
lim
:LHRApply
1x1x1x
+





−




−
=
−−
=



−
− →→→
( ) ( ) 0
0
1ln111
11
xlnx1-x
1x
lim
x
xlnx1-x
x
1-x
lim 1x1x
=
+−
−
=
+
−
=
+
⇒ →→
.
( ) [ ]
[ ] ( ) ( )( )1xln1
x
1
x1
1
lim
xlnx1-x
dx
d
1-x
dx
d
lim
xlnx1-x
1-x
lim
:LHRagainApply
1x1x1x
++
=
+
=
+
⇒ →→→
( ) 2
1
1ln2
1
xln2
1
lim1x
=
+
=
+
⇒ →
2
1
1x
1
xln
1
lim
1x
=



−
−∴
→
.




−→
x2secx
1
x
1
lim.4 220x
( )
∞∞=−=−=



−→
-
0
1
0
1
0sec0
1
0
1
x2secx
1
x
1
lim 220x
( )
0
0
0
02cos1
x
cos2x-1
lim
x
x2cos
x
1
lim
x2secx
1
x
1
lim
:functionequivalentthetogminTransfor
20x220x220x
=
−
=



=



−=



− →→→
[ ]
[ ]
( )( ) ( )
0
0
0
02sin
x2
2x2sin
lim
x
dx
d
cos2x-1
dx
d
lim
x
cos2x-1
lim
:LHRApply
0x
2
0x20x
==
−−
==



→→→
( ) ( )
( )
( )( )( )
20cos2x2cos2lim
1
12x2cos
lim
x
dx
d
x2sin
dx
d
lim
x
x2sin
lim
:againLHRApply
0x0x0x0x
===== →→→→
2
x2secx
1
x
1
lim 220x
=





−∴
→
.
[ ]x
0x
x2lim.5 →
[ ] ( )[ ] 00x
0x
002x2lim ==→
[ ]x
x2yLet =
[ ]
[ ]
x
1
x2ln
2xlnxyln
x2lnyln
x
==
=
( )
∞
∞−
=
∞
=== →→
0ln
0
1
02ln
x
1
x2ln
limylnlim
:sidesbothonitlimtheApply
0x0x
[ ] ( )
( ) 0xlim
x
1
2
x2
1
x
1
dx
d
x2ln
dx
d
lim
x
1
x2ln
lim
:LHRApply
0x
2
0x0x
=−=
−
=




= →→→
( )
( ) 12xlimthereforethen
2xysince
1ylimeylim
:sidesbothoffunctioninversetheTake
x
0x
x
0x
0
0x
=
=
=→=
→
→→
0ylnlim
0
x
1
x2ln
limylnlim
0x
0x0x
=
==
→
→→
.
( ) 1x
1
1x
xlim.6 −
→ +
( ) ( ) ( ) ( )∞
−−
→
===+
111xlim 0
1
11
1
1x
1
1x
( ) 1x
1
xyLet −=
( ) ( )
1x
xln
xln
1x
1
xlnyln 1x
1
−
=
−
== −
0
0
11
1ln
1x
xln
limylnlim
:1xassidesbothonitlimtheApplying
1x1x
=
−
=
−
=
→
++
→→
+
( )
( )
( )
1
1
x
1
lim
1
1
x
1
lim
1x
dx
d
xln
dx
d
lim
1x
xln
lim
:memberrighttheonLHRApply
1x1x1x1x
===
−
=
− ++++
→→→→
.
( )
( ) 72.2exlim
xybuteylim
:sidesbothoffunctioninversethetake,1ylnlim
1x
xln
lim
,Thus
1x
1
1x
1x
1
1
1x
1x1x
==∴
==
==
−
−
→
−
→
→→
+
+
++
( )x
0x
xcotlim.7 +
→
( ) ( ) 00x
0x
0cotxcotlim ∞==+
→
( )
( )
x
1
xcotln
xcotlnxxcotlnyln
xcotyLet
x
x
===
=
( ) ( )
∞
∞
=
∞
∞
=
=
+
++
→
→→
ln
0
1
0cotln
lim
x
1
xcotln
limylnlim
:sidesbothonlimitthepplyA
0x
0x0x
( ) ( )( )
2
2
0x0x0x
x
1
1xcsc
xcot
1
lim
x
1
dx
d
xcotln
dx
d
lim
x
1
xcotln
lim
:memberrightonLHRApply
−
−
=






