SlideShare a Scribd company logo
1 of 7
Download to read offline
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos
1
Usar o limite fundamental e alguns artifícios : 1lim
0
=
→ x
senx
x
1.
x
x
x sen
lim
0→
= ? à
x
x
x sen
lim
0→
=
0
0
, é uma indeterminação.
x
x
x sen
lim
0→
=
x
xx sen
1
lim
0→
=
x
x
x
sen
lim
1
0→
= 1 logo
x
x
x sen
lim
0→
= 1
2.
x
x
x
4sen
lim
0→
= ? à
x
x
x
4sen
lim
0→
=
0
0
à
x
x
x 4
4sen
.4lim
0→
= 4.
y
y
y
sen
lim
0→
=4.1= 4 logo
x
x
x
4sen
lim
0→
=4
3.
x
x
x 2
5sen
lim
0→
= ? à =
→ x
x
x 5
5sen
.
2
5
lim
0
=
→ y
y
y
sen
.
2
5
lim
0 2
5
logo
x
x
x 2
5sen
lim
0→
=
2
5
4.
nx
mx
x
sen
lim
0→
= ? à
nx
mx
x
sen
lim
0→
=
mx
mx
n
m
x
sen
.lim
0→
=
n
m
.
y
y
y
sen
lim
0→
=
n
m
.1=
n
m
logo
nx
mx
x
sen
lim
0→
=
n
m
5.
x
x
x 2sen
3sen
lim
0→
= ? à
x
x
x 2sen
3sen
lim
0→
= =
→
x
x
x
x
x 2sen
3sen
lim
0
=
→
x
x
x
x
x
2
2sen
.2
3
3sen
.3
lim
0
.
2
3
2
2sen
lim
3
3sen
lim
0
0
=
→
→
x
x
x
x
x
x
. 1.
2
3
sen
lim
sen
lim
0
0
=
→
→
t
t
y
y
t
y
=
2
3
logo
x
x
x 2sen
3sen
lim
0→
=
2
3
6.
sennx
senmx
x 0
lim
→
= ? à
nx
mx
x sen
sen
lim
0→
=
x
nx
x
mx
x sen
sen
lim
0→
=
nx
nx
n
mx
mx
m
x sen
.
sen
.
lim
0→
=
nx
nx
mx
mx
n
m
x sen
sen
.lim
0→
=
n
m
Logo
sennx
senmx
x 0
lim
→
=
n
m
7. =
→ x
tgx
x 0
lim ? à =
→ x
tgx
x 0
lim
0
0
à =
→ x
tgx
x 0
lim =
→ x
x
x
x
cos
sen
lim
0
=
→ xx
x
x
1
.
cos
sen
lim
0
xx
x
x cos
1
.
sen
lim
0→
=
xx
x
xx cos
1
lim.
sen
lim
00 →→
= 1 Logo =
→ x
tgx
x 0
lim 1
8.
( )
1
1
lim 2
2
1 −
−
→ a
atg
a
= ? à
( )
1
1
lim 2
2
1 −
−
→ a
atg
a
=
0
0
àFazendo



→
→
−=
0
1
,12
t
x
at à
( )
t
ttg
t 0
lim
→
=1
logo
( )
1
1
lim 2
2
1 −
−
→ a
atg
a
=1
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos
2
9.
xx
xx
x 2sen
3sen
lim
0 +
−
→
= ? à
xx
xx
x 2sen
3sen
lim
0 +
−
→
=
0
0
à ( )
xx
xx
xf
2sen
3sen
+
−
= =






+






−
x
x
x
x
x
x
5sen
1.
3sen
1.
=






+






−
x
x
x
x
x
x
.5
5sen
.51.
.3
3sen
.31.
=
x
x
x
x
.5
5sen
.51
.3
3sen
.31
+
−
à
0
lim
→x
x
x
x
x
.5
5sen
.51
.3
3sen
.31
+
−
=
51
31
+
−
=
6
2−
=
3
1
− logo
xx
xx
x 2sen
3sen
lim
0 +
−
→
=
3
1
−
10. 30
sen
lim
x
xtgx
x
−
→
= ? à 30
sen
lim
x
xtgx
x
−
→
=
xx
x
xx
x
x cos1
1
.
sen
.
cos
1
.
sen
lim 2
2
0 +→
=
2
1
( ) 3
sen
x
xtgx
xf
−
= = 3
sen
cos
sen
x
x
x
x
−
= 3
cos
cos.sensen
x
x
xxx −
=
( )
xx
xx
cos.
cos1.sen
3
−
=
x
x
xx
x
cos
cos1
.
1
.
sen
2
−
=
x
x
x
x
xx
x
cos1
cos1
.
cos
cos1
.
1
.
sen
2 +
+−
=
xx
x
xx
x
cos1
1
.
cos1
.
cos
1
.
sen
2
2
+
−
=
xx
x
xx
x
cos1
1
.
sen
.
cos
1
.
sen
2
2
+
Logo 30
sen
lim
x
xtgx
x
−
→
=
2
1
11. 30
sen11
lim
x
xtgx
x
+−+
→
=? à
xtgxx
xtgx
x sen11
1
.
sen
lim 30 +++
−
→
=
xtgxxx
x
xx
x
x sen11
1
.
cos1
1
.
sen
.
cos
1
.
sen
lim 2
2
0 ++++→
=
2
1
.
2
1
.
1
1
.
1
1
.1 =
4
1
( ) 3
11
x
senxtgx
xf
+−+
= =
xtgxx
xtgx
sen11
1
.
sen11
3
+++
−−+
=
xtgxx
xtgx
sen11
1
.
sen
3
+++
−
30
sen11
lim
x
xtgx
x
+−+
→
=
4
1
12.
ax
ax
ax −
−
→
sensen
lim = ? à
ax
ax
ax −
−
→
sensen
lim =





