SlideShare a Scribd company logo
AIM
Academy
Integrated Silicon Photonics
Jurgen Michel
MIT Microphotonics Center
© J. Michel 2016
AIM
Academy
Part 1:
Context
 Electronic-Photonic Integration
 Confinement
Part 2:
Passive
Devices
 Waveguides
Off-Chip Couplers
 Wavelength Division Multiplexing
Part 3:
Active
Devices
 Detectors
 Modulators
 Light Sources and Lasers
 Integrating Photonics
AIM
Academy
 optics: disruptive technology
 metal interconnect constraints
 materials platform
 device challenges
R. Kirchain and L.C. Kimerling, “A roadmap for nanophotonics,” Nature Photonics v.1, p.303 (2007).
Electronic-Photonic Integration:
Optical Interconnects
10
-2
10
0
10
2
10
4
10
6
10
8
1010
10
12
10
14
1880 1900 1920 1940 1960 1980 2000 2020 2040
RelativeInformationCapacity(bit/s)
Year
Telephone lines first constructed
Carrier Telephonyfirstused 12 voice
channels on one wire pair
Earlycoaxial cable links
Advanced
coaxial and
microwave systems
Communication
Satellites
Single channel
(ETDM)
Multi-channel
(WDM)
OPTICAL
FIBER
SYSTEMS
AIM
Academy
10
-2
10
0
10
2
10
4
10
6
10
8
1010
10
12
10
14
1880 1900 1920 1940 1960 1980 2000 2020 2040
RelativeInformationCapacity(bit/s)
Year
Telephone lines first constructed
Carrier Telephonyfirstused 12 voice
channels on one wire pair
Earlycoaxial cable links
Advanced
coaxial and
microwave systems
Communication
Satellites
Single channel
(ETDM)
Multi-channel
(WDM)
OPTICAL
FIBER
SYSTEMS
Photonics: Optical Fiber/Interconnects
Distance Bandwidth product > 10 Tb/s mm
 Historical transition from Electronic to Photonic Interconnects: 10 Mb/s•km
 RC delay + Shrinking Dimensions
 decreased chip speed
Communication Technology
R. Kirchain and L.C. Kimerling, “A roadmap for nanophotonics,” Nature Phot. v.1, p.303 (2007)
AIM
Academy The Future of Multicore
Parallelism replaced
clock frequency scaling
Resulting Challenges…
Programming
Power
Interconnect Performance
MIT RAW Intel 50core Knights CornerIBM Blue Gene/Q Tilera TILE64
Number of cores doubles
every 18 months
AIM
Academy
 Tiles can directly communicate with any other tile
 Tiles contain one or more cores
 Broadcasts require just one send
 No complicated routing on network required
 Tile resources only used when performing communication (unlike mesh
approach)
Multi-tile processor
Optical
network layer
A. Agarwal, L.C. Kimerling, J. Michel, MIT, M. Watts, Sandia NL
ATAC: All-to-All Communication
game-changing architectural paradigm
AIM
Academy
 Tiles can directly communicate with any other tile
 Tiles contain one or more cores
 Broadcasts require just one send
 No complicated routing on network required
 Tile resources only used when performing communication (unlike mesh
approach)
ATAC: All-to-All Communication
game-changing architectural paradigm
AIM
Academy
Laser
Modulator Filter
Photodetector
+
+
+
Modulator Filter
+ +
MIT
MIT
LaserPhotodetector
+ Hybrid or
Monolithic
Cornell University
Driver Electrical data Electrical data
Waveguide
Si substrate
Electronic-Photonic Integration
A Near Complete Toolkit
AIM
Academy
Nature 528, 534–538 (24 December 2015)
Single-chip microprocessor that communicates directly
using light
AIM
Academy
Confinement:
The Optics of Photonics
 total internal reflection
 resonance
AIM
Academy Index Confinement: The 1D Basics
 Confinement: Total Internal Reflection
 Light confinement to high refractive index core:
standing wave in x-, y-direction
 Surrounded by lower refractive index cladding:
evanescent (exponential decay) wave in x-, y-
direction
Helmholtz Equation
t
2
 n2
k0
2
   2

Total Internal Reflection
AIM
Academy
 Geometry
Strip: high confinement
 Dense integration
Ridge/rib: low confinement
 Fiber optic compatibility
 Multimode vs Single-Mode
 multimode less lossy in straight waveguides
 single-mode less lossy in turns/splits
– robust for interferometric designs
ncl < neff < nco
1/ncl
1/nco
multimode
single-mode
Helmholtz Equation
m  n2k0 cosm
Radiation Modes
Forbidden
Region
Index Confinement: The 1D Basics
AIM
Academy Index Confinement
2D Mode Size: influence of aspect ratio and undercladding
 Waveguide dimensions should be optimized for best confinement
 Dimensions should be restricted to single-mode cutoff
 Single mode waveguide has unique aspect ratio for optimal confinement
 Higher n waveguide requires smaller undercladding
Si strip waveguide, oxide clad (n2=3.5, n1=1.446), 250nm height
TE Polarization – E field contours
AIM
Academy Resonant Confinement
Standing/Traveling Wave Resonator
 Standing wave: Fabry Perot cavity, microcavity
 dmm/2neff, m=1,2,3,…
 dielectric waveguide: deff > d
 Bragg reflector: high resolution lithography
d
E(z  d,t)  Aei0 z
teid
t  (Aei0 z
teid
)reid
reid
t  (Aei0 z
teid
)reid
reid
 reid
reid
t  ... eit

Aei(0 zt)
eid
(1 r)2
1 x
, x  r2
ei2d
T 
E(z  d,t)
E(z,t)
2

eid
(1 r)2
1 r2
ei2d
2
m 
L
m
, m  1,2,3,K
(L  2d,2r)
m 
c
m
 m
c
L
FSR  m  m1 
c
L
AIM
Academy
 Traveling wave: (micro-) ring resonator
 2r=mm/neff, m=1,2,3,…
 horizontal coupling: >UV lithography
 vertical coupling: CMP
Q  m  m
1
vg
;
m
m
;
m
m
Finesse: F 
FSR
m
loss  ext   
1
vg
Standing: ext 
1
2d
ln
1
R




m 
L
m
, m  1,2,3,K
(L  2d,2r)
m 
c
m
 m
c
L
FSR  m  m1 
c
L
FSR  m1  m

2
L
Free Spectral Range:
Quality Factor:
Resonant Confinement
Standing/Traveling Wave Resonator
AIM
Academy
 Anti-resonant Confinement
 Short-range interference effect
 Different from photonic crystal low dielectric state
 ws=100 nm air slot inside Si waveguide
 Confinement influence quasi-TE mode
 Index discontinuity in E(nco/nslot)2~12
 Contains ~40% quasi-TE mode power
Hs nn 
V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void
nanostructure, Opt. Lett., vol.29, 1209-1211, 2004
Slot Waveguides
Boundary Condition Discontinuity in E-field
Q. Xu, V.R. Almeida, R.R. Panepucci and M. Lipson,“Experimental demonstration of guiding and
confiningLight in nanometer-size low-refractive-index material,” Optics Letters, v.29(14), pp. 1626-
1628 (2004).
AIM
Academy The Index Contrast Scale
Very Low Index
Contrast
n=0.001-0.01
VLIC HIC VHIC UHIC
High Index
Contrast
n=0.05-0.1
Very High
Index Contrast
n=0.1-0.5
Ultra High Index
Contrast
n>0.5
catt.okstate.edu/critt
www.nhkspg.co.jp
www.corning.com
www.verifiber.com
LIC
Low Index
Contrast
n=0.01-0.05
www.teemphotonics.com
Silicon
Silica
www.mit.edu
IBM, Intel, Kotura, etc.
www.infinera.com
www.wias-berlin.de/
TriPleX
www.xiophotonics.com
SOI
AIM
Academy
Part 1:
Context
 Electronic-Photonic Integration
 Confinement
Part 2:
Passive
Devices
 Waveguides
Off-Chip Couplers
 Wavelength Division Multiplexing
Part 3:
Active
Devices
 Detectors
 Modulators
 Light Sources and Lasers
 Integrating Photonics
AIM
Academy CMOS Fabrication
CMOS Logic Platform
− Technology node
− Silicon substrate (bulk, SOI)
− Oxide gate, SiO2
− Salicide contacts, CoSi2
− Planarization
− Interconnect levels
− Vdd – Voltage drain-drain
3 Areas of Interest
- Substrate
- FEOL to PMD
- BEOL – Metallization
Integration Priorities
- FET Performance
- Thermal cycling-proper sequencing
- Cross Contamination
- Process complexity IMD: Inter-Metal Dielectric
PMD: Pre-Metal Dielectric
FEOL: Front-End-Of-Line
BEOL: Back-End-Of-Line
*Salicide spike anneal 1050°C
• PMD – SiO2, Planarized
1.0mm
1.1mm
CMOS FET & Interconnect for 0.18 mm node
• Silicon Substrate p-type
• Gate, S/D junctions
• Metal – AlCu, Local
interconnect levels 1-4
• IMD – SiO2, Planarized
• Contacts – W studs
• Vias – W studs
900
<550
<450
750*
• Salicide, Ti, Co
AIM
Academy
Passive Photonics:
Waveguides
 Si-compatible
 Ultra-low loss in the IR
 Single mode design
 Losses: Measurement, Theory
 SOI, a-Si
 SiON, Si3N4
Substrate/Underlayer
SiO2 tunderclad
SiO2
200 nm
500 nm
~3.5 mm
~3 mm
Si
AIM
Academy Waveguide Materials
Core Si Si-rich
Si3N4
Si3N4 SiON
n 3.5 2.2 2.0 2.0-
1.445
n 2.055 0.755 0.555 0.555-0
 Dielectric waveguides
Core:
 Si: SOI, amorphous (a-Si)
 Si-rich Si3N4 / Si3N4: PECVD, LPCVD
 SiON: PECVD
Cladding:
 Undercladding: wet thermal SiO2
 Overcladding: PECVD SiO2
 Geometry
Strip
 h=0.2-1.0 mm (SOI, thin film)
 w=0.5-2.0 mm (UV-sub-UV lithography)
Ridge/rib
 h ~ 1 mm, trench=0.5-0.8 mm
 w= 1.0-5.0 mm
waveguide core refractive indices
SiO2 cladding is assumed in all cases.
Index difference: n2-0.01
AIM
Academy Waveguide Loss
S side roughness +  top roughness +  bulk +  substrate
Si Substrate
 Substrate Leakage – f (n, h, w, tunderclad)
 Absorption – f ( bulk, n, h,w)
 Roughness Scattering – f (n, h, w, , Lc)
 Surface loss
 Sidewall loss
 Design > isolation design rules
 Material & process method
 CMP
 Etch & Post etch treatments
Sidewall scattering often dominates: TM mode lowest loss
bulk=core+(1-)cladding
: power confinement factor
: roughness Amplitude
Lc: roughness correlation length
D. K. Sparacin, “Process and Design Techniques for Low Loss Integrated Silicon Photonics,” MIT Ph.D. Thesis (2006).
AIM
Academy Metrology
Fabry-Pérot Method
 work with fewer samples: spectral scan
 FSR: peak spacing; loss/length: peak/valley ratio
 a priori knowledge of insertion loss: reflectivity calc deviates for n
 need accurate measure of waveguide length
d
E(z  d,t)  Aei0 z
teid
t  (Aei0 z
teid
)reid
reid
t  (Aei0 z
teid
)reid
reid
 reid
reid
t  ... eit

