SlideShare a Scribd company logo
Fabrication and applications of
semiconductor nanostructures
Lucia Sorba
Istituto Nanoscienze-CNR
NEST (Pisa) L. Sorba
NNL (Lecce) G. Gigli
S3 (Modena) E. Molinari
Adm. Genova (with Nano, SPIN, IOM)
project admin, recruitment
Established on February 2010
www.nano.cnr.it
Institute of Nanoscience
Mission
The primary objective of the Institute is the fundamental study and
the manipulation of systems at the nanometric scale. Its wide and
multidisciplinary research activities include:
• Synthesis and fabrication of nanostructures and devices.
• Experimental and theoretical-computational studies of their
properties and functionality.
• Knowledge and expertise are used to develop applications in
several fields, from energy and environment to nanomechanics,
nano(bio)technologies, and nanomedicine.
• Special attention to projects and advanced technologies of
industrial interest.
Institute of Nanoscience
• Strong interaction with Universities
• 252 people (103 Young)
• Budget : 4.4 Milion Euro (projects)
3.5 Milion Euro (FFO-pers. incl)
• Equipment intensive >50Milion Euro
Outline
• Part I Semiconductor nanowires (Pisa)
• Part II Semiconductor nanostructures (Lecce)
Motivation
Semiconductor nanowires:
• strain issues: heterostructures
Motivation
Semiconductor nanowires:
• high control of density and
dimension
200nm
6
0
20
40
60
NWsCount(a.u.)
2μm
8
0
20
40
60
NWsCount(a.u.)
200nm
(a)
(b)
(c)
(d)
Gold assisted growth
Bottom-up growth approach
InAs NWs
Diameter 20-100nm
Length up to 2-5 mm
Hexagonal cross section
Wurzite crystal structure
Doping n=1016 -1019 cm-3
Hybrid nanodevices
S-InAs NW-S
High critical current
Ic=350nA
S. Roddaro et al., Nano Res., 3(9) (2010), 676–684
P. Spathis et al., Nanotechnology ,22, (2011), 105201
F. Giazotto et al., Nature Physics, 7, (2011), 857.
Vj
InAs NW embedded in a
SQUID
InAs/InP axial heterostructured NWs
High-T single-electron devices
Tuning of energy spectrum with electric dipole
moment due to absence of surface depletion
for InAs
S. Roddaro et al., Nano Lett 11, 1695-1699 (2011)
InAs/InP heterostructured NWs
High-T single-electron devices
S. Roddaro et al., Nano Lett 11, 1695-1699 (2011)
CB up to 50K
Enhancement of the level spacing
High-T single-electron devices
Electrostatic Spin Control in
InAs/InP Nanowire Quantum
Dots
L. Romeo et al , Nano Lett. 12, 4490–4494 (2012)
Single-triplet transition
InSb
Optoelectronics:
Direct band gap:
Eg=0.17 eV
l=7.3 mm
me
* =0.014 me
me =7.7·104 cm2/V·s (300 K)
Quantum electronics:
Landé
g-factor>60
Spintronics:
ZT=S2sT/k=0.6
at 673 K
Thermoelectricity: Large spin-orbit :
Majorana fermion
detection
InAs-InSb NWs
InSb: <110> zone axis, InAs: <2-1-10> zone axis
HR TEM Analysis
D. Ercolani el al. Nanotechnology 20, 505605 (2009)
InAs-InSb NWs
Strain maps as obtained by geometrical
phase
analysis.
InAs-InSb
n-n heterojunction diodes
Low capacitance diodes (AttoFarad )
=> improved cut off frequency for
high speed operation detectors
A. Pitanti et al., Phys. Rev X 1, 011006 (2011)
InAs and InSb semiconductors are
both n-type (fast) but has a broken-
gap alignment of the electronic
bands at the heterojunction.
Strong asymmetry in the I-V
characteristic is expected
Schroedinger-Poisson 1D (bulk)
A. Pitanti et al., Phys. Rev X 1, 011006 (2011)
InAs-InSb
n-n heterojunction diodes
Two-terminals device
-3 -2 -1 0 1 2 3
0
2
4
6
8
10
-2 -1 0 1 2
-0.4
-0.2
0.0
0.2
0.4
Current(nA)
VSD
(V)
VSD
(V)
Room-T
- Good rectification
- Roughly estimated cutoff
frequency (1/2pRC) ~ 300 THz
A. Pitanti et al., Phys. Rev X 1, 011006 (2011)
InAs-InSb
n-n heterojunction diodes
InAs-InP-InSb
n-n heterojunction diodes
Room -T
InAs-InP-InSb
n-n heterojunction diodes
InP insertion reduces the direct
conductivity and suppresses the
thermionic contribution in reverse
bias
Why NWs can be used
for THz detectors?
• Very low capacitance devices
(~ attoFarad, almost not measurable)
• Planar technology for contacts, gates, antennas,
etc.
• Can make arrays in a relatively easy way
• Quantum design is possible
InAs NW FET - THz detectors
10
-11
10
-10
10
-9
10
-8
10
-7
-10 -5 0 5 10
0
0.5
1.0
1.5
2.0
-10 -5 0 5 10
Responsivity(V/W)
VG (V)
NEP(W/√Hz)
(1)
(2)
(a)
(b)
Antenna orientation ┴ GHz source polarization
Antenna orientation // GHz source polarization
M.S. Vitiello et al. Nano Letters, 12, 96 2012
NW FETs THz detectors
S
D
G
200 nm
ad band bow tie equiangular
antenna
Log-periodic circular-toothed
antenna
M.S. Vi ello et al. Nano Le ers, 12, 96 (2012)
Strong resonant photoresponse is
predicted in materials having plasma
damping rates < freq. incoming rad. and <
1/τ → High mobility required
Noise Equivalent Power
Improvements
• 1-order of magnitude reduction
of the NW resistance through
pretreatments
•log-periodic antenna properly
resonant with the QCL frequency
• Lapping of the substrate at sub-
wavelength values (< 100 um)
NEP : 6 × 10-11 W/Hz1/2
M.S Vitiello et al. APL 100, 241101, 2012
Noise Equivalent Power
10
-11
10
-10
10
-9
-3 -2 -1 0 1 2 3
Gate Voltage (V)
NEP(W/√Hz)
Improvements
• 1-order of magnitude reduction of the
NW resistance through pretreatments
• Design of log-periodic antenna
properly resonant with the QCL
frequency
• Lapping of the substrate at sub-
wavelength values (< 100 um)
ØNEP : 6 × 10-11 W/ Hz1/ 2
Ø1 order of magnitude increase
Responsivity
M.S Vitiello et al. APL 100, 241101, 2012
Highly sensitive, RT detection of THz QCL
emission
M.S Vitiello et al. APL 100, 241101, 2012
Gate Voltage (V)
Responsivity(V/W)
θ
(a)
(b)
D
G
S
S
G
D
100 nm
G. Scalari et al. Laser & Photon. Rev. 3, No. 1–2, 45(2009)
Highly sensitive, RT detection of THz QCL emission
0
5
10
15
-3 -2 -1 0 1 2 3
0
0.5x10
-5
Gate Voltage (V)
Responsivity(V/W)
Isd(A)
90°
60°
45°
0°
(c)
θ
(a)
(b)
D
G
S
S
G
D
100 nm
G. Scalari et al. Laser & Photon. Rev. 3, No. 1–2, 45(2009)