 −





 +





 −
→
2
.2
2
cos.
2
sen2
lim
ax
axax
ax
=
1
2
cos.
.
2
.2
)
2
sen(2
lim





 +





 −
−
→
ax
ax
ax
ax
= acos Logo
ax
ax
ax −
−
→
sensen
lim = cosa
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos
3
13.
( )
a
xax
a
sensen
lim
0
−+
→
= ? à
( )
a
xax
a
sensen
lim
0
−+
→
=
1
2
cos.
.
2
.2
2
sen2
lim





 ++





 −





 −+
→
xax
ax
xax
aa
=
1
2
2
cos.
.
2
.2
2
sen2
lim





 +












→
ax
a
a
aa
= xcos Logo
( )
a
xax
a
sensen
lim
0
−+
→
=cosx
14.
( )
a
xax
a
coscos
lim
0
−+
→
= ? à
( )
a
xax
a
coscos
lim
0
−+
→
=
a
xaxxax
a





 −−





 ++
−
→
2
sen.
2
sen2
lim
0
=





 −





 −





 +
−
→
2
.2
2
sen.
2
2
sen.2
lim
0 a
aax
a
=





 −





 −





 +
−
→
2
2
sen
.
2
2
senlim
0 a
a
ax
a
= xsen− Logo
( )
a
xax
a
coscos
lim
0
−+
→
=-senx
15.
ax
ax
ax −
−
→
secsec
lim = ? à
ax
ax
ax −
−
→
secsec
lim =
ax
ax
ax −
−
→
cos
1
cos
1
lim =
ax
ax
xa
ax −
−
→
cos.cos
coscos
lim =
( ) axax
xa
ax cos.cos.
coscos
lim
−
−
→
=
( ) axax
xaxa
ax cos.cos.
2
sen.
2
sen.2
lim
−





 −





 +
−
→
=
axxa
xaxa
ax cos.cos
1
.
2
.2
2
sen
.
1
2
sen.2
lim





 −
−





 −





 +
−
→
=
axxa
xaxa
ax cos.cos
1
.
2
2
sen
.
1
2
sen
lim





 −





 −





 +
→
=
aa
a
cos.cos
1
.1.
1
sen
=
aa
a
cos
1
.
cos
sen
= atga sec. Logo
ax
ax
ax −
−
→
secsec
lim = atga sec.
16.
x
x
x sec1
lim
2
0 −→
= ? à
x
x
x sec1
lim
2
0 −→
=
( )xxx
xx
cos1
1
.
cos
1
.
sen
1
lim
2
20
+
−
→
= 2−
( )
x
x
xf
cos
1
1
2
−
= =
x
x
x
cos
1cos
2
−
=
( )x
xx
cos1.1
cos.2
−−
=
( ) ( )
( )x
x
xx
x
cos1
cos1
.
cos
1
.
cos1
1
2 +
+−
−
=
( )xxx
x
cos1
1
.
cos
1
.
cos1
1
2
2
+
−
−
=
( )xxx
x
cos1
1
.
cos
1
.
sen
1
2
2
+
−
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos
4
17.
tgx
gx
x −
−
→ 1
cot1
lim
4
π
= ? à
tgx
gx
x −
−
→ 1
cot1
lim
4
π
=
tgx
tgx
x −
−
→ 1
1
1
lim
4
π
=
tgx
tgx
tgx
x −
−
→ 1
1
lim
4
π
=
tgx
tgx
tgx
x −
−−
→ 1
)1.(1
lim
4
π
=
tgxx
1
lim
4
−
→
π
= 1− Logo
tgx
gx
x −
−
→ 1
cot1
lim
4
π
= -1
18.
x
x
x 2
3
0 sen
cos1
lim
−
→
= ? à
x
x
x 2
3
0 sen
cos1
lim
−
→
=
( )( )
x
xxx
x 2
2
0 cos1
coscos1.cos1
lim
−
++−
→
=
( )( )
( )( )xx
xxx
x cos1.cos1
coscos1.cos1
lim
2
0 +−
++−
→
=
x
xx
x cos1
coscos1
lim
2
0 +
++
→
=
2
3
Logo
x
x
x 2
3
0 sen
cos1
lim
−
→
=
2
3
19.
x
x
x cos.21
3sen
lim
3
−→
π
= ? à
x
x
x cos.21
3sen
lim
3
−→
π
=
( )
1
cos.21.sen
lim
3
xx
x
+
−
→
π
= 3−
( )
x
x
xf
cos.21
3sen
−
= =
( )
x
xx
cos.21
2sen
−
+
=
x
xxxx
cos.21
cos.2sen2cos.sen
−
+
=
( )
x
xxxxx
cos.21
cos.cos.sen.21cos2.sen 2
−
+−
=
( )[ ]
x
xxx
cos.21
cos21cos2.sen 22
−
+−
=
[ ]
x
xx
cos.21
1cos4.sen 2
−
−
=
( )( )
x
coxcoxx
cos.21
.21..21.sen
−
+−
− =
( )
1
cos.21.sen xx +
−
20.
tgx
xx
x −
−
→ 1
cossen
lim
4
π
= ? à
tgx
xx
x −
−
→ 1
cossen
lim
4
π
= ( )x
x
coslim
4
−
→π
=
2
2
−
( )
tgx
xx
xf
−
−
=
1
cossen
=
x
x
xx
cos
sen
1
cossen
−
−
=
x
x
xx
cos
sen
1
cossen
−
−
=
x
xx
xx
cos
sencos
cossen
−
−
=
( )
x
xx
xx
cos
cossen.1
cossen
−−
−
=
xx
xxx
sencos
cos
.
1
cossen
−
−
− = xcos−
21. ( ) )sec(cos.3lim
3
xx
x
π−
→
= ? à ( ) )sec(cos.3lim
3
xx
x
π−
→
= ∞.0
( ) ( ) )sec(cos.3 xxxf π−= =( )
( )x
x
πsen
1
.3 − =
( )x
x
ππ −
−
sen
3
=
( )x
x
ππ −
−
3sen
3
=
( )
( )x
x
−
−
3.
3sen.
1
π
πππ
=
( )
( )x
x
ππ
πππ
−
−
3
3sen.
1
à ( ) )sec(cos.3lim
3
xx
x
π−
→
=
( )
( )x
xx
ππ
πππ
−
−→
3
3sen.
1
lim
3
=
π
1
22. )
1
sen(.lim
x
x
x→∝
= ? à )
1
sen(.lim
x
x
x→∝
= 0.∞
x
x
x 1
1
sen
lim