Aei(0 zt)
eid
(1 r)2
1 x
, x  r2
ei2d
T 
E(z  d,t)
E(z,t)
2

eid
(1 r)2
1 r2
ei2d
2
Input
Output
~1.7 mm mode
field diameter
S.J. Spector et al., Proc. (2004).
D. K. Sparacin, “Process and Design Techniques for Low Loss Integrated Silicon Photonics,” MIT Ph.D. Thesis (2006).
S. Spector et al., Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest, IThE5 (OSA, 2004).
  imagimagreal i ;
AIM
Academy Si SOI Waveguides
 h=220 nm
 w=445 nm
Y.A. Vlasov and S.J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and
Bends,” Optics Express, v.12(8), pp. 1622-1631(2004).
TE
TE 0.3 dB/cm
H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia,
“An all-silicon Raman laser,” Nature, v.433(7023),pp.292-294 (2005)
1.5 mm SOI
 w=1.5 mm
 depth=0.7 mm
Ridge SOI waveguide
— w=1 mm
— w=5 mm
 TE=3.6 ± 0.1 dB/cm
Si SOI: “photonic wire”
AIM
Academy
TE=0.32  0.05 dB/cm
S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, " Hybrid multi-mode/single-mode waveguides for low loss," in
Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper IThE5.
Mode-Engineered SOI Waveguides
 Couple light to first-order mode
 Multimode straight waveguide segments
 power remains confined to first-order mode
 minimal (TE) overlap with sidewalls
 Turns: adiabatic taper to single-mode waveguide
AIM
Academy
Conduction
Band
Valence
Band
Conduction
Band
Valence
Band
Conduction
Band
Valence
Band
Conduction
Band
Valence
Band
Conduction
Band
Valence
Band
Amorphous Silicon (a-Si) Waveguides
Dangling Bond States Absorb Light
 Extremely attractive as upper-level waveguide material
 Previous Reports of ~ 300 dB/cm Waveguide Loss
 H-passivation of a-Si reduces dangling bond states
 H-concentration in PECVD deposited a-Si materials is
high, should have low loss
D. K. Sparacin, “Process and Design Techniques for Low Loss Integrated Silicon Photonics,” MIT Ph.D. Thesis (2006).
AIM
Academy
Sample Resonance
wavelength (nm)
Extinction ratio
(dB)
-3 dB bandwidth
(pm)
Q factor Loss
(dB/cm)
1 1558.146 12.3 69.4 22452 12.0 ± 1.8
2 1559.587 5.4 25.8 60449 6.5 ± 0.9
3 1560.319 6.9 11.0 141847 2.7 ± 0.4
a-Si Waveguide, SiN clad
R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel and L. C. Kimerling, “Transparent amorphous silicon channel waveguides
with silicon nitride intercladding layer,” Appl. Phys. Lett. v.94(14), p.141108 (2009)
TE-polarization, ring resonator measurements
AIM
Academy Slot Waveguides
 Low index slot regions: potential host matrix for optically active dopants (Er,
nanocrystals)
 Access to effective index/group index values intermediate to Si3N4  Si waveguides
R. Sun, P. Dong, N. Feng, C.Y. Hong, J. Michel, M. Lipson, L.C. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at =1550 nm,” Opt. Exp. v.15(26), p.17967 (2007).
Expt Theory
74.6 pm/K 76.8 pm/K
65.4 pm/K 64.6 pm/K
Single Slot
Triple Slot
Si: 102.7 pm/K
dTd /
AIM
Academy
Passive Photonics:
Off-Chip Coupler
 Size mismatch of optical modes
 Index mismatch of materials
Optical Fiber Core
(8 mm )
SiO2
Cladding
Silicon Waveguide
(0.2 x 0.5 mm2)
AIM
Academy Adiabatic Taper
 Waveguide taper length >> wavelength
 In-plane taper: linear, parabolic, exponential,
Gaussian, hyperbolic
 Good Design: 80% power (TE) remains in
source mode
 Novel studies: rectangular taper
 TM mode more stable than TE
E.Marcatili, “Dielectric tapers with curved axes and no loss,” IEEE J.Quantum Electron., QE 21, 307-314 (1985).
G. Jin, S. Shi, A. Sharkawy and D.W. Prather, “Polarization effects in tapered dielectric
waveguides,” Opt. Express, v.11(16), pp.1931-1941 (2003).
AIM
Academy Inverted Taper Coupler
 CMOS process flow and fabrication
 100 modal area reduction
 10 coupling efficiency
V.R. Almeida, R.R. Panepucci and M. Lipson, “Nanotaper for compact mode conversion,”
Optics Lett., v.28(15), pp.1302-1304 (2003).
K.K. Lee, L.C. Kimerling, et al., “Mode transformer for miniaturized optical circuits,” Opt.
Lett. v.8(5), pp.498-500 (2005).
T. Tsuchizawa, H. Morita et al., “Microphotonics Devices Based on
Silicon Microfabrication Technology,” IEEE J. Select. Topics Quant. Elect., v.11(1),
pp.232-240 (2005).
AIM
Academy Grating Couplers
 Diffract incident light into waveguide
 1D Photonic Crystal (on SOI)
 Couple out-of-plane incident light
into modes propagating away from
in-plane stopband reflector
 Stopband location controlled by etch
depth
 Performance
 TE: 1 dB insertion loss
 35 nm 3dB-bandwidth
Source: http://silicon-photonics.ief.u-psud.fr
C. Li, H. Zhang, M. Yu, G. Q. Lo, Opt. Express 21, 7868-7874 (2013)
AIM
Academy 2D Grating Coupler
 2D Photonic Crystal in SOI
 Fiber TE/TM mode couple into different ridge
waveguides
 TM fiber mode transformed into TE
waveguide mode
 Built-in Polarization Diversity
D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue and R. Baets, “A Compact Two-Dimensional
Grating Coupler Used as a Polarization Splitter,” IEEE Phot. Tech. Lett., v.15(9), pp.1249-1251 (2003).
AIM
Academy Coupler Comparison
Coupler
Type
Coupler
Length/
Area
Coupling
Efficiency
Wavelength
Range
Polarization
Dependent
Adiabatic
Taper
40 μm 80% (TE) ultra-broadband yes
Inverted Taper 100 μm 90 % ultra-broadband yes
1D Grading
2D Grading
~10 μm
~100 μm2
80%
20%
broadband
broadband
yes
no
AIM
Academy
Passive Photonics:
Wavelength Division Multiplexing
 Dense WDM function
 Si-compatible, compact footprint
 Microrings, racetracks, slot rings
 Higher-order filters, embedded rings
T. Barwicz et al., Optics Express v.12(7), (2004).
AIM
Academy
 Lithography: 248nm
 Q ~ 2000, FSR~16 nm
1st-Order Ring & Racetrack Microring Filters
1x4 WDM (silicon nitride Rings)
1515 1520 1525 1530 1535 1540 1545
Wavelength (nm)
Power--samescale(au)
Port1
Port2
Port3
Port4
Thru
Q~500
6 mm
6 mmIn
Drop
Silicon
Thru-port 1 2 3 4
Thru-port
D. R. Lim, B. E. Little , K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micron-sized channel dropping filters
using silicon waveguide devices,” Proc. SPIE, 3847, pp.65-71 (1999).
Si3N4Si
,...2,1
20