= +++
→→→
xcosxsin2
x2
lim
x
1
xcosxsin
1
lim
x
1
xsin
1
xcos
xsin
lim
2
0x
2
0x
2
2
0x ⋅
⋅
==






= +++
→→→
( )
( ) 0
0
0sin
02
x2sin
x2
lim
22
0x
=== +
→
( )
( ) ( )( ) x2cos
x2
lim
2x2cos
x4
lim
x2sin
dx
d
x2
dx
d
lim
x2sin
x2
lim
:againLHRApply
0x0x
2
0x
2
0x ++++
→→→→
===
( )
( )
0
1
0
0cos
02
===
( ) ( ) 1xcotlimthenxcotySince
1eylim
sidesbothoffunctioninversethetake,0ylnlim
x
1
xcotln
lim
,Hence
x
0x
x
0
0x
0x0x
=∴=
==
==
+
+
++
→
→
→→
x4sin
xtanx2
lim.1
0x
+
→






−
→ 220y y
1
ysin
1
lim.2
xsin
x2
lim.3 10x −→






→ ycosln
y
lim.4
2
0y
( )
x3
x2ln
lim.5
3
x +∞→
( ) 





−
+ −→ x2tan
1
x1ln
1
lim.8 10x
( )x
4
2
0x
x1lim.9 +
→






+∞→ x2
2
x e
x3
lim.10
( ) 2
x
2
2
0x
xsin1lim.11 +
→
( )x
2
x
0x
x3elim.12 +
→
x2tanln
x2cosln
lim.13
4
x
π
→( )x
1
0x
x2sinx2coslim.6 −
→
( )( )xcscxsinlim.15 1
0x
−
→
x
x
2
0x
e1lim.7 







++
→
( ) xlnxcoslim.14 1
0x
−
→ +
EXERCISES: Evaluate the following limits.

More Related Content

What's hot

Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremJohn Rome Aranas
 
Application of derivatives
Application of derivatives Application of derivatives
Application of derivatives Seyid Kadher
 
Relations & functions
Relations & functionsRelations & functions
Relations & functionsindu thakur
 
Lesson 12 derivative of inverse trigonometric functions
Lesson 12 derivative of inverse trigonometric functionsLesson 12 derivative of inverse trigonometric functions
Lesson 12 derivative of inverse trigonometric functionsRnold Wilson
 
Lesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsLesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsMatthew Leingang
 
Quadratic function
Quadratic functionQuadratic function
Quadratic functionvickytg123
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shahC.G.P.I.T
 
Applications of Derivatives
Applications of DerivativesApplications of Derivatives
Applications of DerivativesIram Khan
 
Quadratic functions and their application
Quadratic functions and their applicationQuadratic functions and their application
Quadratic functions and their applicationMartinGeraldine
 
3.1 Extreme Values of Functions
3.1 Extreme Values of Functions3.1 Extreme Values of Functions
3.1 Extreme Values of FunctionsSharon Henry
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functionsJessica Garcia
 
Lesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functionsLesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functionsRnold Wilson
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomialsitutor
 
Lesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLawrence De Vera
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleAakash Singh
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
complex numbers 1
complex numbers 1complex numbers 1
complex numbers 1youmarks
 
Derivatives and their Applications
Derivatives and their ApplicationsDerivatives and their Applications
Derivatives and their Applicationsusmancp2611
 

What's hot (20)

Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theorem
 
Application of derivatives
Application of derivatives Application of derivatives
Application of derivatives
 
Relations & functions
Relations & functionsRelations & functions
Relations & functions
 
Lesson 12 derivative of inverse trigonometric functions
Lesson 12 derivative of inverse trigonometric functionsLesson 12 derivative of inverse trigonometric functions
Lesson 12 derivative of inverse trigonometric functions
 
Lesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric FunctionsLesson 10: Derivatives of Trigonometric Functions
Lesson 10: Derivatives of Trigonometric Functions
 