→∝
= 1
sen
lim
0
=
→ t
t
t
à Fazendo



→
+∞→
=
0
1
t
x
x
t
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos
5
23.
1sen.3sen.2
1sensen.2
lim 2
2
6 +−
−+
→ xx
xx
x π
= ? à
1sen.3sen.2
1sensen.2
lim 2
2
6 +−
−+
→ xx
xx
x π
=
x
x
x sen1
sen1
lim
6
+−
+
→π
=
6
sen1
6
sen1
π
π
+−
+
=
2
1
1
2
1
1
+−
+
= 3− à ( )
1sen.3sen.2
1sensen.2
2
2
+−
−+
=
xx
xx
xf =
( )
( )1sen.
2
1
sen
1sen.
2
1
sen
−





−
+





−
xx
xx
=
( )
( )1sen
1sen
−
+
x
x
=
x
x
sen1
sen1
+−
+
24. ( ) 





−
→ 2
.1lim
1
x
tgx
x
π
= ? à ( ) 





−
→ 2
.1lim
1
x
tgx
x
π
= ∞.0 à ( ) ( ) 





−=
2
.1
x
tgxxf
π
=
( ) 





−−
22
cot.1
x
gx
ππ
=
( )






−
−
22
1
x
tg
x
ππ
=
( )






−
−
22
2
.1.
2
x
tg
x
ππ
π
π
=
( )x
x
tg
−






−
1.
2
22
2
π
ππ
π =






−






−
22
22
2
x
x
tg
ππ
ππ
π à
( ) 





−
→ 2
.1lim
1
x
tgx
x
π
=






−






−
→
22
22
2
lim
1
x
x
tg
x
ππ
ππ
π =
( )
t
ttg
t 0
lim
2
→
π =
π
2
Fazendo uma mudança de variável,
temos :



→
→
−=
0
1
2 t
x
x
x
t
ππ
25.
( )x
x
x πsen
1
lim
2
1
−
→
= ? à
( )x
x
x πsen
1
lim
2
1
−
→
=
( )
( )x
x
x
x
ππ
πππ
−
−
+
→ sen.
1
lim
1
=
π
2
( )
x
x
xf
πsen
1 2
−
= =
( )( )
( )x
xx
ππ −
+−
sen
1.1
=
( )
( )x
x
x
−
−
+
1
sen
1
ππ
=
( )
( )x
x
x
−
−
+
1.
sen.
1
π
πππ
=
( )
( )x
x
x
ππ
πππ
−
−
+
sen.
1
26. 





−
→
xgxg
x 2
cot.2cotlim
0
π
= ? à 





−
→
xgxg
x 2
cot.2cotlim
0
π
= 0.∞
( ) 





−= xgxgxf
2
cot.2cot
π
= tgxxg .2cot =
xtg
tgx
2
=
xtg
tgx
tgx
2
1
2
−
=
tgx
xtg
tgx
.2
1
.
2
−
=
2
1 2
xtg−






−
→
xgxg
x 2
cot.2cotlim
0
π
=
2
1
lim
2
0
xtg
x
−
→
=
2
1
27.
x
xx
x 2
3
0 sen
coscos
lim
−
→
= 11102
2
1 ...1
lim
tttt
t
t +++++
−
→
=
12
1
−
( )
x
xx
xf 2
3
sen
coscos −
= = 12
23
1 t
tt
−
−
=
( )
( )( )11102
2
...1.1
1.
ttttt
tt
+++++−
−−
= 11102
2
...1 tttt
t
+++++
−
63.2
coscos xxt ==



→
→
1
0
t
x
xt cos6
= , xt 212
cos= , 122
1sen tx −=
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos
6
BriotxRuffini :
1 0 0 ... 0 -1
1 • 1 1 ... 1 1
1 1 1 ... 1 0
28.
xx
xx
x sencos
12cos2sen
lim
4
−
−−
→π
= ? à
xx
xx
x sencos
12cos2sen
lim
4
−
−−
→π
= ( )x
x
cos.2lim
4
−
→π
=
4
cos.2
π
− =
2
2
.2− =
2−
( )
xx
xx
xf
sencos
12cos2sen
−
−−
= =
( )
xx
xxx
sencos
11cos2cossen.2 2
−
−−−
=
xx
xxx
sencos
11cos2cos.sen.2 2
−
−+−
=
xx
xxx
sencos
cos2cos.sen.2 2
−
−
=
( )
xx
xxx
sencos
sencos.cos.2
−
−−
= xcos.2−
29.
( )
112
1sen
lim
1
−−
−
→
x
x
x
= ? à
( )
112
1sen
lim
1 −−
−
→ x
x
x
=
( )
( ) 1
112
.
1
1sen
.
2
1
lim
1
+−
−
−
→
x
x
x
x
= 1
( ) ( )
112
1sen
−−
−
=
x
x
xf =
( )
112
112
.
112
1sen
+−
+−
−−
−
x
x
x
x
=
( )
1
112
.
112
1sen +−
−−
− x
x
x
=
( )
( ) 1
112
.
1.2
1sen +−
−
− x
x
x
=
( )
( ) 1
112
.
1
1sen
.
2
1 +−
−
− x
x
x
30.
3
cos.21
lim
3
ππ
−
−
→ x
x
x
= ? à
3
cos.21
lim
3
ππ
−
−
→ x
x
x
=