m
r
n
m
eff


1520 1540 1560
2mm Ring
FSR=48.6nm; Q=1050
DropPortPower(ArbUnits)
Wavelength (nm)
3 mm Ring
FSR=21nm; Q=3000
5 mm ring
FSR=18nm Q=3875
AIM
Academy
M.A. Popović, H.I. Smith et al., “Multistage high-order microring-resonator add-drop filters,” Opt. Lett., vol. 31,
no. 17, pp. 2571-2573, September 2006.
M.A. Popović, H.I. Smith et al., “High-index-contrast, wide-FSR microring-resonator filter design and realization
with frequency-shift compensation,” in Optical Fiber Communication Conference (OFC/NFOEC) Technical
Digest (Optical Society of America, Washington, DC, March 6-11, 2005), paper OFK1, vol. 5, pp. 213-215.
>2nd Order Rings: Resonance Frequency
 Central ring: different
coupling coefficient 
different resonant frequency
 Compensated ring design
(wider waveguide) ensures
common resonance
frequency
 flatband response
 e-beam lithography
B.E. Little et al., IEEE Photon. Technol. Lett. 16, 2263 (Oct 2004)
AIM
Academy WDM Resonator Comparison
Resonator
Type
Quality
Factor
Bandwidth FSR
(L=50 –
100 μm)
Insertion Loss
1st Order Ring 104 - 105
(easy to achieve
high Q)
~103 – 102
GHz
(WDM)
6000 – 3000
GHz
<0.5 dB for gap
< 100 nm
Higher Order
Ring
102 - 103
(high Q
challenging)
~103 – 10
GHz flatband
(DWDM)
6000 – 3000
GHz
>1 dB for gap
< 100 nm
Racetrack 102 - 104 ~103 – 102
GHz
(WDM)
6000 – 3000
GHz
<1 dB for gap
< 100 nm
AIM
Academy
Part 1:
Context
 Electronic-Photonic Integration
 Confinement
Part 2:
Passive
Devices
 Waveguides
Off-Chip Couplers
 Wavelength Division Multiplexing
Part 3:
Active
Devices
 Photodetectors
 Modulators
 Light Sources and Lasers
 Integrating Photonics
AIM
Academy
Active Photonics:
Photodetectors
 Broadband, highly efficiency IR detector
 Bandwidth considerations
 Adaption to size of optical mode
 Low voltage operation
 Si processing, integrated into CMOS process flow
 Integration with ICs
G. Dehlinger et al., IEEE Phot. Tech. Lett.,v.16(11), (2004).
Active Photonics: Photodetectors
AIM
Academy
Photodetector Basics - Absorption
1.55 1.242.07 0.62
λ (μm)
Physics of Semiconductor Devices, by S.M. Sze and K.K. Ng (Wiley-Interscience, 3rd edition, 2006)
Photodetector Basics - Absorption
AIM
Academy
Ge Epitaxy on Si
Si
Ge Ge epitaxial growth
on Si at 550C
Si
Ge
Ge Epitaxy on Si
AIM
Academy
H.C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada and L.C.
Kimerling,
APL, v.75(19), pp.2909-2911 (1999).
L. Colace, G. Masini, G. Assanto, H.C. Luan, K. Wada and L.C. Kimerling,
APL, v.76(10), pp.1231-1233 (2000).
J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S.
Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. Ilday, F. X.
Kartner, and J. Yasaitis, Appl. Phys. Lett. 87, 103501 (2005).
Ge-on-Si Photodetector
 2-step UHV-CVD + cyclic thermal annealing
 780-900C anneal
 10 TDD: 2.3107 cm-2 2.3106 cm-2
 increases hole mobility
Ge-on-Si Photodetector
AIM
Academy
Waveguide-integrated
Photodetector
Waveguide - Photodetector Integration
Performance Gain
10
2
10
3
10
4
0
10
20
30
40
50
60
70
80
(Bandwidth)x(Quantumefficiency)(GHz)
Detector Size (mm2
)
d=0.5μm
5mm20mm
Q.E: 90%
Discrete, free-space
Photodetectors
RC time limitTransit time
limit
RC time limit
d=2.0μm
J. Michel, J. F. Liu, L.C. Kimerling, , Nat. Photonics 4, 527 (2010)
Waveguide - Photodetector Integration
AIM
Academy
44
Ge-directly-on-Si Photodetector
Waveguide Integration
IMEC EPIXFAB Platform IME Singapore Platform
A. Novak, Optics Express 21, 28387 (2013)
AIM
Academy
Monolithic germanium/silicon avalanche photodiodes
Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid,
A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers,
A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell, Nat. Photonics 3, 59 (2009)
Measured 3-dB bandwidth versus gain of 30-mm-diameter germanium/silicon APDs at a
wavelength of 1,300 nm. The coloured symbols are measured bandwidths from four
devices. The blue line is the calculated bandwidth assuming carrier transit time and RC
time constant are the limiting factors for the device bandwidth. The black line is a
calculated result considering the avalanche build-up effect13 with keff ¼ 0.08. The
corresponding gain–bandwidth product is 340 GHz, which fits the measured values. BW,
bandwidth.
AIM
Academy
Active Photonics:
Modulators
 Compact, integrated, Si-compatible
 Low power consumption
J. Liu, S. Jongthammanurak, D. Pan, J. Michel and L.C. Kimerling
Silicon Microphotonics
Sandia Si ring
Active Photonics: Modulators
AIM
Academy
Modulator Principles
 Physical Principles
 Thermo-optical Effect
Change the refractive index of Si by heating.
 Plasma Dispersion Effect
Change the refractive index of Si by carrier injection in a diode structure or carrier accumulation in a MOS structure.
 Electric Field Effect
- Franz-Keldysh Effect in Bulk GeSi
Change the absorption or refractive index of GeSi by electric field.
- Quantum Confined Stark Effect in Ge/GeSi Quantum Wells
Change the absorption or refractive index of Ge Q-wells by electric field.
 Basic Device Structures
 Mach-Zehnder Interferometers
Interferes two beams of light with different phases. Phase shift achieved by changing the refractive index.
 Ring Modulators
Change the resonance frequency of a ring by varying its refractive index, thereby controlling the coupling of light
from an adjacent waveguide.
 Electro-absorption Modulators
Light passes through an active material whose absorption can be changed by varying the applied electric field
 Plasmonic Modulators
Modulator Principles
AIM
Academy
Mach Zehnder Modulator
 Phase delay in lower arm
causes interference
 Large device size due to
small effect
 Length 0.5-3mm
Mach Zehnder Modulator
AIM
Academy
MOS-Enhanced Mach Zehnder Modulator
 FET design: rapid injection and extraction of
free carriers
 Phase delay due to n from plasma
dispersion
 Large device size due to small effect: MZ-arm
length 1-3mm
 > 15 dB Mod. Depth @ 3 V
 Up to 30Gbps
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N.
Izhaky, and M. Paniccia, Optics Express 16, 660 (2007)
MOS-Enhanced Mach Zehnder Modulator
AIM
Academy
Microring Modulators
1.5 Gbit/s using RZ pattern
 Power consumption of >50fJ/bit
 Less than 0.3V and µA current needed for
complete modulation in DC
 In AC, 3.3Vpp and 1mA current were used
 Expected theoretical bandwidth limit
>10Gb/s
Diameter = 12μm
Width = 450nm
Gap = 200nm
M. Lipson, “Switching light on a silicon chip,” Opt. Mat., v.27, pp.731-739 (2005).
Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-
optic modulator,” Nature, v.435, pp.325-327 (2005).
P. Dong et al., “Low Vpp, ultralow-energy, compact, high-speed silicon electro-
optic modulator”, Optics Express, Vol 17 No 25 (2009)
Microring Modulators
AIM
Academy
Low Power Si Ring Modulators
W.A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,“ OSA / CLEO/QELS 2010 CThJ4
Low Power Si Ring Modulators
AIM
Academy
Plasmonic Modulators
 Plasmonic mode concentrates optical field within
nm thin film
 Optical absorption of thin film can be tuned by
carrier injection
 Length of 3
 Power consumption of <50fJ/bit expected
 Expected theoretical bandwidth limit >300Gb/s
V.J. Sorger, N.D. Lanzillotti-Kimura,R.-M. Ma, X. Zhang” Ultra-compact silicon nanophotonic modulator with
broadband response.” Nanophotonics 1, 17-22 (2012).
Plasmonic Modulators
AIM
Academy
Electro Absorption Modulator
Quantum Confined Stark Effect
 Weak EO effect in Si
 mm-scale MZ modulator, Q ring resonator
 Stark Effect: l100-400 mm, V1 V, Q=0
 Observe QCSE: Ge/SiGe type I confinement and strong direct
gap absorption
 comparable to III-Vs (t<ps, mod. rate >50GHz)
 Exciton peak 80 meV above Ge Ec