Quadratic function
Quadratic functionQuadratic function
Quadratic function
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
Applications of Derivatives
Applications of DerivativesApplications of Derivatives
Applications of Derivatives
 
Fourier series
Fourier series Fourier series
Fourier series
 
Quadratic functions and their application
Quadratic functions and their applicationQuadratic functions and their application
Quadratic functions and their application
 
Trigonometric identities
Trigonometric identitiesTrigonometric identities
Trigonometric identities
 
3.1 Extreme Values of Functions
3.1 Extreme Values of Functions3.1 Extreme Values of Functions
3.1 Extreme Values of Functions
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functions
 
Lesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functionsLesson 11 derivative of trigonometric functions
Lesson 11 derivative of trigonometric functions
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
Lesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functions
 
Indeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital RuleIndeterminate Forms and L' Hospital Rule
Indeterminate Forms and L' Hospital Rule
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
complex numbers 1
complex numbers 1complex numbers 1
complex numbers 1
 
Derivatives and their Applications
Derivatives and their ApplicationsDerivatives and their Applications
Derivatives and their Applications
 

Similar to Lesson 16 indeterminate forms (l'hopital's rule)

Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsRnold Wilson
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinityJames Tagara
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremJames Tagara
 
5.1 analysis of function i
5.1 analysis of function i5.1 analysis of function i
5.1 analysis of function idicosmo178
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Satoshi Kura
 
Basic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptxBasic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptxMeryAnnMAlday
 
Mat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfMat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfyavig57063
 
Rules_for_Differentiation.ppt
Rules_for_Differentiation.pptRules_for_Differentiation.ppt
Rules_for_Differentiation.pptjimj87313
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricosAmchel
 
Rational Functions
Rational FunctionsRational Functions
Rational FunctionsJazz0614
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdfanandsimple
 
03_NumberSystems.pdf
03_NumberSystems.pdf03_NumberSystems.pdf
03_NumberSystems.pdfvijayapraba1
 
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)mmisono
 

Similar to Lesson 16 indeterminate forms (l'hopital's rule) (20)

Lesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functionsLesson 10 derivative of exponential functions
Lesson 10 derivative of exponential functions
 
L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
 
L5 infinite limits squeeze theorem
L5 infinite limits squeeze theoremL5 infinite limits squeeze theorem
L5 infinite limits squeeze theorem
 
Mit6 094 iap10_lec02
Mit6 094 iap10_lec02Mit6 094 iap10_lec02
Mit6 094 iap10_lec02
 
5.1 analysis of function i
5.1 analysis of function i5.1 analysis of function i
5.1 analysis of function i
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
 
Basic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptxBasic Calculussssssssssssssssssssss.pptx
Basic Calculussssssssssssssssssssss.pptx
 
Mat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdfMat 121-Limits education tutorial 22 I.pdf
Mat 121-Limits education tutorial 22 I.pdf
 
Rules_for_Differentiation.ppt
Rules_for_Differentiation.pptRules_for_Differentiation.ppt
Rules_for_Differentiation.ppt
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricos
 
Limites trigonométricos
Limites trigonométricosLimites trigonométricos
Limites trigonométricos
 
Limites Problemas resueltos
Limites Problemas resueltosLimites Problemas resueltos
Limites Problemas resueltos
 
Rational Functions
Rational FunctionsRational Functions
Rational Functions
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
 
Mit6 094 iap10_lec03
Mit6 094 iap10_lec03Mit6 094 iap10_lec03
Mit6 094 iap10_lec03
 
03_NumberSystems.pdf
03_NumberSystems.pdf03_NumberSystems.pdf
03_NumberSystems.pdf
 
Understanding Reed-Solomon code
Understanding Reed-Solomon codeUnderstanding Reed-Solomon code
Understanding Reed-Solomon code
 
93311880 limites-trigonometricos
93311880 limites-trigonometricos93311880 limites-trigonometricos
93311880 limites-trigonometricos
 
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
論文紹介 Hyperkernel: Push-Button Verification of an OS Kernel (SOSP’17)
 
feedforward-network-
feedforward-network-feedforward-network-
feedforward-network-
 