 −







 −







 +
→
2
3
2
3sen
.
2
3sen.2lim
3 x
x
x
x π
π
π
π
=
.
2
33sen.2







 +ππ
= .
2
3
2
sen.2







 π
= .
3
sen.2 




π
= 3
2
3
.2 =
( )
3
cos.21
π
−
−
=
x
x
xf =
3
cos
2
1
.2
π
−






−
x
x
=
3
cos
3
cos.2
π
π
−






−
x
x
=
( )







 −
−







 −







 +
−
2
3.2.1
2
3sen.
2
3sen2.2
x
xx
π
ππ
=







 −







 −







 +
2
3
2
3sen.
2
3sen.2
x
xx
π
ππ
=







 −







 −







 +
2
3
2
3sen
.
2
3sen.2
x
x
x
π
π
π
31.
xx
x
x sen.
2cos1
lim
0
−
→
= ? à
xx
x
x sen.
2cos1
lim
0
−
→
=
x
x
x
sen.2
lim
3
π
→
= 2
Limites Trigonométricos Resolvidos
Sete páginas e 34 limites resolvidos
7
( )
xx
x
xf
sen.
2cos1−
= =
( )
xx
x
sen.
sen211 2
−−
=
xx
x
sen.
sen211 2
+−
=
xx
x
sen.
sen.2 2
=
x
xsen.2
32.
xx
x
x sen1sen1
lim
0 −−+→
= ? à
xx
x
x sen1sen1
lim
0 −−+→
=
x
x
xx
x sen.2
sen1sen1
lim
0
−++
→
=
1.2
11+
=1
( )
xx
x
xf
sen1sen1 −−+
= =
( )
( )xx
xxx
sen1sen1
sen1sen1.
−−+
−++
=
( )
xx
xxx
sen1sen1
sen1sen1.
+−+
−++
=
( )
x
xxx
sen.2
sen1sen1. −++
=
x
x
xx
sen
.2
sen1sen1 −++
=
1.2
11+
= 1
33.
xx
x
x sencos
2cos
lim
0 −→
=
1
sencos
lim
0
xx
x
+
→
=
2
2
2
2
+ = 2
( )
xx
x
xf
sencos
2cos
−
= =
( )
( )( )xxxx
xxx
sencos.sencos
sencos.2cos
+−
+
=
( )
xx
xxx
22
sencos
sencos.2cos
−
+
=
( )
x
xxx
2cos
sencos.2cos +
=
( )
x
xxx
2cos
sencos.2cos +
=
1
sencos xx +
=
2
2
2
2
+ = 2
34.
3
sen.23
lim
3
ππ
−
−
→ x
x
x
= ? à
3
sen.23
lim
3
ππ
−
−
→ x
x
x
=
3
sen
2
3
.2
lim
3
ππ
−








−
→ x
x
x
=
3
sen
3
sen.2
lim
3
π
π
π
−






−
→ x
x
x
=
3
2
3cos.
2
3sen.2
lim
3
π
ππ
π
−
























+












−
→ x
xx
x
=
3
3
2
3
3
cos.
2
3
3
sen.2
lim
3
π
ππ
π −























 +











 −
→
x
xx
x
=
( )
3
3.1
6
3
cos.
6
3
sen.2
lim
3
x
xx
x
−−











 +





 −
→
π
ππ
π
35. ?

More Related Content

What's hot

Factorización con matlab
Factorización con matlabFactorización con matlab
Factorización con matlabdoping92
 
Calculo avanzado-formula de taylor
Calculo avanzado-formula de taylorCalculo avanzado-formula de taylor
Calculo avanzado-formula de taylorFernando Maguna
 
Ejercicios propuestos de dependencia e independencia lineal
Ejercicios propuestos de dependencia e independencia linealEjercicios propuestos de dependencia e independencia lineal
Ejercicios propuestos de dependencia e independencia linealalgebra
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricosEl Profe Sami
 
Identidades trigonometricas desarrolladas
Identidades trigonometricas desarrolladasIdentidades trigonometricas desarrolladas
Identidades trigonometricas desarrolladasPELVIS
 
Derivadas de funciones logaritmicas
Derivadas de funciones logaritmicas Derivadas de funciones logaritmicas
Derivadas de funciones logaritmicas Jair Ospino Ardila
 
Derivadas de funciones trigonométricas inversas
Derivadas de funciones trigonométricas inversasDerivadas de funciones trigonométricas inversas
Derivadas de funciones trigonométricas inversasCamilo Andrés Ortiz Daza
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Mat funcoes 002 exercicios
Mat funcoes  002 exerciciosMat funcoes  002 exercicios
Mat funcoes 002 exerciciostrigono_metrico
 
Fonctions exponentielles et puissances
Fonctions exponentielles et puissancesFonctions exponentielles et puissances
Fonctions exponentielles et puissancesĂmîʼndǿ TrànCè
 
Casos de factoreo
Casos de factoreoCasos de factoreo
Casos de factoreomolofoclo
 
Respuestas De Las Derivadas
Respuestas De Las DerivadasRespuestas De Las Derivadas
Respuestas De Las DerivadasERICK CONDE
 