- 36 meV strain shift
- 56 meV quantum confinement
 Clear shift of exciton peak with 5 V: /6 @ =1.46 mm
Y.-H. Kuo, Y.K. Lee, Y. Ge, S. Ren, J.E. Roth, T.I. Kamins, D.A.B. Miller and J.S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,"
Nature, v.437, pp.1334-1336 (2005).
Electro Absorption Modulator
AIM
Academy
Electro Absorption Modulator
Franz-Keldysh Effect in GeSi
 Linear electro-optic effect
 n(E), (E)
 Ge-on-Si: comparable to InP
 Strong F-K effect
 strain reduces separation between Eg
 and Eg
L
 F-K regime in low absorption background
 Expected mod. depth: 10dB @ >30GHz
 Experimental mod. depth: 10dB
 Experimental bandwidth: 1.2 GHz
 Ultra low power consumption: 25 pJ/bit
J.F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, ”Waveguide-
integrated, ultra-low energy GeSi electro-absorption modulators,” Nature Photonics 2, 433 (June 2008)
Electro Absorption Modulator
AIM
Academy
 Si ridge waveguide – low loss
 strain reduces separation
between Eg
 and Eg
L
 F-K regime in low
absorption background
 Mod. depth: 4-7.5dB @ >30GHz
 Max. experimental mod.
depth: 7.5dB
 Low power consumption: 100
fJ/bit
N.-N. Feng et al., ” 30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator
waveguide,” Optics Express 72, 7062 (April 2011)
Electro Absorption Modulator
Franz-Keldysh Effect in GeSi
Electro Absorption Modulator
AIM
Academy
Modulator Comparison
Modulator
Type
Footprint
Power
Consumption
Wavelengths
Range
Applications
Si Mach
Zehnder
> 500 mm2 > 10pJ/bit large, tunable
Active Optical
Cable, Telecom
Si Ring
modulator
< 10 mm2 > 5fJ/bit (w/o
heating)
single
wavelength
Telecom, On-
chip Integration
Ge EA
modulator
< 10 mm2 25fJ/bit ~ 15nm range
On-chip
Integration
Plasmonic
modulator
2.5 mm2 < 50fJ/bit large, ~ 1mm
On-chip
Integration
Modulator Comparison
AIM
Academy
Active Photonics:
Light Sources and Lasers
 IR light source: SOI waveguides
 Laser: DWDM, sub-mm structures interferometric structures
 III-V monolithic integration
 Si hybrid laser
 Ge laser
 Frequency comb based light sources
K. Vahala et al., APL, v.84(7), (2004).
J. Bowers et al., IEEE Phot. Tech. Lett., v.18(10), (2006).
57
Active Photonics:
Light Sources and Lasers
AIM
Academy
Monolithic Integration of III-V laser on SiGe/Si
 Long RT CW-lifetime GaAs laser: 4 hrs
 pre-growth CMP of SiGe graded layer
 TDD=2x106 cm-2
 λ=858 nm, d=0.4, Jth=269 A/cm2
 InGaAs laser
 λ=890 nm, d=0.26, Jth=700 A/cm2
M.E. Groenert, E.A. Fitzgerald et al., “Monolithic integration of room-temperature cw GaAs/AlGaAs
lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys., v.93(1), pp.362-367
(2003).
M.E. Groenert, E.A. Fitzgerald et al., “Improved room-temperature
continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates
via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Tech. B, v.21(3), pp.1064-1069 (2003).
misfit
dislocation
Monolithic Integration
AIM
Academy
 Si waveguide bonded to AlGaInAs QWs
 SOI ridge waveguide, SiO2/Ta2O5 facet mirror
 Overlap: Si=0.6-9, QWs=0.01-0.06
 Hybrid integration: zero alignment tolerance
 Bonding: low T oxygen plasma-assisted wafer bonding
 T=250 °C tolerate Thermal Expansion Mismatch
 <5 nm reactive oxide layer
 Endures dicing, facet polishing
CW lasing (=1568 nm)
 Optical Pumping
 Pth=23 mW, Pmax=4.5 mW
 Electrical Injection
 Ithres=65 mA, Pmax=1.8 mW, eff=0.13
H. Park, J.E. Bowers et al, Opt. Exp., v.13(23),pp.9460-9464 (2005).
A.W. Fang, J.E. Bowers et all., IEEE Phot. Tech. Lett., v. 18(10), pp.1143-1145 (2006).
A.W. Fang, J.E. Bowers et al., Opt. Exp., v.14(20), pp.9203-9210 (2006).
A.W. Fang, J.E. Bowers et al., Matls. Today, v.10(7-8), pp.28-35 (2007).
Hybrid Integration of III-V laser on SiGe/Si
Hybrid Integration
AIM
Academy
Germanium Laser
 Ge-on-Si for Si integration
 High n-doping required
 Demonstrated lasing from 1520 to 1700 nm
with electrical pumping
 Demonstrated 8mW laser peak power at
1620nm
J.F. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “A Ge-on-Si laser
operating at room temperature” Optics Lett. 35 (2010)
R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L.C. Kimerling, and
J. Michel, “An electrically pumped Germanium laser”, Opt. Exp. 20, 11316 (2012)
L-I curve at 300K
Germanium Laser
AIM
Academy
QW and QD Lasers on Silicon
 GaAs directly grown on Si
 InGaAs QW with n and p
contact
 Current emission wavelength
between 800nm and 1100nm
 Electroluminescence
demonstrated
 Optically pumped lasing
reported
L. C. Chuang et al., “InGaAs QW Nanopillar Light Emitting Diodes
Monolithically Grown on a Si Substrate,“ OSA/CLEO/QELS 2010 CMFF6
InGaAs Nanopillar QW Laser InAs QD Laser
Alan Y. Liu et al., “High performance continuous wave 1.3 mm quantum
dot lasers on silicon“ APPLIED PHYSICS LETTERS 104, 041104 (2014)
QW and QD Lasers on Silicon
AIM
Academy
Frequency Comb Generation
T. Herr, et al., NP, 145, 2014 & K. Saha, et al., OE, 1335, 2013
Frequency Comb Generation
AIM
Academy
Near IR Comb Generation
using SiN
Nanophotonic Optical Parametric Oscillator
• SiN
• CMOS-compatible material
• n~2, on-chip, high confinement
waveguides
• Very low propagation losses (0.1 dB/cm)
• Broad transparency window
• n2 ~ 2x10-19 (cm2/W), γ ~ 1 W-1m-1
• Source with many independent
wavelengths in the C-band
• Suitable for use in Si network-on-chip
• Flexible pump wavelength: visible to IR
J. S. Levy, A. Gondarenko, et al., “CMOS-compatible multiple-wavelength oscillator for
on-chip optical interconnects,” Nature Photonics., v.4(1), pp. 37-40 (2010).
Near IR Comb Generation using SiN
AIM
Academy Book Recommendation
Handbook of Silicon Photonics
CRC Press
Series in Optics and Optoelectronics
Published: April 26, 2013 by Taylor &
Francis
Editor(s): Laurent Vivien, Lorenzo Pavesi

More Related Content

What's hot

optical fibre
optical fibreoptical fibre
optical fibre
Rohit Singh
 
fundamentals of optical fiber
fundamentals of optical fiberfundamentals of optical fiber
fundamentals of optical fiber
Praveen Vaidya
 
Optical fiber Communication
Optical fiber CommunicationOptical fiber Communication
Optical fiber Communication
Amogha Bandrikalli
 
Fiber optic communication
Fiber optic communicationFiber optic communication
Fiber optic communication
S SIVARAMAKRISHNAN
 
How to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature ReviewHow to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature Review
Hossein Babashah
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensorsRam Niwas Bajiya
 
Optical communications
Optical communicationsOptical communications
Optical communications
krishslide
 
Optical network pdf
Optical network pdfOptical network pdf
Optical network pdf
AjinkyaMore29
 
Optical Fiber Sources And Detectors
Optical Fiber Sources And DetectorsOptical Fiber Sources And Detectors
Optical Fiber Sources And Detectors
Aziz Zoaib
 
Optical Fiber Communication.
Optical Fiber Communication.Optical Fiber Communication.
Optical Fiber Communication.
Amogha Bandrikalli
 
Optical fiber
Optical fiberOptical fiber
Optical fiber
vishakha trivedi
 
Optical Fiber
Optical FiberOptical Fiber
Optical Fiber
Eklavya Singh
 
Ch 1 optical fiber introduction
Ch 1 optical fiber introductionCh 1 optical fiber introduction
Ch 1 optical fiber introduction
kpphelu
 
Abstract Fiber Optics
Abstract    Fiber OpticsAbstract    Fiber Optics
Abstract Fiber Optics
vishnu murthy
 
Optical fibre transmission
Optical fibre transmissionOptical fibre transmission
Optical fibre transmissionAnkit Srivastava
 
Fibre optics
Fibre opticsFibre optics
Fibre optics
HaroonHussainMoidu
 
Photonic Materials
Photonic MaterialsPhotonic Materials
Photonic Materials
Gaurav Singh Chandel
 
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...CPqD
 
Optical fibers
Optical fibersOptical fibers
Optical fibers
Naveen Surendranath
 
OPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPTOPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPT
Er. Satyendra Vishwakarma
 

What's hot (20)

optical fibre
optical fibreoptical fibre
optical fibre
 
fundamentals of optical fiber
fundamentals of optical fiberfundamentals of optical fiber
fundamentals of optical fiber
 
Optical fiber Communication
Optical fiber CommunicationOptical fiber Communication
Optical fiber Communication
 
Fiber optic communication
Fiber optic communicationFiber optic communication
Fiber optic communication
 
How to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature ReviewHow to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature Review
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensors
 
Optical communications
Optical communicationsOptical communications
Optical communications
 
Optical network pdf
Optical network pdfOptical network pdf
Optical network pdf
 
Optical Fiber Sources And Detectors
Optical Fiber Sources And DetectorsOptical Fiber Sources And Detectors
Optical Fiber Sources And Detectors
 
Optical Fiber Communication.
Optical Fiber Communication.Optical Fiber Communication.
Optical Fiber Communication.
 