M.S Vitiello et al. APL 100, 241101, 2012
AlAs – GaAs system:
Lattice matched
Widely used for bandgap engineering
Theoretical results predicted direct band gap in AlAs Wurtzite
structures ( A. De et al. Phys. Rev. B, 2010, 81,155210)
Potential optoelectronic applications
Motivation
AlAs-GaAs NWs
AlAs-GaAs NWs
Exp: a= 3.9±0.1Å and c=6.5±0.1Å
Th : a= 4.003Å and c= 6.537ÅA. LI et al. 2011, Crystal Growth & Design, 11,
4053
Resonant Raman spectroscopy
on single core-shell NW
Direct bandgap
𝛤7 symmetry to be resonantly enhanced @
3.3 eV
𝛤8 symmetry is predicted for the lowest
conduction band @ 1.971 eV
Stefan Funk, et al. ACS NANO 7, 1400
(2013)
A. De et al. Phys. Rev. B, 2010,
81,155210,.
PART I Conclusions
• Nanowire technology represents a powerful research and development
platform for fundamental physics investigations (InAs, InAs/InP High-T
single-electron devices, hybrid devices) .
• InSb/InP/InAs heterostructured NWs show potential interest due their
outstanding electronic properties and InAs NW FET can be employed as
THz detectors.
• AlAs Wurtzite NWs have direct band gap and then they have a potential
interest in optoelectronic devices.
People
• CBE Growth: D. Ercolani, U. Gomes, Ang Li and E. Husanu (NEST, Pisa).
• NWs Devices: S Roddaro, A. Pescaglini, A. Pitanti, L. Romeo, F. Beltram , M.
Vitiello and A. Tredicucci (NEST. Pisa)
.
• Hybrid Devices: P. Spathis, S. Biswas and F. Giazotto (NEST, Pisa)
.
• TEM: F. Rossi, L. Nasi, G. Salviati (IMEM-CNR), and M. Gemmi (IIT@NEST).
• Raman Spectroscopy: S.Funk, I.Zardo (WSI, Munchen, D ).
Outline
• Semiconductor nanostructured devices
(Lecce)
-2 -1 0 1 2
-10
0
10
20
30
40
Conductance(mS)
i_diodo1_buio
i_diodo1_luce
G_diodo1_buio
Voltage (V)
Current(mA)
-2 -1 0 1 2
-10
0
10
20
30
40
50
Ballistic Diodes on GaAs
p-HEMT structure
2DEG m ≈8000 cm2/V·s
n= 6.75·1011 cm-2
 Threshold ≤ 50mV
 asymmetry factor (Id/Ir)
better than 2x104
 Reverse current ≤ 10-8 A
I–V characteristic
Cooperation with ST
Applications: low power
electronics, EM energy
harvesting, THz sensors
Formation process of self-rolling stuctures
The finale shape depends
from the total strain and
the geometry.
By removing the sacrificial layer
the two layers with opposite
strain release the elastic energy
bending the structure
Strain driven 3D nanostructures
self-rolling induced
by strain release
Z
Y
X
Patent “Integrated
Triaxial magnetic
sensor”
Sensitivity: 0.03 V/T
Hall voltages versus the
mechanical angle
R=85 mm
microscale dimensions compatible
with CMOS technology
Power density
30.2 mW/mm3
Resonant
frequency
64 Hz
AlN Piezoelectric rings
for energy harvesting
D=350 nm
Multiwalled tube as
building-block for
metamaterials
9 turns
Piezoelectric structures for energy
harvesting (RMEMS)
R=85 mm
Power density
30.2 mW/mm3
Sacrificial layer SiO2
Mo layer2
AlN
Mo layer1
AlN
Mo
Rolled up layers (ring structure)
100nm
0.5mm 100 nm
Mo
Resonance frequency
64 Hz
Excellent elastic properties and additional
torsional degree of freedom result to high power
density and efficiency at low frequency
AlN/Mo
A. Massaro et al., Appl. Phys. Lett 98, 052502 (2011)
3D magnetic sensor
bilayer
p-HEMT structur
Z
Y
X
Patent “Integrated Triaxial magnetic sensor”
No: P03246 EP
2DEG m ≈8000 cm2/V·s
n= 6.75·1011 cm-2
Sensitivity:
0.03 V/T
L. Sileo et al , J. Microelectronic Eng. 87, 1217 (2010)
1D Photonic structures on GaN
Patent OPTICAL LOGIC GATE, Pub. No.: WO/2010/058432
[F. A. Bovino et al, OPTICS EXPRESS, 17, 18337(2009)]
E-beam writing combined with deep
dry-etching (ICP plasma etching with
SiCl4/N2/Ar) allows to obtain high
aspect ratio and vertical wall
T. Stomeo et al., SPIE 2010
V. Tasco et al., SPIE 2010
1-D Photonic crystal on
GaN/AlGaN µ-cavity
Collaboration with SELEX S.I. e
Università “La sapienza”
Strong enhancement in
SHG emission
Development of a reliable
process to fabricate
GaN/AlGaN 1D-PhC
microcavities with nonlinear
optical properties
The integration of 1D-PhC
grating amplifies the
signal by exploiting the
double effect of cavity
resonance and non linear
GaN enhancement.
MOCVD
FWHM=57 arcsec
5 10 15 20 25 30
10
0
10
1
10
2
10
3
260 A/W
He_Cd laser l=325nm - 0,20 mW
optical area 0,5mm x 0,5mm
MSM GaN PD
W Schottky contacts
Responsivity[A/W]
Voltage [V]
Cr/Au Schottky contacts
i=4mm
i=5mm
i=4mm
i=5mm
372 A/W
8,72 A/W
6,81 A/W
High temperature and high responsivity
AlGaN deep UV photodetectors
Device working up to 400 °C and 260 nm
High quality semiconductor materials.
Patent: An optical system …, WO 2005064315 A1 [M. Mello et al, SENSOR, (2008)]
Electronic devices on GaN
nb ≤ 1x1013 cm-3
X-ray FWHM ≈60
arcsec
Innovative growh technique and
new technological process
2DEG carrier density ≥ 1x1013 cm-2
Mobility > 2000 cm2/Vs on HEMT
structures
In cooperation with SELEX
S.I. and University of
Modena and Reggio Emilia
The “single step” technology allows to
automatically achieve foot’s gate alignment
and independent head/foot ratio for power
management
[V. Tasco et al., Jour. of App. Phys. vol. 105, 063510, (2009)]
[B. Poti et al, Jour. of Optics A: Pure and Applied Optics, v 8, S524, (2006)]
[M.N. Mello et al., Jour. of Optics A: Pure and Applied Optics, v 8, S545, (2006)]
10 GHz power sweep Ft ≈ 80 GHz
Columnar growth and
mosaicity nearly suppressed
Part II Conclusions
• Ballistic diodes have potential interest on low power
electronics, EM energy harvesting and THz sensors.
• Free standing 3D nanostructures are employed for 3D
magnetic sensors or RMEMS for elastic energy
harvesting
• GaN/AlGaN nanostructures are used for 1DPc,
electronic devices and photodetectors
People
NNL Nano-CNR: V. Tasco, M.T. Todaro, M. De Giorgi, A.
Passaseo
Uni Salento: M. De Vittorio, R. Cingolani
Collaborations: SELEX, ELSAG, AVIO, AGILENT, ST,
Universita’ La Sapienza
Thank your for your attention