Variacion De Parametros
Variacion De ParametrosVariacion De Parametros
Variacion De ParametrosCETI
 

What's hot (20)

Capitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na EdicionCapitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na Edicion
 
Factorización con matlab
Factorización con matlabFactorización con matlab
Factorización con matlab
 
Calculo avanzado-formula de taylor
Calculo avanzado-formula de taylorCalculo avanzado-formula de taylor
Calculo avanzado-formula de taylor
 
Ejercicios propuestos de dependencia e independencia lineal
Ejercicios propuestos de dependencia e independencia linealEjercicios propuestos de dependencia e independencia lineal
Ejercicios propuestos de dependencia e independencia lineal
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricos
 
Limites y continuidad
Limites y continuidadLimites y continuidad
Limites y continuidad
 
Identidades trigonometricas desarrolladas
Identidades trigonometricas desarrolladasIdentidades trigonometricas desarrolladas
Identidades trigonometricas desarrolladas
 
Derivadas de funciones logaritmicas
Derivadas de funciones logaritmicas Derivadas de funciones logaritmicas
Derivadas de funciones logaritmicas
 
Derivadas de funciones trigonométricas inversas
Derivadas de funciones trigonométricas inversasDerivadas de funciones trigonométricas inversas
Derivadas de funciones trigonométricas inversas
 
Analisi Limiti
Analisi LimitiAnalisi Limiti
Analisi Limiti
 
93311880 limites-trigonometricos
93311880 limites-trigonometricos93311880 limites-trigonometricos
93311880 limites-trigonometricos
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Mat funcoes 002 exercicios
Mat funcoes  002 exerciciosMat funcoes  002 exercicios
Mat funcoes 002 exercicios
 
Fonctions exponentielles et puissances
Fonctions exponentielles et puissancesFonctions exponentielles et puissances
Fonctions exponentielles et puissances
 
Limites y continuidad
Limites y continuidadLimites y continuidad
Limites y continuidad
 
Método del Gradiente Conjugado
Método del Gradiente ConjugadoMétodo del Gradiente Conjugado
Método del Gradiente Conjugado
 
Límites de funciones
Límites de funcionesLímites de funciones
Límites de funciones
 
Casos de factoreo
Casos de factoreoCasos de factoreo
Casos de factoreo
 
Respuestas De Las Derivadas
Respuestas De Las DerivadasRespuestas De Las Derivadas
Respuestas De Las Derivadas
 
Variacion De Parametros
Variacion De ParametrosVariacion De Parametros
Variacion De Parametros
 

Similar to Limites Problemas resueltos

Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
01 derivadas
01   derivadas01   derivadas
01 derivadasklorofila
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1Ani_Agustina
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualLin1936
 
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions ManualTrigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manualrajevynab
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualLarson2017
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsKavin Ruk
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculoFavian Flores
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculoMan50035
 
Calculo
CalculoCalculo
CalculoJu Lio
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integralesGeovanny Jiménez
 

Similar to Limites Problemas resueltos (20)

Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
01 derivadas
01   derivadas01   derivadas
01 derivadas
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
 
1. limits
1. limits1. limits
1. limits
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
 
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions ManualTrigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th Edition Larson Solutions Manual
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulas de calculo
Formulas de calculoFormulas de calculo
Formulas de calculo
 
Calculo
CalculoCalculo
Calculo
 
Tablas calculo
Tablas calculoTablas calculo
Tablas calculo
 
Formulario
FormularioFormulario
Formulario
 
Formulario derivadas e integrales
Formulario derivadas e integralesFormulario derivadas e integrales
Formulario derivadas e integrales
 
Calculo
CalculoCalculo
Calculo
 

More from Leonardo Barmontec

More from Leonardo Barmontec (12)

Teoría Electromágnetica Campo electrico
Teoría Electromágnetica Campo electricoTeoría Electromágnetica Campo electrico
Teoría Electromágnetica Campo electrico
 
Ecuaciones diferenciales 2do parcial
Ecuaciones diferenciales   2do parcialEcuaciones diferenciales   2do parcial
Ecuaciones diferenciales 2do parcial
 
Ecuaciones diferenciales 1er parcial
Ecuaciones diferenciales   1er parcialEcuaciones diferenciales   1er parcial
Ecuaciones diferenciales 1er parcial
 
Un gato en la oscuridad...
Un gato en la oscuridad...Un gato en la oscuridad...
Un gato en la oscuridad...
 
Tímido y herido (carmen)
Tímido y herido (carmen)Tímido y herido (carmen)
Tímido y herido (carmen)
 
Te amo y te odio (k)
Te amo y te odio (k)Te amo y te odio (k)
Te amo y te odio (k)
 
Las rosas tienen espinas
Las rosas tienen espinasLas rosas tienen espinas
Las rosas tienen espinas
 
El aborto 1
El aborto 1El aborto 1
El aborto 1
 
Para carmen ( perdón)
Para carmen ( perdón)Para carmen ( perdón)
Para carmen ( perdón)
 
Capitulo 5 blog
Capitulo 5 blogCapitulo 5 blog
Capitulo 5 blog
 
Folleto de Nomenclatura Química Nivel 0
Folleto de Nomenclatura Química Nivel  0Folleto de Nomenclatura Química Nivel  0
Folleto de Nomenclatura Química Nivel 0
 