Optical fiber
Optical fiberOptical fiber
Optical fiber
 
Optical Fiber
Optical FiberOptical Fiber
Optical Fiber
 
Ch 1 optical fiber introduction
Ch 1 optical fiber introductionCh 1 optical fiber introduction
Ch 1 optical fiber introduction
 
Abstract Fiber Optics
Abstract    Fiber OpticsAbstract    Fiber Optics
Abstract Fiber Optics
 
Optical fibre transmission
Optical fibre transmissionOptical fibre transmission
Optical fibre transmission
 
Fibre optics
Fibre opticsFibre optics
Fibre optics
 
Photonic Materials
Photonic MaterialsPhotonic Materials
Photonic Materials
 
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
 
Optical fibers
Optical fibersOptical fibers
Optical fibers
 
OPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPTOPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPT
 

Similar to Isp module slides 093016

Foc unit no.01
Foc unit no.01Foc unit no.01
Foc unit no.01
AjayKhake1
 
Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
Dhruv Upadhaya
 
Nanolithography
NanolithographyNanolithography
Nanolithography
Preeti Choudhary
 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015
Chris Bowen
 
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...Daniel Riley
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01laboratoridalbasso
 
Maidana - Modification of particle accelerators for cargo inspection applicat...
Maidana - Modification of particle accelerators for cargo inspection applicat...Maidana - Modification of particle accelerators for cargo inspection applicat...
Maidana - Modification of particle accelerators for cargo inspection applicat...
Carlos O. Maidana
 
Photodiode characteristics, applications and quantum efficiency
Photodiode characteristics, applications and quantum efficiencyPhotodiode characteristics, applications and quantum efficiency
Photodiode characteristics, applications and quantum efficiency
United International University
 
Optical communication system
Optical communication systemOptical communication system
Optical communication system
mohamed naeem
 
Laser,Optical Fibres and Ultrasonics
Laser,Optical Fibres and UltrasonicsLaser,Optical Fibres and Ultrasonics
Laser,Optical Fibres and Ultrasonics
Nisarg Amin
 
conference presentation-17
conference presentation-17conference presentation-17
conference presentation-17ali butt
 
Transparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PV
cdtpv
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
University of Liverpool
 
Dfb
DfbDfb
Microstrip antennas
Microstrip antennasMicrostrip antennas
Microstrip antennas
Suresh Khaleri
 
Ofc
OfcOfc
Optical Fiber Communication
Optical Fiber CommunicationOptical Fiber Communication
Optical Fiber Communication
ruchisinghec
 

Similar to Isp module slides 093016 (20)

Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaoui
 
Foc unit no.01
Foc unit no.01Foc unit no.01
Foc unit no.01
 
Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
 
Nanolithography
NanolithographyNanolithography
Nanolithography
 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015
 
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
 
Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01Ldb Convergenze Parallele_sorba_01
Ldb Convergenze Parallele_sorba_01
 
PhD_seminar_final
PhD_seminar_finalPhD_seminar_final
PhD_seminar_final
 
Maidana - Modification of particle accelerators for cargo inspection applicat...
Maidana - Modification of particle accelerators for cargo inspection applicat...Maidana - Modification of particle accelerators for cargo inspection applicat...
Maidana - Modification of particle accelerators for cargo inspection applicat...
 
Photodiode characteristics, applications and quantum efficiency
Photodiode characteristics, applications and quantum efficiencyPhotodiode characteristics, applications and quantum efficiency
Photodiode characteristics, applications and quantum efficiency
 
Optical communication system
Optical communication systemOptical communication system
Optical communication system
 
Laser,Optical Fibres and Ultrasonics
Laser,Optical Fibres and UltrasonicsLaser,Optical Fibres and Ultrasonics
Laser,Optical Fibres and Ultrasonics
 
Implementation of Plasmonics
Implementation of PlasmonicsImplementation of Plasmonics
Implementation of Plasmonics
 
conference presentation-17
conference presentation-17conference presentation-17
conference presentation-17
 
Transparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PV
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
 
Dfb
DfbDfb
Dfb
 
Microstrip antennas
Microstrip antennasMicrostrip antennas
Microstrip antennas
 
Ofc
OfcOfc
Ofc
 
Optical Fiber Communication
Optical Fiber CommunicationOptical Fiber Communication
Optical Fiber Communication
 

Recently uploaded

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
NelTorrente
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
Bisnar Chase Personal Injury Attorneys
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Landownership in the Philippines under the Americans-2-pptx.pptx
Landownership in the Philippines under the Americans-2-pptx.pptxLandownership in the Philippines under the Americans-2-pptx.pptx
Landownership in the Philippines under the Americans-2-pptx.pptx
JezreelCabil2
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 

Recently uploaded (20)

Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Top five deadliest dog breeds in America
Top five deadliest dog breeds in AmericaTop five deadliest dog breeds in America
Top five deadliest dog breeds in America
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Landownership in the Philippines under the Americans-2-pptx.pptx
Landownership in the Philippines under the Americans-2-pptx.pptxLandownership in the Philippines under the Americans-2-pptx.pptx
Landownership in the Philippines under the Americans-2-pptx.pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 