More Related Content

What's hot

Luminescent materials for biomedical applications: the example of nanothermom...
Luminescent materials for biomedical applications: the example of nanothermom...Luminescent materials for biomedical applications: the example of nanothermom...
Luminescent materials for biomedical applications: the example of nanothermom...
Sociedade Brasileira de Pesquisa em Materiais
 
ISP part 2
ISP part 2ISP part 2
ISP part 2
SethSeligman
 
An overview of phononic crystals
An overview of phononic crystalsAn overview of phononic crystals
An overview of phononic crystals
vinzilla
 
ICACC Presentation
ICACC PresentationICACC Presentation
ICACC Presentation
Vikram Singh
 
ISP part 1
ISP part 1ISP part 1
ISP part 1
SethSeligman
 
Pbg atal fdp
Pbg atal fdpPbg atal fdp
Pbg atal fdp
JyothiDigge2
 
Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...
Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...
Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...
Simone Angela Winkler
 
Passive millimeter wave imaging using subharmonic self-oscillating mixing
Passive millimeter wave imaging using subharmonic self-oscillating mixingPassive millimeter wave imaging using subharmonic self-oscillating mixing
Passive millimeter wave imaging using subharmonic self-oscillating mixing
Simone Angela Winkler
 
Anl Optical
Anl OpticalAnl Optical
Anl Opticalwarunaf
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
Trinity College Dublin
 
MRS Fall Meeting 2017
MRS Fall Meeting 2017MRS Fall Meeting 2017
MRS Fall Meeting 2017
Suzanne Wallace
 
Design of a Selective Filter based on 2D Photonic Crystals Materials
Design of a Selective Filter based on 2D Photonic Crystals Materials Design of a Selective Filter based on 2D Photonic Crystals Materials
Design of a Selective Filter based on 2D Photonic Crystals Materials
IJECEIAES
 
Impact of Vibration on a Computer Network Using Optical Fibre Cables
Impact of Vibration on a Computer Network Using Optical Fibre CablesImpact of Vibration on a Computer Network Using Optical Fibre Cables
Impact of Vibration on a Computer Network Using Optical Fibre Cables
Premier Publishers
 
0 ucl31 aug2011
0 ucl31 aug20110 ucl31 aug2011
0 ucl31 aug2011
Taha Sochi
 
Nanowire Solar Cells
Nanowire Solar CellsNanowire Solar Cells
Nanowire Solar Cells
University of Kentucky
 
Layal's 1st year Presentation
Layal's 1st year PresentationLayal's 1st year Presentation
Layal's 1st year PresentationLayal Jambi
 
Q045068996
Q045068996Q045068996
Q045068996
IJERA Editor
 
Using Metamaterial as Optical Perfect Absorber
Using Metamaterial as Optical Perfect AbsorberUsing Metamaterial as Optical Perfect Absorber
Using Metamaterial as Optical Perfect Absorber
Sepehr A. Benis
 
binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripplebinary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
Dr. Basanta Kumar Parida
 

What's hot (20)

Luminescent materials for biomedical applications: the example of nanothermom...
Luminescent materials for biomedical applications: the example of nanothermom...Luminescent materials for biomedical applications: the example of nanothermom...
Luminescent materials for biomedical applications: the example of nanothermom...
 
ISP part 2
ISP part 2ISP part 2
ISP part 2
 
An overview of phononic crystals
An overview of phononic crystalsAn overview of phononic crystals
An overview of phononic crystals
 
ICACC Presentation
ICACC PresentationICACC Presentation
ICACC Presentation
 
ISP part 1
ISP part 1ISP part 1
ISP part 1
 
Pbg atal fdp
Pbg atal fdpPbg atal fdp
Pbg atal fdp
 
Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...
Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...
Dr. Simone A Winkler - Ultra High-Field MRI Open Questions in Engineering an...
 