Celula
CelulaCelula
Celula
 

Limites Problemas resueltos

  • 1. Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 1 Usar o limite fundamental e alguns artifícios : 1lim 0 = → x senx x 1. x x x sen lim 0→ = ? à x x x sen lim 0→ = 0 0 , é uma indeterminação. x x x sen lim 0→ = x xx sen 1 lim 0→ = x x x sen lim 1 0→ = 1 logo x x x sen lim 0→ = 1 2. x x x 4sen lim 0→ = ? à x x x 4sen lim 0→ = 0 0 à x x x 4 4sen .4lim 0→ = 4. y y y sen lim 0→ =4.1= 4 logo x x x 4sen lim 0→ =4 3. x x x 2 5sen lim 0→ = ? à = → x x x 5 5sen . 2 5 lim 0 = → y y y sen . 2 5 lim 0 2 5 logo x x x 2 5sen lim 0→ = 2 5 4. nx mx x sen lim 0→ = ? à nx mx x sen lim 0→ = mx mx n m x sen .lim 0→ = n m . y y y sen lim 0→ = n m .1= n m logo nx mx x sen lim 0→ = n m 5. x x x 2sen 3sen lim 0→ = ? à x x x 2sen 3sen lim 0→ = = → x x x x x 2sen 3sen lim 0 = → x x x x x 2 2sen .2 3 3sen .3 lim 0 . 2 3 2 2sen lim 3 3sen lim 0 0 = → → x x x x x x . 1. 2 3 sen lim sen lim 0 0 = → → t t y y t y = 2 3 logo x x x 2sen 3sen lim 0→ = 2 3 6. sennx senmx x 0 lim → = ? à nx mx x sen sen lim 0→ = x nx x mx x sen sen lim 0→ = nx nx n mx mx m x sen . sen . lim 0→ = nx nx mx mx n m x sen sen .lim 0→ = n m Logo sennx senmx x 0 lim → = n m 7. = → x tgx x 0 lim ? à = → x tgx x 0 lim 0 0 à = → x tgx x 0 lim = → x x x x cos sen lim 0 = → xx x x 1 . cos sen lim 0 xx x x cos 1 . sen lim 0→ = xx x xx cos 1 lim. sen lim 00 →→ = 1 Logo = → x tgx x 0 lim 1 8. ( ) 1 1 lim 2 2 1 − − → a atg a = ? à ( ) 1 1 lim 2 2 1 − − → a atg a = 0 0 àFazendo    → → −= 0 1 ,12 t x at à ( ) t ttg t 0 lim → =1 logo ( ) 1 1 lim 2 2 1 − − → a atg a =1
  • 2. Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 2 9. xx xx x 2sen 3sen lim 0 + − → = ? à xx xx x 2sen 3sen lim 0 + − → = 0 0 à ( ) xx xx xf 2sen 3sen + − = =       +       − x x x x x x 5sen 1. 3sen 1. =       +       − x x x x x x .5 5sen .51. .3 3sen .31. = x x x x .5 5sen .51 .3 3sen .31 + − à 0 lim →x x x x x .5 5sen .51 .3 3sen .31 + − = 51 31 + − = 6 2− = 3 1 − logo xx xx x 2sen 3sen lim 0 + − → = 3 1 − 10. 30 sen lim x xtgx x − → = ? à 30 sen lim x xtgx x − → = xx x xx x x cos1 1 . sen . cos 1 . sen lim 2 2 0 +→ = 2 1 ( ) 3 sen x xtgx xf − = = 3 sen cos sen x x x x − = 3 cos cos.sensen x x xxx − = ( ) xx xx cos. cos1.sen 3 − = x x xx x cos cos1 . 1 . sen 2 − = x x x x xx x cos1 cos1 . cos cos1 . 1 . sen 2 + +− = xx x xx x cos1 1 . cos1 . cos 1 . sen 2 2 + − = xx x xx x cos1 1 . sen . cos 1 . sen 2 2 + Logo 30 sen lim x xtgx x − → = 2 1 11. 30 sen11 lim x xtgx x +−+ → =? à xtgxx xtgx x sen11 1 . sen lim 30 +++ − → = xtgxxx x xx x x sen11 1 . cos1 1 . sen . cos 1 . sen lim 2 2 0 ++++→ = 2 1 . 2 1 . 1 1 . 1 1 .1 = 4 1 ( ) 3 11 x senxtgx xf +−+ = = xtgxx xtgx sen11 1 . sen11 3 +++ −−+ = xtgxx xtgx sen11 1 . sen 3 +++ − 30 sen11 lim x xtgx x +−+ → = 4 1 12. ax ax ax − − → sensen lim = ? à ax ax ax − − → sensen lim =       −       +       − → 2 .2 2 cos. 2 sen2 lim ax axax ax = 1 2 cos. . 2 .2 ) 2 sen(2 lim       +       − − → ax ax ax ax = acos Logo ax ax ax − − → sensen lim = cosa