Isp module slides 093016

  • 1. AIM Academy Integrated Silicon Photonics Jurgen Michel MIT Microphotonics Center © J. Michel 2016
  • 2. AIM Academy Part 1: Context  Electronic-Photonic Integration  Confinement Part 2: Passive Devices  Waveguides Off-Chip Couplers  Wavelength Division Multiplexing Part 3: Active Devices  Detectors  Modulators  Light Sources and Lasers  Integrating Photonics
  • 3. AIM Academy  optics: disruptive technology  metal interconnect constraints  materials platform  device challenges R. Kirchain and L.C. Kimerling, “A roadmap for nanophotonics,” Nature Photonics v.1, p.303 (2007). Electronic-Photonic Integration: Optical Interconnects 10 -2 10 0 10 2 10 4 10 6 10 8 1010 10 12 10 14 1880 1900 1920 1940 1960 1980 2000 2020 2040 RelativeInformationCapacity(bit/s) Year Telephone lines first constructed Carrier Telephonyfirstused 12 voice channels on one wire pair Earlycoaxial cable links Advanced coaxial and microwave systems Communication Satellites Single channel (ETDM) Multi-channel (WDM) OPTICAL FIBER SYSTEMS
  • 4. AIM Academy 10 -2 10 0 10 2 10 4 10 6 10 8 1010 10 12 10 14 1880 1900 1920 1940 1960 1980 2000 2020 2040 RelativeInformationCapacity(bit/s) Year Telephone lines first constructed Carrier Telephonyfirstused 12 voice channels on one wire pair Earlycoaxial cable links Advanced coaxial and microwave systems Communication Satellites Single channel (ETDM) Multi-channel (WDM) OPTICAL FIBER SYSTEMS Photonics: Optical Fiber/Interconnects Distance Bandwidth product > 10 Tb/s mm  Historical transition from Electronic to Photonic Interconnects: 10 Mb/s•km  RC delay + Shrinking Dimensions  decreased chip speed Communication Technology R. Kirchain and L.C. Kimerling, “A roadmap for nanophotonics,” Nature Phot. v.1, p.303 (2007)
  • 5. AIM Academy The Future of Multicore Parallelism replaced clock frequency scaling Resulting Challenges… Programming Power Interconnect Performance MIT RAW Intel 50core Knights CornerIBM Blue Gene/Q Tilera TILE64 Number of cores doubles every 18 months
  • 6. AIM Academy  Tiles can directly communicate with any other tile  Tiles contain one or more cores  Broadcasts require just one send  No complicated routing on network required  Tile resources only used when performing communication (unlike mesh approach) Multi-tile processor Optical network layer A. Agarwal, L.C. Kimerling, J. Michel, MIT, M. Watts, Sandia NL ATAC: All-to-All Communication game-changing architectural paradigm
  • 7. AIM Academy  Tiles can directly communicate with any other tile  Tiles contain one or more cores  Broadcasts require just one send  No complicated routing on network required  Tile resources only used when performing communication (unlike mesh approach) ATAC: All-to-All Communication game-changing architectural paradigm
  • 8. AIM Academy Laser Modulator Filter Photodetector + + + Modulator Filter + + MIT MIT LaserPhotodetector + Hybrid or Monolithic Cornell University Driver Electrical data Electrical data Waveguide Si substrate Electronic-Photonic Integration A Near Complete Toolkit
  • 9. AIM Academy Nature 528, 534–538 (24 December 2015) Single-chip microprocessor that communicates directly using light
  • 10. AIM Academy Confinement: The Optics of Photonics  total internal reflection  resonance
  • 11. AIM Academy Index Confinement: The 1D Basics  Confinement: Total Internal Reflection  Light confinement to high refractive index core: standing wave in x-, y-direction  Surrounded by lower refractive index cladding: evanescent (exponential decay) wave in x-, y- direction Helmholtz Equation t 2  n2 k0 2    2  Total Internal Reflection
  • 12. AIM Academy  Geometry Strip: high confinement  Dense integration Ridge/rib: low confinement  Fiber optic compatibility  Multimode vs Single-Mode  multimode less lossy in straight waveguides  single-mode less lossy in turns/splits – robust for interferometric designs ncl < neff < nco 1/ncl 1/nco multimode single-mode Helmholtz Equation m  n2k0 cosm Radiation Modes Forbidden Region Index Confinement: The 1D Basics
  • 13. AIM Academy Index Confinement 2D Mode Size: influence of aspect ratio and undercladding  Waveguide dimensions should be optimized for best confinement  Dimensions should be restricted to single-mode cutoff  Single mode waveguide has unique aspect ratio for optimal confinement  Higher n waveguide requires smaller undercladding Si strip waveguide, oxide clad (n2=3.5, n1=1.446), 250nm height TE Polarization – E field contours
  • 14. AIM Academy Resonant Confinement Standing/Traveling Wave Resonator  Standing wave: Fabry Perot cavity, microcavity  dmm/2neff, m=1,2,3,…  dielectric waveguide: deff > d  Bragg reflector: high resolution lithography d E(z  d,t)  Aei0 z teid t  (Aei0 z teid )reid reid t  (Aei0 z teid )reid reid  reid reid t  ... eit  Aei(0 zt) eid (1 r)2 1 x , x  r2 ei2d T  E(z  d,t) E(z,t) 2  eid (1 r)2 1 r2 ei2d 2 m  L m , m  1,2,3,K (L  2d,2r) m  c m  m c L FSR  m  m1  c L
  • 15. AIM Academy  Traveling wave: (micro-) ring resonator  2r=mm/neff, m=1,2,3,…  horizontal coupling: >UV lithography  vertical coupling: CMP Q  m  m 1 vg ; m m ; m m Finesse: F  FSR m loss  ext    1 vg Standing: ext  1 2d ln 1 R     m  L m , m  1,2,3,K (L  2d,2r) m  c m  m c L FSR  m  m1  c L FSR  m1  m  2 L Free Spectral Range: Quality Factor: Resonant Confinement Standing/Traveling Wave Resonator
  • 16. AIM Academy  Anti-resonant Confinement  Short-range interference effect  Different from photonic crystal low dielectric state  ws=100 nm air slot inside Si waveguide  Confinement influence quasi-TE mode  Index discontinuity in E(nco/nslot)2~12  Contains ~40% quasi-TE mode power Hs nn  V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt. Lett., vol.29, 1209-1211, 2004 Slot Waveguides Boundary Condition Discontinuity in E-field Q. Xu, V.R. Almeida, R.R. Panepucci and M. Lipson,“Experimental demonstration of guiding and confiningLight in nanometer-size low-refractive-index material,” Optics Letters, v.29(14), pp. 1626- 1628 (2004).
  • 17. AIM Academy The Index Contrast Scale Very Low Index Contrast n=0.001-0.01 VLIC HIC VHIC UHIC High Index Contrast n=0.05-0.1 Very High Index Contrast n=0.1-0.5 Ultra High Index Contrast n>0.5 catt.okstate.edu/critt www.nhkspg.co.jp www.corning.com www.verifiber.com LIC Low Index Contrast n=0.01-0.05 www.teemphotonics.com Silicon Silica www.mit.edu IBM, Intel, Kotura, etc. www.infinera.com www.wias-berlin.de/ TriPleX www.xiophotonics.com SOI
  • 18. AIM Academy Part 1: Context  Electronic-Photonic Integration  Confinement Part 2: Passive Devices  Waveguides Off-Chip Couplers  Wavelength Division Multiplexing Part 3: Active Devices  Detectors  Modulators  Light Sources and Lasers  Integrating Photonics
  • 19. AIM Academy CMOS Fabrication CMOS Logic Platform − Technology node − Silicon substrate (bulk, SOI) − Oxide gate, SiO2 − Salicide contacts, CoSi2 − Planarization − Interconnect levels − Vdd – Voltage drain-drain 3 Areas of Interest - Substrate - FEOL to PMD - BEOL – Metallization Integration Priorities - FET Performance - Thermal cycling-proper sequencing - Cross Contamination - Process complexity IMD: Inter-Metal Dielectric PMD: Pre-Metal Dielectric FEOL: Front-End-Of-Line BEOL: Back-End-Of-Line *Salicide spike anneal 1050°C • PMD – SiO2, Planarized 1.0mm 1.1mm CMOS FET & Interconnect for 0.18 mm node • Silicon Substrate p-type • Gate, S/D junctions • Metal – AlCu, Local interconnect levels 1-4 • IMD – SiO2, Planarized • Contacts – W studs • Vias – W studs 900 <550 <450 750* • Salicide, Ti, Co
  • 20. AIM Academy Passive Photonics: Waveguides  Si-compatible  Ultra-low loss in the IR  Single mode design  Losses: Measurement, Theory  SOI, a-Si  SiON, Si3N4 Substrate/Underlayer SiO2 tunderclad SiO2 200 nm 500 nm ~3.5 mm ~3 mm Si
  • 21. AIM Academy Waveguide Materials Core Si Si-rich Si3N4 Si3N4 SiON n 3.5 2.2 2.0 2.0- 1.445 n 2.055 0.755 0.555 0.555-0  Dielectric waveguides Core:  Si: SOI, amorphous (a-Si)  Si-rich Si3N4 / Si3N4: PECVD, LPCVD  SiON: PECVD Cladding:  Undercladding: wet thermal SiO2  Overcladding: PECVD SiO2  Geometry Strip  h=0.2-1.0 mm (SOI, thin film)  w=0.5-2.0 mm (UV-sub-UV lithography) Ridge/rib  h ~ 1 mm, trench=0.5-0.8 mm  w= 1.0-5.0 mm waveguide core refractive indices SiO2 cladding is assumed in all cases. Index difference: n2-0.01
  • 22. AIM Academy Waveguide Loss S side roughness +  top roughness +  bulk +  substrate Si Substrate  Substrate Leakage – f (n, h, w, tunderclad)  Absorption – f ( bulk, n, h,w)  Roughness Scattering – f (n, h, w, , Lc)  Surface loss  Sidewall loss  Design > isolation design rules  Material & process method  CMP  Etch & Post etch treatments Sidewall scattering often dominates: TM mode lowest loss bulk=core+(1-)cladding : power confinement factor : roughness Amplitude Lc: roughness correlation length D. K. Sparacin, “Process and Design Techniques for Low Loss Integrated Silicon Photonics,” MIT Ph.D. Thesis (2006).
  • 23. AIM Academy Metrology Fabry-Pérot Method  work with fewer samples: spectral scan  FSR: peak spacing; loss/length: peak/valley ratio  a priori knowledge of insertion loss: reflectivity calc deviates for n  need accurate measure of waveguide length d E(z  d,t)  Aei0 z teid t  (Aei0 z teid )reid reid t  (Aei0 z teid )reid reid  reid reid t  ... eit  Aei(0 zt) eid (1 r)2 1 x , x  r2 ei2d T  E(z  d,t) E(z,t) 2  eid (1 r)2 1 r2 ei2d 2 Input Output ~1.7 mm mode field diameter S.J. Spector et al., Proc. (2004). D. K. Sparacin, “Process and Design Techniques for Low Loss Integrated Silicon Photonics,” MIT Ph.D. Thesis (2006). S. Spector et al., Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest, IThE5 (OSA, 2004).   imagimagreal i ;