Passive millimeter wave imaging using subharmonic self-oscillating mixing
Passive millimeter wave imaging using subharmonic self-oscillating mixingPassive millimeter wave imaging using subharmonic self-oscillating mixing
Passive millimeter wave imaging using subharmonic self-oscillating mixing
 
Anl Optical
Anl OpticalAnl Optical
Anl Optical
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
 
MRS Fall Meeting 2017
MRS Fall Meeting 2017MRS Fall Meeting 2017
MRS Fall Meeting 2017
 
Ptf V8
Ptf V8Ptf V8
Ptf V8
 
Design of a Selective Filter based on 2D Photonic Crystals Materials
Design of a Selective Filter based on 2D Photonic Crystals Materials Design of a Selective Filter based on 2D Photonic Crystals Materials
Design of a Selective Filter based on 2D Photonic Crystals Materials
 
Impact of Vibration on a Computer Network Using Optical Fibre Cables
Impact of Vibration on a Computer Network Using Optical Fibre CablesImpact of Vibration on a Computer Network Using Optical Fibre Cables
Impact of Vibration on a Computer Network Using Optical Fibre Cables
 
0 ucl31 aug2011
0 ucl31 aug20110 ucl31 aug2011
0 ucl31 aug2011
 
Nanowire Solar Cells
Nanowire Solar CellsNanowire Solar Cells
Nanowire Solar Cells
 
Layal's 1st year Presentation
Layal's 1st year PresentationLayal's 1st year Presentation
Layal's 1st year Presentation
 
Q045068996
Q045068996Q045068996
Q045068996
 
Using Metamaterial as Optical Perfect Absorber
Using Metamaterial as Optical Perfect AbsorberUsing Metamaterial as Optical Perfect Absorber
Using Metamaterial as Optical Perfect Absorber
 
binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripplebinary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
 

Viewers also liked

Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01laboratoridalbasso
 
Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03laboratoridalbasso
 
Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03laboratoridalbasso
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01laboratoridalbasso
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01laboratoridalbasso
 
Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01laboratoridalbasso
 
Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01laboratoridalbasso
 
Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01laboratoridalbasso
 
Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02laboratoridalbasso
 
Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01laboratoridalbasso
 

Viewers also liked (20)

Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01Ldb Convergenze Parallele_trueblood_01
Ldb Convergenze Parallele_trueblood_01
 
Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01Ldb Convergenze Parallele_mazzara_01
Ldb Convergenze Parallele_mazzara_01
 
Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03Ldb Convergenze Parallele_Mantovani_03
Ldb Convergenze Parallele_Mantovani_03
 
Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03Ldb Convergenze Parallele_trueblood_03
Ldb Convergenze Parallele_trueblood_03
 
Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16Ldb Convergenze Parallele_16
Ldb Convergenze Parallele_16
 
Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14Ldb Convergenze Parallele_14
Ldb Convergenze Parallele_14
 
Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06Ldb Convergenze Parallele_06
Ldb Convergenze Parallele_06
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03Ldb Convergenze Parallele_De barros_03
Ldb Convergenze Parallele_De barros_03
 
Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15Ldb Convergenze Parallele_15
Ldb Convergenze Parallele_15
 
Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01Ldb Convergenze Parallele_unningham_01
Ldb Convergenze Parallele_unningham_01
 
Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02Ldb Convergenze Parallele_Mantovani_02
Ldb Convergenze Parallele_Mantovani_02
 
Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01Ldb Convergenze Parallele_De barros_01
Ldb Convergenze Parallele_De barros_01
 
Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01Ldb Convergenze Parallele_lamezia_01
Ldb Convergenze Parallele_lamezia_01
 
Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01Ldb Convergenze Parallele_stanziola_01
Ldb Convergenze Parallele_stanziola_01
 
Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01Ldb Convergenze Parallele_Colelli_01
Ldb Convergenze Parallele_Colelli_01
 
Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13Ldb Convergenze Parallele_13
Ldb Convergenze Parallele_13
 
Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01Ldb Convergenze Parallele_sozzolabbasso_01
Ldb Convergenze Parallele_sozzolabbasso_01
 
Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02Ldb Convergenze Parallele_De barros_02
Ldb Convergenze Parallele_De barros_02
 
Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01Ldb Convergenze Parallele_Mantovani_01
Ldb Convergenze Parallele_Mantovani_01
 

Similar to Ldb Convergenze Parallele_sorba_01

Nanoantenna
Nanoantenna Nanoantenna
Nanoantenna
Fatemeh Habibi
 
Nantenna
NantennaNantenna
Nantenna
ATHUL RAJ.R
 
Optical Antenna
Optical AntennaOptical Antenna
Optical Antenna
Srinivas Vasamsetti
 
Nanoelectronics Final
Nanoelectronics FinalNanoelectronics Final
Nanoelectronics Finalshikha2510
 
Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems
Bhupendra Subedi
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
upvita pandey
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnology
aimanmukhtar1
 
Microstrip_patch_antenna_design.ppt
Microstrip_patch_antenna_design.pptMicrostrip_patch_antenna_design.ppt
Microstrip_patch_antenna_design.ppt
PSOMESWARPATRO
 
Nantenna
NantennaNantenna
Nantenna
abhijithasokan
 
Study of Optical Character of Nano-antenna
Study of Optical Character of Nano-antennaStudy of Optical Character of Nano-antenna
CNFET Technology
CNFET TechnologyCNFET Technology
CNFET Technology
Kunwar Rehan
 
Seminar
SeminarSeminar
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensorsRam Niwas Bajiya
 
Analysis of Metamaterial Based Microstrip Array Antenna
Analysis of Metamaterial Based Microstrip Array AntennaAnalysis of Metamaterial Based Microstrip Array Antenna
Analysis of Metamaterial Based Microstrip Array Antenna
ijceronline
 
The new me antenna is only one percent of the smaller antennas available in s...
The new me antenna is only one percent of the smaller antennas available in s...The new me antenna is only one percent of the smaller antennas available in s...
The new me antenna is only one percent of the smaller antennas available in s...
Antenna Manufacturer Coco
 
Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...IAEME Publication
 
Nanolithography
NanolithographyNanolithography
Nanolithography
Preeti Choudhary
 
Measurement of energy loss of light ions using silicon surface barrier detector
Measurement of energy loss of light ions using silicon surface barrier detectorMeasurement of energy loss of light ions using silicon surface barrier detector
Measurement of energy loss of light ions using silicon surface barrier detector
eSAT Publishing House
 
Set and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environmentsSet and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environments
eSAT Publishing House
 

Similar to Ldb Convergenze Parallele_sorba_01 (20)

Nanoantenna
Nanoantenna Nanoantenna
Nanoantenna
 
Nantenna
NantennaNantenna
Nantenna
 
Optical Antenna
Optical AntennaOptical Antenna
Optical Antenna
 
Nanoelectronics Final
Nanoelectronics FinalNanoelectronics Final
Nanoelectronics Final
 
Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems Carnot - efficiency based Nanoantenna Systems
Carnot - efficiency based Nanoantenna Systems
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
Introduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnologyIntroduction to nanoscience and nanotechnology
Introduction to nanoscience and nanotechnology
 
Microstrip_patch_antenna_design.ppt
Microstrip_patch_antenna_design.pptMicrostrip_patch_antenna_design.ppt
Microstrip_patch_antenna_design.ppt
 
Nantenna
NantennaNantenna
Nantenna
 
Study of Optical Character of Nano-antenna
Study of Optical Character of Nano-antennaStudy of Optical Character of Nano-antenna
Study of Optical Character of Nano-antenna
 
CNFET Technology
CNFET TechnologyCNFET Technology
CNFET Technology
 
Seminar
SeminarSeminar
Seminar
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensors
 
Analysis of Metamaterial Based Microstrip Array Antenna
Analysis of Metamaterial Based Microstrip Array AntennaAnalysis of Metamaterial Based Microstrip Array Antenna
Analysis of Metamaterial Based Microstrip Array Antenna
 
The new me antenna is only one percent of the smaller antennas available in s...
The new me antenna is only one percent of the smaller antennas available in s...The new me antenna is only one percent of the smaller antennas available in s...
The new me antenna is only one percent of the smaller antennas available in s...
 
Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...
 
7 4-1-7-11
7 4-1-7-117 4-1-7-11
7 4-1-7-11
 
Nanolithography
NanolithographyNanolithography
Nanolithography
 
Measurement of energy loss of light ions using silicon surface barrier detector
Measurement of energy loss of light ions using silicon surface barrier detectorMeasurement of energy loss of light ions using silicon surface barrier detector
Measurement of energy loss of light ions using silicon surface barrier detector
 
Set and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environmentsSet and seu analysis of cntfet based designs in harsh environments
Set and seu analysis of cntfet based designs in harsh environments
 

More from laboratoridalbasso

Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz
laboratoridalbasso
 
Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01
laboratoridalbasso
 
Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02
laboratoridalbasso
 
Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08 Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08
laboratoridalbasso
 
Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07 Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07
laboratoridalbasso
 
Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06 Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06
laboratoridalbasso
 
Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05 Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05
laboratoridalbasso
 
Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04 Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04
laboratoridalbasso
 
Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03 Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03
laboratoridalbasso
 
Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01
laboratoridalbasso
 
Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01 Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01
laboratoridalbasso
 
Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01
laboratoridalbasso
 
Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02
laboratoridalbasso
 
Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02
laboratoridalbasso
 
Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01
laboratoridalbasso
 
Ldb Asola Non Verba_Attanasio
Ldb Asola Non Verba_AttanasioLdb Asola Non Verba_Attanasio
Ldb Asola Non Verba_Attanasio
laboratoridalbasso
 
#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action
laboratoridalbasso
 
Tre anni di Laboratori dal Basso
Tre anni di Laboratori dal BassoTre anni di Laboratori dal Basso
Tre anni di Laboratori dal Basso
laboratoridalbasso
 
Ldb valecoricerca_lentini_web
Ldb valecoricerca_lentini_webLdb valecoricerca_lentini_web
Ldb valecoricerca_lentini_web
laboratoridalbasso
 
Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3
laboratoridalbasso
 

More from laboratoridalbasso (20)

Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz Ldb Rural in Action_CurandiKatz
Ldb Rural in Action_CurandiKatz
 
Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01Ldb Rural in Action_Coppola 01
Ldb Rural in Action_Coppola 01
 
Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02Ldb Rural in Action_Coppola 02
Ldb Rural in Action_Coppola 02
 
Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08 Ldb neetneedeu panetta 08
Ldb neetneedeu panetta 08
 
Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07 Ldb neetneedeu panetta 07
Ldb neetneedeu panetta 07
 
Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06 Ldb neetneedeu panetta 06
Ldb neetneedeu panetta 06
 
Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05 Ldb neetneedeu panetta 05
Ldb neetneedeu panetta 05
 
Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04 Ldb neetneedeu panetta 04
Ldb neetneedeu panetta 04
 
Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03 Ldb neetneedeu panetta 03
Ldb neetneedeu panetta 03
 
Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01Ldb neetneedeu cavalhro 01
Ldb neetneedeu cavalhro 01
 
Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01 Ldb neetneedeu panetta 01
Ldb neetneedeu panetta 01
 
Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01Ldb neetneedeu_mola 01
Ldb neetneedeu_mola 01
 
Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02Ldb neetneedeu panetta 02
Ldb neetneedeu panetta 02
 
Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02Ldb Asola, non Verba_Santanocito02
Ldb Asola, non Verba_Santanocito02
 
Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01Ldb Asola, non Verba_Santanocito01
Ldb Asola, non Verba_Santanocito01
 
Ldb Asola Non Verba_Attanasio
Ldb Asola Non Verba_AttanasioLdb Asola Non Verba_Attanasio
Ldb Asola Non Verba_Attanasio
 
#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action#LdbStorytelling_Rural in Action
#LdbStorytelling_Rural in Action
 
Tre anni di Laboratori dal Basso
Tre anni di Laboratori dal BassoTre anni di Laboratori dal Basso
Tre anni di Laboratori dal Basso
 
Ldb valecoricerca_lentini_web
Ldb valecoricerca_lentini_webLdb valecoricerca_lentini_web
Ldb valecoricerca_lentini_web
 
Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3Ldb valecoricerca_indolfi_brevetti_3
Ldb valecoricerca_indolfi_brevetti_3
 

Recently uploaded

How To Leak-Proof Your Magazine Business
How To Leak-Proof Your Magazine BusinessHow To Leak-Proof Your Magazine Business
How To Leak-Proof Your Magazine Business
Charlie McDermott
 
Best Crypto Marketing Ideas to Lead Your Project to Success
Best Crypto Marketing Ideas to Lead Your Project to SuccessBest Crypto Marketing Ideas to Lead Your Project to Success
Best Crypto Marketing Ideas to Lead Your Project to Success
Intelisync
 
Get To Know About Salma Karina Hayat.pdf
Get To Know About Salma Karina Hayat.pdfGet To Know About Salma Karina Hayat.pdf
Get To Know About Salma Karina Hayat.pdf
Salma Karina Hayat
 
Legal Mandates of technopreneurship.pptx
Legal Mandates of technopreneurship.pptxLegal Mandates of technopreneurship.pptx
Legal Mandates of technopreneurship.pptx
JadielByronAntonio
 
Michael Economou - Don't build a marketplace.pdf
Michael Economou - Don't build a marketplace.pdfMichael Economou - Don't build a marketplace.pdf
Michael Economou - Don't build a marketplace.pdf
Michael Oikonomou
 
Zeeshan Hayat - A Guide to Efficient Business Management.pdf
Zeeshan Hayat - A Guide to Efficient Business Management.pdfZeeshan Hayat - A Guide to Efficient Business Management.pdf
Zeeshan Hayat - A Guide to Efficient Business Management.pdf
Zeeshan Hayat
 
Create a spend money transaction during bank reconciliation.pdf
Create a spend money transaction during bank reconciliation.pdfCreate a spend money transaction during bank reconciliation.pdf
Create a spend money transaction during bank reconciliation.pdf
andreakaterasco
 
在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样
在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样
在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样
pv4uhplv
 
Showcase Portfolio- Marian Andrea Tana.pdf
Showcase Portfolio- Marian Andrea Tana.pdfShowcase Portfolio- Marian Andrea Tana.pdf
Showcase Portfolio- Marian Andrea Tana.pdf
MarianAndreaSTana
 

Recently uploaded (9)

How To Leak-Proof Your Magazine Business
How To Leak-Proof Your Magazine BusinessHow To Leak-Proof Your Magazine Business
How To Leak-Proof Your Magazine Business
 
Best Crypto Marketing Ideas to Lead Your Project to Success
Best Crypto Marketing Ideas to Lead Your Project to SuccessBest Crypto Marketing Ideas to Lead Your Project to Success
Best Crypto Marketing Ideas to Lead Your Project to Success
 
Get To Know About Salma Karina Hayat.pdf
Get To Know About Salma Karina Hayat.pdfGet To Know About Salma Karina Hayat.pdf
Get To Know About Salma Karina Hayat.pdf
 
Legal Mandates of technopreneurship.pptx
Legal Mandates of technopreneurship.pptxLegal Mandates of technopreneurship.pptx
Legal Mandates of technopreneurship.pptx
 
Michael Economou - Don't build a marketplace.pdf
Michael Economou - Don't build a marketplace.pdfMichael Economou - Don't build a marketplace.pdf
Michael Economou - Don't build a marketplace.pdf
 
Zeeshan Hayat - A Guide to Efficient Business Management.pdf
Zeeshan Hayat - A Guide to Efficient Business Management.pdfZeeshan Hayat - A Guide to Efficient Business Management.pdf
Zeeshan Hayat - A Guide to Efficient Business Management.pdf
 
Create a spend money transaction during bank reconciliation.pdf
Create a spend money transaction during bank reconciliation.pdfCreate a spend money transaction during bank reconciliation.pdf
Create a spend money transaction during bank reconciliation.pdf
 
在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样
在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样
在线办理(uofc毕业证书)芝加哥大学毕业证学历学位证书原版一模一样
 
Showcase Portfolio- Marian Andrea Tana.pdf
Showcase Portfolio- Marian Andrea Tana.pdfShowcase Portfolio- Marian Andrea Tana.pdf
Showcase Portfolio- Marian Andrea Tana.pdf
 