Recently uploaded

Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismDeeptiGupta154
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxbennyroshan06
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfjoachimlavalley1
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxJisc
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativePeter Windle
 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...Denish Jangid
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...Jisc
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfkaushalkr1407
 
plant breeding methods in asexually or clonally propagated crops
plant breeding methods in asexually or clonally propagated cropsplant breeding methods in asexually or clonally propagated crops
plant breeding methods in asexually or clonally propagated cropsparmarsneha2
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...Nguyen Thanh Tu Collection
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfTamralipta Mahavidyalaya
 
Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportAvinash Rai
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasGeoBlogs
 
NLC-2024-Orientation-for-RO-SDO (1).pptx
NLC-2024-Orientation-for-RO-SDO (1).pptxNLC-2024-Orientation-for-RO-SDO (1).pptx
NLC-2024-Orientation-for-RO-SDO (1).pptxssuserbdd3e8
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdfTechSoup
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfYibeltalNibretu
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleCeline George
 

Recently uploaded (20)

Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
plant breeding methods in asexually or clonally propagated crops
plant breeding methods in asexually or clonally propagated cropsplant breeding methods in asexually or clonally propagated crops
plant breeding methods in asexually or clonally propagated crops
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Industrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training ReportIndustrial Training Report- AKTU Industrial Training Report
Industrial Training Report- AKTU Industrial Training Report
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
NLC-2024-Orientation-for-RO-SDO (1).pptx
NLC-2024-Orientation-for-RO-SDO (1).pptxNLC-2024-Orientation-for-RO-SDO (1).pptx
NLC-2024-Orientation-for-RO-SDO (1).pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
 
Accounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdfAccounting and finance exit exam 2016 E.C.pdf
Accounting and finance exit exam 2016 E.C.pdf
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 

Lesson 16 indeterminate forms (l'hopital's rule)

