SlideShare a Scribd company logo
International Symposium: Mesoporous Materials: From 1991 to 2018
Madrid, April 10 and 11, 2018
Dra. Isabel Izquierdo-Barba
Smart Bimaterials Research Group
Dpto. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, España.
ibarba@ucm.es
VERDI
polyValent
mEsopoRous
nanosystem for
bone DIseases
Recent advances in mesoporous materials
for management of bone infection
Infection !!
Evolution in modern aseptic techniques
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Current therapies
Antibiotics
Replacements
Amputation
Death
(7%)
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Infection Persistence
Antimicrobial Resistance
(AMR)
Development and
maduration
Detachment
Antibiotic
Immune
system
Free-Bacteria
(Planktonic state)
Substrate
Biofilm Formation
Adhesion
Monolayer
Proliferation
Microcolony
D. Campoccia, L. Montanaro, C.R. Arciola, Biomaterials 27 (2006) 2331–2339.
Mature
Biofilm
Super
Bug
New Post antibiotic era: The next
generation challenge?
World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014 (WHO, 2014).
G. Taubes, The bacteria fight back, Science 321 (2008) 356–361
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Drug resistant deadlier than cancer by 2050
World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014 (WHO, 2014).
G. Taubes, The bacteria fight back, Science 321 (2008) 356–361
A ten point plan for beating drug resistant
1. A Global public awareness
2. Improve sanitation and prevent the spread of infection
3. Reduce unnecessary use of antimicrobials in agriculture
4. Improve global surveillance of drug resistance and
antimicrobial consumption
5. Promote new rapid diagnostics
6. Promote use of vaccines
7. Improve the number, pay and recognition of people
working in infection diseases
8. Increase the supply of new antimicrobial effective
against drug-resistant bugs
9. A global innovation fund for early stage and non
commercial R&D
10. Better incentives to promote investment for new drugs
and improving existing ones
The Review on Antimicrobial Resistance Chaired by Jim O’Neill December 2014
8. Increase the supply of new antimicrobial
effective against drug-resistant bugs
9. A global innovation fund for early stage
and non commercial R&D
10. Better incentives to promote investment
for new drugs and improving existing ones
Now WHAT TO DO?
Nanomedicine: The future of infection treatment
A.J. Huh, Y.J. Kwon, J. Control. Release 156 (2011) 128–145.
L. Zhang, D. Pornpattananangku, C.M.J. Hu, C.M. Huang, Curr. Med. Chem. 17 (2010) 585–594
Drug delivery systems
 Selectively transport antimicrobial agents (target
site)
 Controlled antimicrobial fashion
 Improve antimicrobial efficacy
 Safety and Biocompatibility
 Repair damaged tissues
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Numberofpublications
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
Publication Year
“Mesoporous + silica + drug + delivery”
ISI Web of Science
(7.107 publications)
1300
2018
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
M. Vallet-Regí, F. Balas and D. Arcos Angew Chem Int Ed 46 (2007) 7548-7558.
M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, M. Manzano, Molecules, 23 (2018) 47.
50 nm
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
MSN
Stimuli-
responsive
drug delivery
Targeting
Biomolecules
delivery
Gene
therapy
Intracelullar
labeling
Diagnostic
imaging
Fluorescent
molecule
MRI agent
Drugs
Proteins
Photosensitizer
Photodynamic
therapy
Nucleid
acids
Dendritic
polymer
Responsive
blocking caps
Mesoporous Silica Materials
Stimuli-responsive
local drug delivery
Local
Biomolecules
delivery
Proteins
Bone tissue
regeneration
1 cm
Local drug
delivery
Drugs
Growth factors,
peptides
3D
scaffolds
Responsive
blocking caps
Mesoporous Silica Nanoparticles
MSM
50 nm
M. Manzano, M. Colilla, M. Vallet-Regí Expert Opin Drug Deliv 6 (2009) 1-18.
M. Vallet-Regí, L. Ruiz-González, I. Izquierdo-Barba, JM. González-Calbet J Mater Chem 16 (2006) 26-31.
M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, M. Manzano, Molecules, 23 (2018) 47.
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Hypothesis
Use MSNs with targeting
properties to release
antibiotics in the
environment of the bacteria
that cause the infection.
G. Domenico. The procession of the trojan horse
into Troy, 1760
Targeting bacteria
20 mm
Targeting biofilm
Targeting to Gram-negative bacteria
Gram (-)
- -
- -
-
-
- - -
-
-
- -
Antimicrobial agent
Levofloxacin
Targeting agent
Polycationic
dendrimer (G3)
+δ
N
N
N
N
N
NH2
NH2
NH2
NN
N
H2N
H2N
H2N
NN
N
H2N
H2N
H2N
H2N
N N
N
NH2
NH2
NH2
NH2
NH2
N
C
NSi
O
O
O H H
O
Nanoplatform
MSN
Nanoantibiotic +δ
+δ
+δ
+δ
+δ
+δ
+δ
+δ
+δ
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí,
Acta Biomaterialia 68 (2018) 261-271.
Aim #1:
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
CH2Cl2 , N2 , RT
N
N
N
N
N
NH2
NH2
NH2
NN
N
H2N
H2N
H2N
NN
N
H2N
H2N
H2N
H2N
N N
N
NH2
NH2
NH2
NH2
NH2
N
C
NSi
O
O
O H H
O
G3 (NH2)15
MSN-G3
Targeting to Gram-negative bacteria
Dry toluene
N2 , 110 ºC, 16 h
1)
2) NH4NO3 / EtOH , 60 ºC
(EtO)3Si N
NH2
H
Si N
NH2
O
O
O
H
MSN-DAMO
Si N
NH2
O
O
O
H
Synthesis
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta
Biomaterialia 68 (2018) 261-271.