  • 3. Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 3 13. ( ) a xax a sensen lim 0 −+ → = ? à ( ) a xax a sensen lim 0 −+ → = 1 2 cos. . 2 .2 2 sen2 lim       ++       −       −+ → xax ax xax aa = 1 2 2 cos. . 2 .2 2 sen2 lim       +             → ax a a aa = xcos Logo ( ) a xax a sensen lim 0 −+ → =cosx 14. ( ) a xax a coscos lim 0 −+ → = ? à ( ) a xax a coscos lim 0 −+ → = a xaxxax a       −−       ++ − → 2 sen. 2 sen2 lim 0 =       −       −       + − → 2 .2 2 sen. 2 2 sen.2 lim 0 a aax a =       −       −       + − → 2 2 sen . 2 2 senlim 0 a a ax a = xsen− Logo ( ) a xax a coscos lim 0 −+ → =-senx 15. ax ax ax − − → secsec lim = ? à ax ax ax − − → secsec lim = ax ax ax − − → cos 1 cos 1 lim = ax ax xa ax − − → cos.cos coscos lim = ( ) axax xa ax cos.cos. coscos lim − − → = ( ) axax xaxa ax cos.cos. 2 sen. 2 sen.2 lim −       −       + − → = axxa xaxa ax cos.cos 1 . 2 .2 2 sen . 1 2 sen.2 lim       − −       −       + − → = axxa xaxa ax cos.cos 1 . 2 2 sen . 1 2 sen lim       −       −       + → = aa a cos.cos 1 .1. 1 sen = aa a cos 1 . cos sen = atga sec. Logo ax ax ax − − → secsec lim = atga sec. 16. x x x sec1 lim 2 0 −→ = ? à x x x sec1 lim 2 0 −→ = ( )xxx xx cos1 1 . cos 1 . sen 1 lim 2 20 + − → = 2− ( ) x x xf cos 1 1 2 − = = x x x cos 1cos 2 − = ( )x xx cos1.1 cos.2 −− = ( ) ( ) ( )x x xx x cos1 cos1 . cos 1 . cos1 1 2 + +− − = ( )xxx x cos1 1 . cos 1 . cos1 1 2 2 + − − = ( )xxx x cos1 1 . cos 1 . sen 1 2 2 + −
  • 4. Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 4 17. tgx gx x − − → 1 cot1 lim 4 π = ? à tgx gx x − − → 1 cot1 lim 4 π = tgx tgx x − − → 1 1 1 lim 4 π = tgx tgx tgx x − − → 1 1 lim 4 π = tgx tgx tgx x − −− → 1 )1.(1 lim 4 π = tgxx 1 lim 4 − → π = 1− Logo tgx gx x − − → 1 cot1 lim 4 π = -1 18. x x x 2 3 0 sen cos1 lim − → = ? à x x x 2 3 0 sen cos1 lim − → = ( )( ) x xxx x 2 2 0 cos1 coscos1.cos1 lim − ++− → = ( )( ) ( )( )xx xxx x cos1.cos1 coscos1.cos1 lim 2 0 +− ++− → = x xx x cos1 coscos1 lim 2 0 + ++ → = 2 3 Logo x x x 2 3 0 sen cos1 lim − → = 2 3 19. x x x cos.21 3sen lim 3 −→ π = ? à x x x cos.21 3sen lim 3 −→ π = ( ) 1 cos.21.sen lim 3 xx x + − → π = 3− ( ) x x xf cos.21 3sen − = = ( ) x xx cos.21 2sen − + = x xxxx cos.21 cos.2sen2cos.sen − + = ( ) x xxxxx cos.21 cos.cos.sen.21cos2.sen 2 − +− = ( )[ ] x xxx cos.21 cos21cos2.sen 22 − +− = [ ] x xx cos.21 1cos4.sen 2 − − = ( )( ) x coxcoxx cos.21 .21..21.sen − +− − = ( ) 1 cos.21.sen xx + − 20. tgx xx x − − → 1 cossen lim 4 π = ? à tgx xx x − − → 1 cossen lim 4 π = ( )x x coslim 4 − →π = 2 2 − ( ) tgx xx xf − − = 1 cossen = x x xx cos sen 1 cossen − − = x x xx cos sen 1 cossen − − = x xx xx cos sencos cossen − − = ( ) x xx xx cos cossen.1 cossen −− − = xx xxx sencos cos . 1 cossen − − − = xcos− 21. ( ) )sec(cos.3lim 3 xx x π− → = ? à ( ) )sec(cos.3lim 3 xx x π− → = ∞.0 ( ) ( ) )sec(cos.3 xxxf π−= =( ) ( )x x πsen 1 .3 − = ( )x x ππ − − sen 3 = ( )x x ππ − − 3sen 3 = ( ) ( )x x − − 3. 3sen. 1 π πππ = ( ) ( )x x ππ πππ − − 3 3sen. 1 à ( ) )sec(cos.3lim 3 xx x π− → = ( ) ( )x xx ππ πππ − −→ 3 3sen. 1 lim 3 = π 1 22. ) 1 sen(.lim x x x→∝ = ? à ) 1 sen(.lim x x x→∝ = 0.∞ x x x 1 1 sen lim       →∝ = 1 sen lim 0 = → t t t à Fazendo    → +∞→ = 0 1 t x x t
  • 5. Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 5 23. 1sen.3sen.2 1sensen.2 lim 2 2 6 +− −+ → xx xx x π = ? à 1sen.3sen.2 1sensen.2 lim 2 2 6 +− −+ → xx xx x π = x x x sen1 sen1 lim 6 +− + →π = 6 sen1 6 sen1 π π +− + = 2 1 1 2 1 1 +− + = 3− à ( ) 1sen.3sen.2 1sensen.2 2 2 +− −+ = xx xx xf = ( ) ( )1sen. 2 1 sen 1sen. 2 1 sen −      − +      − xx xx = ( ) ( )1sen 1sen − + x x = x x sen1 sen1 +− + 24. ( )       − → 2 .1lim 1 x tgx x π = ? à ( )       − → 2 .1lim 1 x tgx x π = ∞.0 à ( ) ( )       −= 2 .1 x tgxxf π = ( )       −− 22 cot.1 x gx ππ = ( )       − − 22 1 x tg x ππ = ( )       − − 22 2 .1. 2 x tg x ππ π π = ( )x x tg −       − 1. 