  • 2. OBJECTIVES: • define, determine, enumerate the different indeterminate forms of functions; • apply the theorems on differentiation in evaluating limits of indeterminate forms of functions using L’Hopital’s Rule.
  • 3. . ( )( ) ( ) 2313-xlim 1x 3x1-x lim 1x 3x4x lim :followsasnumeratorthefactorweexist,tolimit theforandform,ateindeterminanislimitthe 0 0 11 3)1(4)1( 1x 3x4x lim 1x 3x4x limofitlimtheEvaluate:callRe 1x1x 2 1x 22 1x 2 1x −=−== − − = − +− = − +− = − +− − +− →→→ → → 2 1x 3x4x lim,thus 2 1x −= − +− → used.bewillRulesHopital'L'onTheoremslimit saidtheevaluateToexample.secondthetoappliedbelonger nocanproblemsprevioustheinappliedprincipletheObviously, 0 0 0 )0sin( )0(2 )0(2sin 2x 2xsin lim 2x 2xsin limtheevaluatingconsiderusLet 0x 0x ===→ →
  • 5. . Theorem 3.6.1 (p. 220) L'Hôpital's Rule for Form 0/0
  • 7. Theorem 3.6.2 (p. 222) L'Hopital's Rule for Form ∞/∞
  • 8. . 2x 2xsin lim.1 0x→ EXAMPLE: Evaluate the following limits. ( ) ( ) ( ) 0 0 0 0sin 02 02sin 2x 2xsin lim0x ===→ ( ) ( ) ( ) ( ) ( ) 10cos 2 02cos2 12 2x2cos lim 2x dx d 2xsin dx d lim 2x 2xsin lim :Rules'Hopital'LgsinuBy 0x0x0x === == →→→ 1 2x 2xsin lim 0x =∴ →
  • 9. .3ysin-y 3y-ytan lim.2 0y→ ( ) ( ) ( ) ( ) 0 0 00 00 0sin3-0 03-0tan 3ysin-y 3y-ytan lim0y = − − ==→ ( ) ( ) ( ) ( ) ( ) 1 2 2 31 31 03cos-1 30sec 33ycos-1 13ysec lim 3ysin-y dx d 3y-ytan dx d lim 3ysin-y 3y-ytan lim :LHRBy 2 2 0y0y0y = − − = − − = − = − == →→→ 1 3ysin-y 3y-ytan lim 0y =∴ →
  • 10. . ( ) ( )2 4 x x4 2xsinln lim.3 −ππ → ( ) ( ) ( ) ( ) ( ) ( )( )4x42 2x2cos 2xsin 1 lim x4 dx d 2xsinln dx d lim x4 2xsinln lim :LHRBy 4 x2 4 x 2 4 x −−π = −π = −π π → π → π → ( ) ( ) .ateminerdetinstillisThis 0 0 08 2 2cot 4 48 4 2cot2 x48 2x2cot lim 4 x       − π =             π −π−       π = −π−π → ( ) ( ) 0 0 0 2 sinln 4 4 4 2sinln x4 2xsinln lim 22 4 x =       π =             π −π             π = −ππ → ( ) 01ln :Note = ( ) ∞=∞ln ( ) −∞=0ln
  • 11. . [ ] ( )[ ] ( ) 32 x2csc4 lim )4(8 2x2csc2 lim x48 dx d 2xcot2 dx d lim :LHRpeatRe 2 4 x 2 4 x 4 x − = −− − = −π− π → π → π → ( ) 8 1 1 8 1 4 2csc 8 1 x2csc 8 1 lim 2 2 2 4 x −=−=            π −=−⇒ π → ( ) ( ) 8 1 x4 sin2xln lim 2 4 x −= − ∴ → ππ
  • 12. . x 2 x e x lim.4 +∞→ ( ) ∞+ ∞ = ∞+ =⇒ ∞++∞→ ee x lim 2 x 2 x [ ] [ ] ( ) ( ) ∞+ ∞+ = ∞+ === ∞++∞→+∞→+∞→ e 2 1e 2x lim e dx d x dx d lim e x lim :LHRBy xx x 2 xx 2 x [ ] [ ] ( ) ( ) 0 2 e 2 1e 12 lim e dx d 2x dx d lim :LHRpeatRe xx x x = ∞+ ====⇒ ∞++∞→+∞→ 0 e x lim x 2 x =∴ +∞→
  • 13. . 3xtanln 3xcosln lim.5 6 x π → ( ) ( ) ∞ ∞ = ∞ = π π =       π       π =⇒ π → - ln 0ln 2 tanln 2 cosln 6 3tanln 6 3cosln 3xtanln 3xcosln lim 6 x ( ) 01ln :Note = ( ) ∞=∞ln ( ) −∞=0ln [ ] [ ] ( ) ( )3x3sec x3tan 1 3x3sin cos3x 1 lim 3xtanln dx d 3xcosln dx d lim 3xtanln 3xcosln lim :LHRApply 2 6 x 6 x 6 x − == π → π → π → x3cos 1 3xcos x3sin lim x3sec x3tan lim 3x3sec x3tan 1 3xtan3 lim 2 2 2 6 x 2 2 6 x26 x π → π → π → −=      −= •      − ( ) 1 6 3sinx3sinlim 2 2 6 x −=            π −=⇒ π → 1 3xtanln 3xcosln lim 6 x −=∴ → π