  • 24. AIM Academy Si SOI Waveguides  h=220 nm  w=445 nm Y.A. Vlasov and S.J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and Bends,” Optics Express, v.12(8), pp. 1622-1631(2004). TE TE 0.3 dB/cm H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, “An all-silicon Raman laser,” Nature, v.433(7023),pp.292-294 (2005) 1.5 mm SOI  w=1.5 mm  depth=0.7 mm Ridge SOI waveguide — w=1 mm — w=5 mm  TE=3.6 ± 0.1 dB/cm Si SOI: “photonic wire”
  • 25. AIM Academy TE=0.32  0.05 dB/cm S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, " Hybrid multi-mode/single-mode waveguides for low loss," in Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper IThE5. Mode-Engineered SOI Waveguides  Couple light to first-order mode  Multimode straight waveguide segments  power remains confined to first-order mode  minimal (TE) overlap with sidewalls  Turns: adiabatic taper to single-mode waveguide
  • 26. AIM Academy Conduction Band Valence Band Conduction Band Valence Band Conduction Band Valence Band Conduction Band Valence Band Conduction Band Valence Band Amorphous Silicon (a-Si) Waveguides Dangling Bond States Absorb Light  Extremely attractive as upper-level waveguide material  Previous Reports of ~ 300 dB/cm Waveguide Loss  H-passivation of a-Si reduces dangling bond states  H-concentration in PECVD deposited a-Si materials is high, should have low loss D. K. Sparacin, “Process and Design Techniques for Low Loss Integrated Silicon Photonics,” MIT Ph.D. Thesis (2006).
  • 27. AIM Academy Sample Resonance wavelength (nm) Extinction ratio (dB) -3 dB bandwidth (pm) Q factor Loss (dB/cm) 1 1558.146 12.3 69.4 22452 12.0 ± 1.8 2 1559.587 5.4 25.8 60449 6.5 ± 0.9 3 1560.319 6.9 11.0 141847 2.7 ± 0.4 a-Si Waveguide, SiN clad R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. v.94(14), p.141108 (2009) TE-polarization, ring resonator measurements
  • 28. AIM Academy Slot Waveguides  Low index slot regions: potential host matrix for optically active dopants (Er, nanocrystals)  Access to effective index/group index values intermediate to Si3N4  Si waveguides R. Sun, P. Dong, N. Feng, C.Y. Hong, J. Michel, M. Lipson, L.C. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at =1550 nm,” Opt. Exp. v.15(26), p.17967 (2007). Expt Theory 74.6 pm/K 76.8 pm/K 65.4 pm/K 64.6 pm/K Single Slot Triple Slot Si: 102.7 pm/K dTd /
  • 29. AIM Academy Passive Photonics: Off-Chip Coupler  Size mismatch of optical modes  Index mismatch of materials Optical Fiber Core (8 mm ) SiO2 Cladding Silicon Waveguide (0.2 x 0.5 mm2)
  • 30. AIM Academy Adiabatic Taper  Waveguide taper length >> wavelength  In-plane taper: linear, parabolic, exponential, Gaussian, hyperbolic  Good Design: 80% power (TE) remains in source mode  Novel studies: rectangular taper  TM mode more stable than TE E.Marcatili, “Dielectric tapers with curved axes and no loss,” IEEE J.Quantum Electron., QE 21, 307-314 (1985). G. Jin, S. Shi, A. Sharkawy and D.W. Prather, “Polarization effects in tapered dielectric waveguides,” Opt. Express, v.11(16), pp.1931-1941 (2003).
  • 31. AIM Academy Inverted Taper Coupler  CMOS process flow and fabrication  100 modal area reduction  10 coupling efficiency V.R. Almeida, R.R. Panepucci and M. Lipson, “Nanotaper for compact mode conversion,” Optics Lett., v.28(15), pp.1302-1304 (2003). K.K. Lee, L.C. Kimerling, et al., “Mode transformer for miniaturized optical circuits,” Opt. Lett. v.8(5), pp.498-500 (2005). T. Tsuchizawa, H. Morita et al., “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Select. Topics Quant. Elect., v.11(1), pp.232-240 (2005).
  • 32. AIM Academy Grating Couplers  Diffract incident light into waveguide  1D Photonic Crystal (on SOI)  Couple out-of-plane incident light into modes propagating away from in-plane stopband reflector  Stopband location controlled by etch depth  Performance  TE: 1 dB insertion loss  35 nm 3dB-bandwidth Source: http://silicon-photonics.ief.u-psud.fr C. Li, H. Zhang, M. Yu, G. Q. Lo, Opt. Express 21, 7868-7874 (2013)
  • 33. AIM Academy 2D Grating Coupler  2D Photonic Crystal in SOI  Fiber TE/TM mode couple into different ridge waveguides  TM fiber mode transformed into TE waveguide mode  Built-in Polarization Diversity D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue and R. Baets, “A Compact Two-Dimensional Grating Coupler Used as a Polarization Splitter,” IEEE Phot. Tech. Lett., v.15(9), pp.1249-1251 (2003).
  • 34. AIM Academy Coupler Comparison Coupler Type Coupler Length/ Area Coupling Efficiency Wavelength Range Polarization Dependent Adiabatic Taper 40 μm 80% (TE) ultra-broadband yes Inverted Taper 100 μm 90 % ultra-broadband yes 1D Grading 2D Grading ~10 μm ~100 μm2 80% 20% broadband broadband yes no
  • 35. AIM Academy Passive Photonics: Wavelength Division Multiplexing  Dense WDM function  Si-compatible, compact footprint  Microrings, racetracks, slot rings  Higher-order filters, embedded rings T. Barwicz et al., Optics Express v.12(7), (2004).
  • 36. AIM Academy  Lithography: 248nm  Q ~ 2000, FSR~16 nm 1st-Order Ring & Racetrack Microring Filters 1x4 WDM (silicon nitride Rings) 1515 1520 1525 1530 1535 1540 1545 Wavelength (nm) Power--samescale(au) Port1 Port2 Port3 Port4 Thru Q~500 6 mm 6 mmIn Drop Silicon Thru-port 1 2 3 4 Thru-port D. R. Lim, B. E. Little , K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micron-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE, 3847, pp.65-71 (1999). Si3N4Si ,...2,1 20   m r n m eff   1520 1540 1560 2mm Ring FSR=48.6nm; Q=1050 DropPortPower(ArbUnits) Wavelength (nm) 3 mm Ring FSR=21nm; Q=3000 5 mm ring FSR=18nm Q=3875
  • 37. AIM Academy M.A. Popović, H.I. Smith et al., “Multistage high-order microring-resonator add-drop filters,” Opt. Lett., vol. 31, no. 17, pp. 2571-2573, September 2006. M.A. Popović, H.I. Smith et al., “High-index-contrast, wide-FSR microring-resonator filter design and realization with frequency-shift compensation,” in Optical Fiber Communication Conference (OFC/NFOEC) Technical Digest (Optical Society of America, Washington, DC, March 6-11, 2005), paper OFK1, vol. 5, pp. 213-215. >2nd Order Rings: Resonance Frequency  Central ring: different coupling coefficient  different resonant frequency  Compensated ring design (wider waveguide) ensures common resonance frequency  flatband response  e-beam lithography B.E. Little et al., IEEE Photon. Technol. Lett. 16, 2263 (Oct 2004)
  • 38. AIM Academy WDM Resonator Comparison Resonator Type Quality Factor Bandwidth FSR (L=50 – 100 μm) Insertion Loss 1st Order Ring 104 - 105 (easy to achieve high Q) ~103 – 102 GHz (WDM) 6000 – 3000 GHz <0.5 dB for gap < 100 nm Higher Order Ring 102 - 103 (high Q challenging) ~103 – 10 GHz flatband (DWDM) 6000 – 3000 GHz >1 dB for gap < 100 nm Racetrack 102 - 104 ~103 – 102 GHz (WDM) 6000 – 3000 GHz <1 dB for gap < 100 nm
  • 39. AIM Academy Part 1: Context  Electronic-Photonic Integration  Confinement Part 2: Passive Devices  Waveguides Off-Chip Couplers  Wavelength Division Multiplexing Part 3: Active Devices  Photodetectors  Modulators  Light Sources and Lasers  Integrating Photonics
  • 40. AIM Academy Active Photonics: Photodetectors  Broadband, highly efficiency IR detector  Bandwidth considerations  Adaption to size of optical mode  Low voltage operation  Si processing, integrated into CMOS process flow  Integration with ICs G. Dehlinger et al., IEEE Phot. Tech. Lett.,v.16(11), (2004). Active Photonics: Photodetectors
  • 41. AIM Academy Photodetector Basics - Absorption 1.55 1.242.07 0.62 λ (μm) Physics of Semiconductor Devices, by S.M. Sze and K.K. Ng (Wiley-Interscience, 3rd edition, 2006) Photodetector Basics - Absorption
  • 42. AIM Academy Ge Epitaxy on Si Si Ge Ge epitaxial growth on Si at 550C Si Ge Ge Epitaxy on Si
  • 43. AIM Academy H.C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada and L.C. Kimerling, APL, v.75(19), pp.2909-2911 (1999). L. Colace, G. Masini, G. Assanto, H.C. Luan, K. Wada and L.C. Kimerling, APL, v.76(10), pp.1231-1233 (2000). J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. Ilday, F. X. Kartner, and J. Yasaitis, Appl. Phys. Lett. 87, 103501 (2005). Ge-on-Si Photodetector  2-step UHV-CVD + cyclic thermal annealing  780-900C anneal  10 TDD: 2.3107 cm-2 2.3106 cm-2  increases hole mobility Ge-on-Si Photodetector
  • 44. AIM Academy Waveguide-integrated Photodetector Waveguide - Photodetector Integration Performance Gain 10 2 10 3 10 4 0 10 20 30 40 50 60 70 80 (Bandwidth)x(Quantumefficiency)(GHz) Detector Size (mm2 ) d=0.5μm 5mm20mm Q.E: 90% Discrete, free-space Photodetectors RC time limitTransit time limit RC time limit d=2.0μm J. Michel, J. F. Liu, L.C. Kimerling, , Nat. Photonics 4, 527 (2010) Waveguide - Photodetector Integration
  • 45. AIM Academy 44 Ge-directly-on-Si Photodetector Waveguide Integration IMEC EPIXFAB Platform IME Singapore Platform A. Novak, Optics Express 21, 28387 (2013)