2 22 2 π ππ π =       −       − 22 22 2 x x tg ππ ππ π à ( )       − → 2 .1lim 1 x tgx x π =       −       − → 22 22 2 lim 1 x x tg x ππ ππ π = ( ) t ttg t 0 lim 2 → π = π 2 Fazendo uma mudança de variável, temos :    → → −= 0 1 2 t x x x t ππ 25. ( )x x x πsen 1 lim 2 1 − → = ? à ( )x x x πsen 1 lim 2 1 − → = ( ) ( )x x x x ππ πππ − − + → sen. 1 lim 1 = π 2 ( ) x x xf πsen 1 2 − = = ( )( ) ( )x xx ππ − +− sen 1.1 = ( ) ( )x x x − − + 1 sen 1 ππ = ( ) ( )x x x − − + 1. sen. 1 π πππ = ( ) ( )x x x ππ πππ − − + sen. 1 26.       − → xgxg x 2 cot.2cotlim 0 π = ? à       − → xgxg x 2 cot.2cotlim 0 π = 0.∞ ( )       −= xgxgxf 2 cot.2cot π = tgxxg .2cot = xtg tgx 2 = xtg tgx tgx 2 1 2 − = tgx xtg tgx .2 1 . 2 − = 2 1 2 xtg−       − → xgxg x 2 cot.2cotlim 0 π = 2 1 lim 2 0 xtg x − → = 2 1 27. x xx x 2 3 0 sen coscos lim − → = 11102 2 1 ...1 lim tttt t t +++++ − → = 12 1 − ( ) x xx xf 2 3 sen coscos − = = 12 23 1 t tt − − = ( ) ( )( )11102 2 ...1.1 1. ttttt tt +++++− −− = 11102 2 ...1 tttt t +++++ − 63.2 coscos xxt ==    → → 1 0 t x xt cos6 = , xt 212 cos= , 122 1sen tx −=
  • 6. Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 6 BriotxRuffini : 1 0 0 ... 0 -1 1 • 1 1 ... 1 1 1 1 1 ... 1 0 28. xx xx x sencos 12cos2sen lim 4 − −− →π = ? à xx xx x sencos 12cos2sen lim 4 − −− →π = ( )x x cos.2lim 4 − →π = 4 cos.2 π − = 2 2 .2− = 2− ( ) xx xx xf sencos 12cos2sen − −− = = ( ) xx xxx sencos 11cos2cossen.2 2 − −−− = xx xxx sencos 11cos2cos.sen.2 2 − −+− = xx xxx sencos cos2cos.sen.2 2 − − = ( ) xx xxx sencos sencos.cos.2 − −− = xcos.2− 29. ( ) 112 1sen lim 1 −− − → x x x = ? à ( ) 112 1sen lim 1 −− − → x x x = ( ) ( ) 1 112 . 1 1sen . 2 1 lim 1 +− − − → x x x x = 1 ( ) ( ) 112 1sen −− − = x x xf = ( ) 112 112 . 112 1sen +− +− −− − x x x x = ( ) 1 112 . 112 1sen +− −− − x x x = ( ) ( ) 1 112 . 1.2 1sen +− − − x x x = ( ) ( ) 1 112 . 1 1sen . 2 1 +− − − x x x 30. 3 cos.21 lim 3 ππ − − → x x x = ? à 3 cos.21 lim 3 ππ − − → x x x =         −         −         + → 2 3 2 3sen . 2 3sen.2lim 3 x x x x π π π π = . 2 33sen.2         +ππ = . 2 3 2 sen.2         π = . 3 sen.2      π = 3 2 3 .2 = ( ) 3 cos.21 π − − = x x xf = 3 cos 2 1 .2 π −       − x x = 3 cos 3 cos.2 π π −       − x x = ( )         − −         −         + − 2 3.2.1 2 3sen. 2 3sen2.2 x xx π ππ =         −         −         + 2 3 2 3sen. 2 3sen.2 x xx π ππ =         −         −         + 2 3 2 3sen . 2 3sen.2 x x x π π π 31. xx x x sen. 2cos1 lim 0 − → = ? à xx x x sen. 2cos1 lim 0 − → = x x x sen.2 lim 3 π → = 2
  • 7. Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 7 ( ) xx x xf sen. 2cos1− = = ( ) xx x sen. sen211 2 −− = xx x sen. sen211 2 +− = xx x sen. sen.2 2 = x xsen.2 32. xx x x sen1sen1 lim 0 −−+→ = ? à xx x x sen1sen1 lim 0 −−+→ = x x xx x sen.2 sen1sen1 lim 0 −++ → = 1.2 11+ =1 ( ) xx x xf sen1sen1 −−+ = = ( ) ( )xx xxx sen1sen1 sen1sen1. −−+ −++ = ( ) xx xxx sen1sen1 sen1sen1. +−+ −++ = ( ) x xxx sen.2 sen1sen1. −++ = x x xx sen .2 sen1sen1 −++ = 1.2 11+ = 1 33. xx x x sencos 2cos lim 0 −→ = 1 sencos lim 0 xx x + → = 2 2 2 2 + = 2 ( ) xx x xf sencos 2cos − = = ( ) ( )( )xxxx xxx sencos.sencos sencos.2cos +− + = ( ) xx xxx 22 sencos sencos.2cos − + = ( ) x xxx 2cos sencos.2cos + = ( ) x xxx 2cos sencos.2cos + = 1 sencos xx + = 2 2 2 2 + = 2 34. 3 sen.23 lim 3 ππ − − → x x x = ? à 3 sen.23 lim 3 ππ − − → x x x = 3 sen 2 3 .2 lim 3 ππ −         − → x x x = 3 sen 3 sen.2 lim 3 π π π −       − → x x x = 3 2 3cos. 2 3sen.2 lim 3 π ππ π −                         +             − → x xx x = 3 3 2 3 3 cos. 2 3 3 sen.2 lim 3 π ππ π −                         +             − → x xx x = ( ) 3 3.1 6 3 cos. 6 3 sen.2 lim 3 x xx x −−             +       − → π ππ π 35. ?