  • 14. . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) applies.RulesHopital'L'casetheof eitherIn.or 0 0 toresultmaywhichevaluatedislimitthethen xg 1 xf limxgxflim ,Henceone.equivalentantodtransforme isproductstheirlimit,suchevaluateTolimit.itsapproaches xas0or0formthehavingundefinedisxgandxf ofproducttheunsigned),orsignedbecould(which0xglimand 0xflimthatsuchfunctionsabledifferentitwoarexgandxfIf.A :onDefininiti axax ax ax ∞ ∞ =• •∞∞• = = →→ → → ∞∞∞• -and0FORMSATEINDETERMINThe
  • 15. . ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) Rule.sHopital'L'applyThen.or 0 0 toresultmay evaluatedwhenlimitwhosequotientequivalentaninto differencethengtransformibyevaluatedbecouldlimitThe .xglimxflimxgxflimisThat.- formtheofateindeterminbetosaidisxgxflimthe then,positivebotharewhichxglimand,xflimIf.B axaxax ax axax ∞ ∞ ∞−∞=−=−⇒∞∞ − ∞=∞= →→→ → →→ ∞∞∞• -and0FORMSATEINDETERMINThe
  • 16. . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) LHR.thenandlogarithm ofpropertiestheapplythenfunction,theforyvariable alettingbyevaluatedbemayformsateindeterminThese ly.respective,1,,0formsateminerdetintheassumed xflimexpressionthethenorapproachesxasor xglimand,1xflim or,0xglimand,xflim or,0xglimand,0xflim :ifand,xgandxffunctionstwoGiven :Definition 00 xg ax axax axax axax ∞ → →→ →→ →→ ∞ ∞−∞+ ∞==• =∞=• ==• ∞ ∞ 1and,,0FORMSATEINDETERMINThe 00
  • 17. . EXAMPLE: Evaluate the following limits: [ ]2xcscxlim.1 0x→ [ ] [ ] ∞•==→ 00csc02xcscxlim0x [ ] 0 0 0sin 0 sin2x x lim2xcscxlim :functionrationalequivalentantofunctionthegminTransfor 0x0x === →→ [ ] [ ] ( )( ) [ ] 2 1 2xcscxlim 2 1 )0(cos2 1 2cos2x 1 lim 2cos2x 1 lim sin2x dx d x dx d lim sin2x x lim :LHRApply 0x 0x0x0x0x =∴⇒== === → →→→→
  • 18. . [ ]xlnxlim.2 0x→ [ ] ( ) ( )∞−==→ 00ln0xlnxlim0x [ ] ∞ ∞− === →→ 0 1 0ln x 1 xln limxlnxlim :functionequivalentantofunctiongiventhegminTransfor 0x0x [ ] 0xlnxlim 0x =∴ → [ ] ( ) ( ) 0xlim x 1 1 x 1 lim x 1 dx d xln dx d lim x 1 xln lim :LHRApply 0x 2 0x0x0x =−= − =     = →→→→
  • 19. .     − −→ 1x 1 xln 1 lim.3 1x ∞−∞=−= − −=    − −→ 0 1 0 1 11 1 1ln 1 1x 1 xln 1 lim1x ( ) ( ) ( ) ( ) 0 0 1ln1-1 1ln11 xln1-x xln1x lim 1x 1 xln 1 lim :fractionsimpleaotgminTransfor 1x1x = −− = −− =    − − →→ ( )[ ] ( )[ ] ( ) ( ) ( ) ( )( )1xln1 x 1 1x 1 x 1 1 lim xln1-x dx d xln1x dx d lim 1x 1 xln 1 lim :LHRApply 1x1x1x +      −     − = −− =    − − →→→ ( ) ( ) 0 0 1ln111 11 xlnx1-x 1x lim x xlnx1-x x 1-x lim 1x1x = +− − = + − = + ⇒ →→
  • 20. . ( ) [ ] [ ] ( ) ( )( )1xln1 x 1 x1 1 lim xlnx1-x dx d 1-x dx d lim xlnx1-x 1-x lim :LHRagainApply 1x1x1x ++ = + = + ⇒ →→→ ( ) 2 1 1ln2 1 xln2 1 lim1x = + = + ⇒ → 2 1 1x 1 xln 1 lim 1x =    − −∴ →