  • 46. AIM Academy Monolithic germanium/silicon avalanche photodiodes Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell, Nat. Photonics 3, 59 (2009) Measured 3-dB bandwidth versus gain of 30-mm-diameter germanium/silicon APDs at a wavelength of 1,300 nm. The coloured symbols are measured bandwidths from four devices. The blue line is the calculated bandwidth assuming carrier transit time and RC time constant are the limiting factors for the device bandwidth. The black line is a calculated result considering the avalanche build-up effect13 with keff ¼ 0.08. The corresponding gain–bandwidth product is 340 GHz, which fits the measured values. BW, bandwidth.
  • 47. AIM Academy Active Photonics: Modulators  Compact, integrated, Si-compatible  Low power consumption J. Liu, S. Jongthammanurak, D. Pan, J. Michel and L.C. Kimerling Silicon Microphotonics Sandia Si ring Active Photonics: Modulators
  • 48. AIM Academy Modulator Principles  Physical Principles  Thermo-optical Effect Change the refractive index of Si by heating.  Plasma Dispersion Effect Change the refractive index of Si by carrier injection in a diode structure or carrier accumulation in a MOS structure.  Electric Field Effect - Franz-Keldysh Effect in Bulk GeSi Change the absorption or refractive index of GeSi by electric field. - Quantum Confined Stark Effect in Ge/GeSi Quantum Wells Change the absorption or refractive index of Ge Q-wells by electric field.  Basic Device Structures  Mach-Zehnder Interferometers Interferes two beams of light with different phases. Phase shift achieved by changing the refractive index.  Ring Modulators Change the resonance frequency of a ring by varying its refractive index, thereby controlling the coupling of light from an adjacent waveguide.  Electro-absorption Modulators Light passes through an active material whose absorption can be changed by varying the applied electric field  Plasmonic Modulators Modulator Principles
  • 49. AIM Academy Mach Zehnder Modulator  Phase delay in lower arm causes interference  Large device size due to small effect  Length 0.5-3mm Mach Zehnder Modulator
  • 50. AIM Academy MOS-Enhanced Mach Zehnder Modulator  FET design: rapid injection and extraction of free carriers  Phase delay due to n from plasma dispersion  Large device size due to small effect: MZ-arm length 1-3mm  > 15 dB Mod. Depth @ 3 V  Up to 30Gbps A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, Optics Express 16, 660 (2007) MOS-Enhanced Mach Zehnder Modulator
  • 51. AIM Academy Microring Modulators 1.5 Gbit/s using RZ pattern  Power consumption of >50fJ/bit  Less than 0.3V and µA current needed for complete modulation in DC  In AC, 3.3Vpp and 1mA current were used  Expected theoretical bandwidth limit >10Gb/s Diameter = 12μm Width = 450nm Gap = 200nm M. Lipson, “Switching light on a silicon chip,” Opt. Mat., v.27, pp.731-739 (2005). Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro- optic modulator,” Nature, v.435, pp.325-327 (2005). P. Dong et al., “Low Vpp, ultralow-energy, compact, high-speed silicon electro- optic modulator”, Optics Express, Vol 17 No 25 (2009) Microring Modulators
  • 52. AIM Academy Low Power Si Ring Modulators W.A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,“ OSA / CLEO/QELS 2010 CThJ4 Low Power Si Ring Modulators
  • 53. AIM Academy Plasmonic Modulators  Plasmonic mode concentrates optical field within nm thin film  Optical absorption of thin film can be tuned by carrier injection  Length of 3  Power consumption of <50fJ/bit expected  Expected theoretical bandwidth limit >300Gb/s V.J. Sorger, N.D. Lanzillotti-Kimura,R.-M. Ma, X. Zhang” Ultra-compact silicon nanophotonic modulator with broadband response.” Nanophotonics 1, 17-22 (2012). Plasmonic Modulators
  • 54. AIM Academy Electro Absorption Modulator Quantum Confined Stark Effect  Weak EO effect in Si  mm-scale MZ modulator, Q ring resonator  Stark Effect: l100-400 mm, V1 V, Q=0  Observe QCSE: Ge/SiGe type I confinement and strong direct gap absorption  comparable to III-Vs (t<ps, mod. rate >50GHz)  Exciton peak 80 meV above Ge Ec  - 36 meV strain shift - 56 meV quantum confinement  Clear shift of exciton peak with 5 V: /6 @ =1.46 mm Y.-H. Kuo, Y.K. Lee, Y. Ge, S. Ren, J.E. Roth, T.I. Kamins, D.A.B. Miller and J.S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature, v.437, pp.1334-1336 (2005). Electro Absorption Modulator
  • 55. AIM Academy Electro Absorption Modulator Franz-Keldysh Effect in GeSi  Linear electro-optic effect  n(E), (E)  Ge-on-Si: comparable to InP  Strong F-K effect  strain reduces separation between Eg  and Eg L  F-K regime in low absorption background  Expected mod. depth: 10dB @ >30GHz  Experimental mod. depth: 10dB  Experimental bandwidth: 1.2 GHz  Ultra low power consumption: 25 pJ/bit J.F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, ”Waveguide- integrated, ultra-low energy GeSi electro-absorption modulators,” Nature Photonics 2, 433 (June 2008) Electro Absorption Modulator
  • 56. AIM Academy  Si ridge waveguide – low loss  strain reduces separation between Eg  and Eg L  F-K regime in low absorption background  Mod. depth: 4-7.5dB @ >30GHz  Max. experimental mod. depth: 7.5dB  Low power consumption: 100 fJ/bit N.-N. Feng et al., ” 30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Optics Express 72, 7062 (April 2011) Electro Absorption Modulator Franz-Keldysh Effect in GeSi Electro Absorption Modulator
  • 57. AIM Academy Modulator Comparison Modulator Type Footprint Power Consumption Wavelengths Range Applications Si Mach Zehnder > 500 mm2 > 10pJ/bit large, tunable Active Optical Cable, Telecom Si Ring modulator < 10 mm2 > 5fJ/bit (w/o heating) single wavelength Telecom, On- chip Integration Ge EA modulator < 10 mm2 25fJ/bit ~ 15nm range On-chip Integration Plasmonic modulator 2.5 mm2 < 50fJ/bit large, ~ 1mm On-chip Integration Modulator Comparison
  • 58. AIM Academy Active Photonics: Light Sources and Lasers  IR light source: SOI waveguides  Laser: DWDM, sub-mm structures interferometric structures  III-V monolithic integration  Si hybrid laser  Ge laser  Frequency comb based light sources K. Vahala et al., APL, v.84(7), (2004). J. Bowers et al., IEEE Phot. Tech. Lett., v.18(10), (2006). 57 Active Photonics: Light Sources and Lasers
  • 59. AIM Academy Monolithic Integration of III-V laser on SiGe/Si  Long RT CW-lifetime GaAs laser: 4 hrs  pre-growth CMP of SiGe graded layer  TDD=2x106 cm-2  λ=858 nm, d=0.4, Jth=269 A/cm2  InGaAs laser  λ=890 nm, d=0.26, Jth=700 A/cm2 M.E. Groenert, E.A. Fitzgerald et al., “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys., v.93(1), pp.362-367 (2003). M.E. Groenert, E.A. Fitzgerald et al., “Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1-x buffer layers,” J. Vac. Sci. Tech. B, v.21(3), pp.1064-1069 (2003). misfit dislocation Monolithic Integration
  • 60. AIM Academy  Si waveguide bonded to AlGaInAs QWs  SOI ridge waveguide, SiO2/Ta2O5 facet mirror  Overlap: Si=0.6-9, QWs=0.01-0.06  Hybrid integration: zero alignment tolerance  Bonding: low T oxygen plasma-assisted wafer bonding  T=250 °C tolerate Thermal Expansion Mismatch  <5 nm reactive oxide layer  Endures dicing, facet polishing CW lasing (=1568 nm)  Optical Pumping  Pth=23 mW, Pmax=4.5 mW  Electrical Injection  Ithres=65 mA, Pmax=1.8 mW, eff=0.13 H. Park, J.E. Bowers et al, Opt. Exp., v.13(23),pp.9460-9464 (2005). A.W. Fang, J.E. Bowers et all., IEEE Phot. Tech. Lett., v. 18(10), pp.1143-1145 (2006). A.W. Fang, J.E. Bowers et al., Opt. Exp., v.14(20), pp.9203-9210 (2006). A.W. Fang, J.E. Bowers et al., Matls. Today, v.10(7-8), pp.28-35 (2007). Hybrid Integration of III-V laser on SiGe/Si Hybrid Integration
  • 61. AIM Academy Germanium Laser  Ge-on-Si for Si integration  High n-doping required  Demonstrated lasing from 1520 to 1700 nm with electrical pumping  Demonstrated 8mW laser peak power at 1620nm J.F. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel, “A Ge-on-Si laser operating at room temperature” Optics Lett. 35 (2010) R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L.C. Kimerling, and J. Michel, “An electrically pumped Germanium laser”, Opt. Exp. 20, 11316 (2012) L-I curve at 300K Germanium Laser
  • 62. AIM Academy QW and QD Lasers on Silicon  GaAs directly grown on Si  InGaAs QW with n and p contact  Current emission wavelength between 800nm and 1100nm  Electroluminescence demonstrated  Optically pumped lasing reported L. C. Chuang et al., “InGaAs QW Nanopillar Light Emitting Diodes Monolithically Grown on a Si Substrate,“ OSA/CLEO/QELS 2010 CMFF6 InGaAs Nanopillar QW Laser InAs QD Laser Alan Y. Liu et al., “High performance continuous wave 1.3 mm quantum dot lasers on silicon“ APPLIED PHYSICS LETTERS 104, 041104 (2014) QW and QD Lasers on Silicon
  • 63. AIM Academy Frequency Comb Generation T. Herr, et al., NP, 145, 2014 & K. Saha, et al., OE, 1335, 2013 Frequency Comb Generation
  • 64. AIM Academy Near IR Comb Generation using SiN Nanophotonic Optical Parametric Oscillator • SiN • CMOS-compatible material • n~2, on-chip, high confinement waveguides • Very low propagation losses (0.1 dB/cm) • Broad transparency window • n2 ~ 2x10-19 (cm2/W), γ ~ 1 W-1m-1 • Source with many independent wavelengths in the C-band • Suitable for use in Si network-on-chip • Flexible pump wavelength: visible to IR J. S. Levy, A. Gondarenko, et al., “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics., v.4(1), pp. 37-40 (2010). Near IR Comb Generation using SiN
  • 65. AIM Academy Book Recommendation Handbook of Silicon Photonics CRC Press Series in Optics and Optoelectronics Published: April 26, 2013 by Taylor & Francis Editor(s): Laurent Vivien, Lorenzo Pavesi