Ldb Convergenze Parallele_sorba_01

  • 1. Fabrication and applications of semiconductor nanostructures Lucia Sorba Istituto Nanoscienze-CNR
  • 2. NEST (Pisa) L. Sorba NNL (Lecce) G. Gigli S3 (Modena) E. Molinari Adm. Genova (with Nano, SPIN, IOM) project admin, recruitment Established on February 2010 www.nano.cnr.it Institute of Nanoscience
  • 3. Mission The primary objective of the Institute is the fundamental study and the manipulation of systems at the nanometric scale. Its wide and multidisciplinary research activities include: • Synthesis and fabrication of nanostructures and devices. • Experimental and theoretical-computational studies of their properties and functionality. • Knowledge and expertise are used to develop applications in several fields, from energy and environment to nanomechanics, nano(bio)technologies, and nanomedicine. • Special attention to projects and advanced technologies of industrial interest.
  • 4. Institute of Nanoscience • Strong interaction with Universities • 252 people (103 Young) • Budget : 4.4 Milion Euro (projects) 3.5 Milion Euro (FFO-pers. incl) • Equipment intensive >50Milion Euro
  • 5. Outline • Part I Semiconductor nanowires (Pisa) • Part II Semiconductor nanostructures (Lecce)
  • 7. Motivation Semiconductor nanowires: • high control of density and dimension 200nm 6 0 20 40 60 NWsCount(a.u.) 2μm 8 0 20 40 60 NWsCount(a.u.) 200nm (a) (b) (c) (d)
  • 10. InAs NWs Diameter 20-100nm Length up to 2-5 mm Hexagonal cross section Wurzite crystal structure Doping n=1016 -1019 cm-3
  • 11. Hybrid nanodevices S-InAs NW-S High critical current Ic=350nA S. Roddaro et al., Nano Res., 3(9) (2010), 676–684 P. Spathis et al., Nanotechnology ,22, (2011), 105201 F. Giazotto et al., Nature Physics, 7, (2011), 857. Vj InAs NW embedded in a SQUID
  • 13. High-T single-electron devices Tuning of energy spectrum with electric dipole moment due to absence of surface depletion for InAs S. Roddaro et al., Nano Lett 11, 1695-1699 (2011) InAs/InP heterostructured NWs
  • 14. High-T single-electron devices S. Roddaro et al., Nano Lett 11, 1695-1699 (2011) CB up to 50K Enhancement of the level spacing
  • 15. High-T single-electron devices Electrostatic Spin Control in InAs/InP Nanowire Quantum Dots L. Romeo et al , Nano Lett. 12, 4490–4494 (2012) Single-triplet transition
  • 16. InSb Optoelectronics: Direct band gap: Eg=0.17 eV l=7.3 mm me * =0.014 me me =7.7·104 cm2/V·s (300 K) Quantum electronics: Landé g-factor>60 Spintronics: ZT=S2sT/k=0.6 at 673 K Thermoelectricity: Large spin-orbit : Majorana fermion detection
  • 17. InAs-InSb NWs InSb: <110> zone axis, InAs: <2-1-10> zone axis HR TEM Analysis D. Ercolani el al. Nanotechnology 20, 505605 (2009)
  • 18. InAs-InSb NWs Strain maps as obtained by geometrical phase analysis.
  • 19. InAs-InSb n-n heterojunction diodes Low capacitance diodes (AttoFarad ) => improved cut off frequency for high speed operation detectors A. Pitanti et al., Phys. Rev X 1, 011006 (2011)
  • 20. InAs and InSb semiconductors are both n-type (fast) but has a broken- gap alignment of the electronic bands at the heterojunction. Strong asymmetry in the I-V characteristic is expected Schroedinger-Poisson 1D (bulk) A. Pitanti et al., Phys. Rev X 1, 011006 (2011) InAs-InSb n-n heterojunction diodes
  • 21. Two-terminals device -3 -2 -1 0 1 2 3 0 2 4 6 8 10 -2 -1 0 1 2 -0.4 -0.2 0.0 0.2 0.4 Current(nA) VSD (V) VSD (V) Room-T - Good rectification - Roughly estimated cutoff frequency (1/2pRC) ~ 300 THz A. Pitanti et al., Phys. Rev X 1, 011006 (2011) InAs-InSb n-n heterojunction diodes
  • 23. Room -T InAs-InP-InSb n-n heterojunction diodes InP insertion reduces the direct conductivity and suppresses the thermionic contribution in reverse bias
  • 24. Why NWs can be used for THz detectors? • Very low capacitance devices (~ attoFarad, almost not measurable) • Planar technology for contacts, gates, antennas, etc. • Can make arrays in a relatively easy way • Quantum design is possible
  • 25. InAs NW FET - THz detectors 10 -11 10 -10 10 -9 10 -8 10 -7 -10 -5 0 5 10 0 0.5 1.0 1.5 2.0 -10 -5 0 5 10 Responsivity(V/W) VG (V) NEP(W/√Hz) (1) (2) (a) (b) Antenna orientation ┴ GHz source polarization Antenna orientation // GHz source polarization M.S. Vitiello et al. Nano Letters, 12, 96 2012 NW FETs THz detectors S D G 200 nm ad band bow tie equiangular antenna Log-periodic circular-toothed antenna M.S. Vi ello et al. Nano Le ers, 12, 96 (2012) Strong resonant photoresponse is predicted in materials having plasma damping rates < freq. incoming rad. and < 1/τ → High mobility required
  • 26. Noise Equivalent Power Improvements • 1-order of magnitude reduction of the NW resistance through pretreatments •log-periodic antenna properly resonant with the QCL frequency • Lapping of the substrate at sub- wavelength values (< 100 um) NEP : 6 × 10-11 W/Hz1/2 M.S Vitiello et al. APL 100, 241101, 2012 Noise Equivalent Power 10 -11 10 -10 10 -9 -3 -2 -1 0 1 2 3 Gate Voltage (V) NEP(W/√Hz) Improvements • 1-order of magnitude reduction of the NW resistance through pretreatments • Design of log-periodic antenna properly resonant with the QCL frequency • Lapping of the substrate at sub- wavelength values (< 100 um) ØNEP : 6 × 10-11 W/ Hz1/ 2 Ø1 order of magnitude increase Responsivity M.S Vitiello et al. APL 100, 241101, 2012
  • 27. Highly sensitive, RT detection of THz QCL emission M.S Vitiello et al. APL 100, 241101, 2012 Gate Voltage (V) Responsivity(V/W) θ (a) (b) D G S S G D 100 nm G. Scalari et al. Laser & Photon. Rev. 3, No. 1–2, 45(2009) Highly sensitive, RT detection of THz QCL emission 0 5 10 15 -3 -2 -1 0 1 2 3 0 0.5x10 -5 Gate Voltage (V) Responsivity(V/W) Isd(A) 90° 60° 45° 0° (c) θ (a) (b) D G S S G D 100 nm G. Scalari et al. Laser & Photon. Rev. 3, No. 1–2, 45(2009) M.S Vitiello et al. APL 100, 241101, 2012