  • 21. .     −→ x2secx 1 x 1 lim.4 220x ( ) ∞∞=−=−=    −→ - 0 1 0 1 0sec0 1 0 1 x2secx 1 x 1 lim 220x ( ) 0 0 0 02cos1 x cos2x-1 lim x x2cos x 1 lim x2secx 1 x 1 lim :functionequivalentthetogminTransfor 20x220x220x = − =    =    −=    − →→→ [ ] [ ] ( )( ) ( ) 0 0 0 02sin x2 2x2sin lim x dx d cos2x-1 dx d lim x cos2x-1 lim :LHRApply 0x 2 0x20x == −− ==    →→→ ( ) ( ) ( ) ( )( )( ) 20cos2x2cos2lim 1 12x2cos lim x dx d x2sin dx d lim x x2sin lim :againLHRApply 0x0x0x0x ===== →→→→ 2 x2secx 1 x 1 lim 220x =      −∴ →
  • 22. . [ ]x 0x x2lim.5 → [ ] ( )[ ] 00x 0x 002x2lim ==→ [ ]x x2yLet = [ ] [ ] x 1 x2ln 2xlnxyln x2lnyln x == = ( ) ∞ ∞− = ∞ === →→ 0ln 0 1 02ln x 1 x2ln limylnlim :sidesbothonitlimtheApply 0x0x [ ] ( ) ( ) 0xlim x 1 2 x2 1 x 1 dx d x2ln dx d lim x 1 x2ln lim :LHRApply 0x 2 0x0x =−= − =     = →→→ ( ) ( ) 12xlimthereforethen 2xysince 1ylimeylim :sidesbothoffunctioninversetheTake x 0x x 0x 0 0x = = =→= → →→ 0ylnlim 0 x 1 x2ln limylnlim 0x 0x0x = == → →→
  • 23. . ( ) 1x 1 1x xlim.6 − → + ( ) ( ) ( ) ( )∞ −− → ===+ 111xlim 0 1 11 1 1x 1 1x ( ) 1x 1 xyLet −= ( ) ( ) 1x xln xln 1x 1 xlnyln 1x 1 − = − == − 0 0 11 1ln 1x xln limylnlim :1xassidesbothonitlimtheApplying 1x1x = − = − = → ++ →→ + ( ) ( ) ( ) 1 1 x 1 lim 1 1 x 1 lim 1x dx d xln dx d lim 1x xln lim :memberrighttheonLHRApply 1x1x1x1x === − = − ++++ →→→→
  • 24. . ( ) ( ) 72.2exlim xybuteylim :sidesbothoffunctioninversethetake,1ylnlim 1x xln lim ,Thus 1x 1 1x 1x 1 1 1x 1x1x ==∴ == == − − → − → →→ + + ++ ( )x 0x xcotlim.7 + → ( ) ( ) 00x 0x 0cotxcotlim ∞==+ → ( ) ( ) x 1 xcotln xcotlnxxcotlnyln xcotyLet x x === =
  • 25. ( ) ( ) ∞ ∞ = ∞ ∞ = = + ++ → →→ ln 0 1 0cotln lim x 1 xcotln limylnlim :sidesbothonlimitthepplyA 0x 0x0x ( ) ( )( ) 2 2 0x0x0x x 1 1xcsc xcot 1 lim x 1 dx d xcotln dx d lim x 1 xcotln lim :memberrightonLHRApply − − =       = +++ →→→ xcosxsin2 x2 lim x 1 xcosxsin 1 lim x 1 xsin 1 xcos xsin lim 2 0x 2 0x 2 2 0x ⋅ ⋅ ==       = +++ →→→ ( ) ( ) 0 0 0sin 02 x2sin x2 lim 22 0x === + →
  • 26. ( ) ( ) ( )( ) x2cos x2 lim 2x2cos x4 lim x2sin dx d x2 dx d lim x2sin x2 lim :againLHRApply 0x0x 2 0x 2 0x ++++ →→→→ === ( ) ( ) 0 1 0 0cos 02 === ( ) ( ) 1xcotlimthenxcotySince 1eylim sidesbothoffunctioninversethetake,0ylnlim x 1 xcotln lim ,Hence x 0x x 0 0x 0x0x =∴= == == + + ++ → → →→
  • 27. x4sin xtanx2 lim.1 0x + →       − → 220y y 1 ysin 1 lim.2 xsin x2 lim.3 10x −→       → ycosln y lim.4 2 0y ( ) x3 x2ln lim.5 3 x +∞→ ( )       − + −→ x2tan 1 x1ln 1 lim.8 10x ( )x 4 2 0x x1lim.9 + →       +∞→ x2 2 x e x3 lim.10 ( ) 2 x 2 2 0x xsin1lim.11 + → ( )x 2 x 0x x3elim.12 + → x2tanln x2cosln lim.13 4 x π →( )x 1 0x x2sinx2coslim.6 − → ( )( )xcscxsinlim.15 1 0x − → x x 2 0x e1lim.7         ++ → ( ) xlnxcoslim.14 1 0x − → + EXERCISES: Evaluate the following limits.