  • 28. AlAs – GaAs system: Lattice matched Widely used for bandgap engineering Theoretical results predicted direct band gap in AlAs Wurtzite structures ( A. De et al. Phys. Rev. B, 2010, 81,155210) Potential optoelectronic applications Motivation AlAs-GaAs NWs
  • 29. AlAs-GaAs NWs Exp: a= 3.9±0.1Å and c=6.5±0.1Å Th : a= 4.003Å and c= 6.537ÅA. LI et al. 2011, Crystal Growth & Design, 11, 4053
  • 30. Resonant Raman spectroscopy on single core-shell NW Direct bandgap 𝛤7 symmetry to be resonantly enhanced @ 3.3 eV 𝛤8 symmetry is predicted for the lowest conduction band @ 1.971 eV Stefan Funk, et al. ACS NANO 7, 1400 (2013) A. De et al. Phys. Rev. B, 2010, 81,155210,.
  • 31. PART I Conclusions • Nanowire technology represents a powerful research and development platform for fundamental physics investigations (InAs, InAs/InP High-T single-electron devices, hybrid devices) . • InSb/InP/InAs heterostructured NWs show potential interest due their outstanding electronic properties and InAs NW FET can be employed as THz detectors. • AlAs Wurtzite NWs have direct band gap and then they have a potential interest in optoelectronic devices.
  • 32. People • CBE Growth: D. Ercolani, U. Gomes, Ang Li and E. Husanu (NEST, Pisa). • NWs Devices: S Roddaro, A. Pescaglini, A. Pitanti, L. Romeo, F. Beltram , M. Vitiello and A. Tredicucci (NEST. Pisa) . • Hybrid Devices: P. Spathis, S. Biswas and F. Giazotto (NEST, Pisa) . • TEM: F. Rossi, L. Nasi, G. Salviati (IMEM-CNR), and M. Gemmi (IIT@NEST). • Raman Spectroscopy: S.Funk, I.Zardo (WSI, Munchen, D ).
  • 34. -2 -1 0 1 2 -10 0 10 20 30 40 Conductance(mS) i_diodo1_buio i_diodo1_luce G_diodo1_buio Voltage (V) Current(mA) -2 -1 0 1 2 -10 0 10 20 30 40 50 Ballistic Diodes on GaAs p-HEMT structure 2DEG m ≈8000 cm2/V·s n= 6.75·1011 cm-2  Threshold ≤ 50mV  asymmetry factor (Id/Ir) better than 2x104  Reverse current ≤ 10-8 A I–V characteristic Cooperation with ST Applications: low power electronics, EM energy harvesting, THz sensors
  • 35. Formation process of self-rolling stuctures The finale shape depends from the total strain and the geometry. By removing the sacrificial layer the two layers with opposite strain release the elastic energy bending the structure
  • 36. Strain driven 3D nanostructures self-rolling induced by strain release Z Y X Patent “Integrated Triaxial magnetic sensor” Sensitivity: 0.03 V/T Hall voltages versus the mechanical angle R=85 mm microscale dimensions compatible with CMOS technology Power density 30.2 mW/mm3 Resonant frequency 64 Hz AlN Piezoelectric rings for energy harvesting D=350 nm Multiwalled tube as building-block for metamaterials 9 turns
  • 37. Piezoelectric structures for energy harvesting (RMEMS) R=85 mm Power density 30.2 mW/mm3 Sacrificial layer SiO2 Mo layer2 AlN Mo layer1 AlN Mo Rolled up layers (ring structure) 100nm 0.5mm 100 nm Mo Resonance frequency 64 Hz Excellent elastic properties and additional torsional degree of freedom result to high power density and efficiency at low frequency AlN/Mo A. Massaro et al., Appl. Phys. Lett 98, 052502 (2011)
  • 38. 3D magnetic sensor bilayer p-HEMT structur Z Y X Patent “Integrated Triaxial magnetic sensor” No: P03246 EP 2DEG m ≈8000 cm2/V·s n= 6.75·1011 cm-2 Sensitivity: 0.03 V/T L. Sileo et al , J. Microelectronic Eng. 87, 1217 (2010)
  • 39. 1D Photonic structures on GaN Patent OPTICAL LOGIC GATE, Pub. No.: WO/2010/058432 [F. A. Bovino et al, OPTICS EXPRESS, 17, 18337(2009)] E-beam writing combined with deep dry-etching (ICP plasma etching with SiCl4/N2/Ar) allows to obtain high aspect ratio and vertical wall T. Stomeo et al., SPIE 2010 V. Tasco et al., SPIE 2010 1-D Photonic crystal on GaN/AlGaN µ-cavity Collaboration with SELEX S.I. e Università “La sapienza” Strong enhancement in SHG emission Development of a reliable process to fabricate GaN/AlGaN 1D-PhC microcavities with nonlinear optical properties The integration of 1D-PhC grating amplifies the signal by exploiting the double effect of cavity resonance and non linear GaN enhancement. MOCVD
  • 40. FWHM=57 arcsec 5 10 15 20 25 30 10 0 10 1 10 2 10 3 260 A/W He_Cd laser l=325nm - 0,20 mW optical area 0,5mm x 0,5mm MSM GaN PD W Schottky contacts Responsivity[A/W] Voltage [V] Cr/Au Schottky contacts i=4mm i=5mm i=4mm i=5mm 372 A/W 8,72 A/W 6,81 A/W High temperature and high responsivity AlGaN deep UV photodetectors Device working up to 400 °C and 260 nm High quality semiconductor materials. Patent: An optical system …, WO 2005064315 A1 [M. Mello et al, SENSOR, (2008)]
  • 41. Electronic devices on GaN nb ≤ 1x1013 cm-3 X-ray FWHM ≈60 arcsec Innovative growh technique and new technological process 2DEG carrier density ≥ 1x1013 cm-2 Mobility > 2000 cm2/Vs on HEMT structures In cooperation with SELEX S.I. and University of Modena and Reggio Emilia The “single step” technology allows to automatically achieve foot’s gate alignment and independent head/foot ratio for power management [V. Tasco et al., Jour. of App. Phys. vol. 105, 063510, (2009)] [B. Poti et al, Jour. of Optics A: Pure and Applied Optics, v 8, S524, (2006)] [M.N. Mello et al., Jour. of Optics A: Pure and Applied Optics, v 8, S545, (2006)] 10 GHz power sweep Ft ≈ 80 GHz Columnar growth and mosaicity nearly suppressed
  • 42. Part II Conclusions • Ballistic diodes have potential interest on low power electronics, EM energy harvesting and THz sensors. • Free standing 3D nanostructures are employed for 3D magnetic sensors or RMEMS for elastic energy harvesting • GaN/AlGaN nanostructures are used for 1DPc, electronic devices and photodetectors
  • 43. People NNL Nano-CNR: V. Tasco, M.T. Todaro, M. De Giorgi, A. Passaseo Uni Salento: M. De Vittorio, R. Cingolani Collaborations: SELEX, ELSAG, AVIO, AGILENT, ST, Universita’ La Sapienza
  • 44. Thank your for your attention