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
50 nm
MSN
1 2 3 4 5 6
Intensity(a.u.)
2q (degree)
10
11 20 MSN
MSN-DAMO
MSN-G3
MSN-DAMO
50 nm
MSN-G3
50 nm
Targeting to Gram-negative bacteria
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí,
Acta Biomaterialia 68 (2018) 261-271.
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to Gram-negative bacteria
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí,
Acta Biomaterialia 68 (2018) 261-271.
D. Pedraza, J. Díez, I. Izquierdo, M. Colilla, M. Vallet-Regí, Biomed. Glasses. 4 (2018) 1-12 .
z-potential/TGA
Sample
Potencial ζ
(mV)
F
(mmol/g)
MSN -36.4 -
MSN-DAMO 37.4 1.86
MSN-G3 31.8 0.106
-20 -60 -100 -140 -180
-111.2
-102.2 Q4
Q3
MSN
Q2
-95.4
-58.7
-68.1T2
T3
-94.7
-102.4
-111.8
Q2
Q3
Q4
MSN-DAMO
d (ppm)
MSN-G3
Q4
-112.4
Q3
-102.1
-92.8
Q2
29Si MAS
NMR
MSN-G3
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
d (ppm)
N
N
N
N
N
NH2
NH2
NH2
NN
N
H2N
H2N
H2N
NN
N
H2N
H2N
H2N
H2N
N N
N
NH2
NH2
NH2
NH2
NH2
N
C
NSi
O
O
O H H
O
#
#
1H HRMAS NMR
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
0 100 200 300 400
0.0
0.2
0.4
0.6
0.8
1.0
W/W0
Time (h)
MSN-L
MSN-DAMO-LMSN-G3-L
MSN-L: W/W0 = 0.46(1-e-0.021t)0.56 ; R2 = 0.994
MSN-DAMO-L: W/W0 = 0.98(1-e-0.051t)0.68 ; R2 = 0.9997
MSN-G3-L: W/W0 = 0.99(1-e-0.239t)1.0 ; R2 = 0.995
3
Targeting to Gram-negative bacteria
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí,
Acta Biomaterialia 68 (2018) 261-271.
D. Pedraza, J. Díez, I. Izquierdo, M. Colilla, M. Vallet-Regí, Biomed. Glasses. 4 (2018) 1-12 .
Levofloxacin Release
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 20183
Targeting to Gram-negative bacteria
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí,
Acta Biomaterialia 68 (2018) 261-271.
D. Pedraza, J. Díez, I. Izquierdo, M. Colilla, M. Vallet-Regí, Biomed. Glasses. 4 (2018) 1-12 .
Microbiology assays:
E. coli
5 - 50 μg/mL 5-50 μg/mL
90 min
Bacteria targeting
assays
E. coli
90 min
Effectiveness biofilm
assays
CONFOCAL MICROSCOPE
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
E. coli CONTROL
3 mm
MSN
3 mm
MSN-G3
3 mm
MSN-DAMO
3 mm
Targeting to Gram-negative bacteria
MSN-G3 (5 mg/mL)
3 mm 3 mm
MSN-G3 (10 mg/mL) MSN-G3 (20 mg/mL)
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to Gram-negative bacteria
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí,
Acta Biomaterialia 68 (2018) 261-271.
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
MSN-G3-L
20 mm
MSN-DAMO-L
20 mm
E. coli
CONTROL
20 mm
MSN-L
20 mm
Targeting to Gram-negative bacteria
Antimicrobial efefcts (biofilm):
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to Gram-negative bacteria
levofloxacin
20 mm20 mm3 mm
Effective biofilm destruction with levofloxacin
loaded dendrimer-decorated MSNs
E. coli E. coli biofilm
MSN-G3-L
1 h
Targeting to
Gram-negative
bacteria
N
N
N
N
N
NH2
NH2
NH2
NN
N
H2N
H2N
H2N
NN
N
H2N
H2N
H2N
H2N
N N
N
NH2
NH2
NH2
NH2
NH2
N
C
N
H H
O
Si
O
O
O
MSN-G3
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to bacterial biofilm
10 mm
Ti6Al4V
Nano-Ti6Al4V
extracellular
matrix
S. Wagner, D.Hauck, M. Hoffmann, R. Sommer, I. Joachim, R.Mgller, A.Imberty, A. Varrot, A. Titz.
Angew.Chem. Int. Ed. 2017, 56, 16559 –16564
M. Mlouka, T. Cousseau, P. Di Martino, AIMS Molecular Science, 3 (2016) 338-356.
Lectins
(Glycoconjugates)
High Affinitty
Polysaccharides
DAPI (germs)
FITC-Lentins
TRITC-Lentins
Cacofluor
(matrix)
SYTO (alive cells) IP (dead cells)
Biofilm
Specific
stainned
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
M. Martínez-Carmona, D. Lozano, M. Colilla, M. Vallet-Regí, Acta Biomater. 2018, 65, 393–404.
MC3T3-E1 HOS
Lectin-conjugated MSNs for targeted bone cancer treatment
Targeting to bacterial biofilm
Targeting to bacterial biofilm
Antimicrobial agent
Levofloxacin
Targeting agent
Lectin ConA
Nanoplatform
MSN
Nanoantibiotic
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
MSN-ConA
M. Martínez-Carmona, I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí (under preparatiom)
Aim #2:
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to bacteria biofilm
SATES
Toluen
Anhydre
conditions
ConA
EDC/ Sulfo-NHS
Surfactant
removal
NH4NO3 (10 mg/mL)
EtOH/H2O (95%)
Levofloxacin
Loading
EtOH
M. Martínez-Carmona, I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí (under preparatiom)
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
50 nm 50 nm50 nm
MSN MSNConAMSNSATES
Targeting to bacterial biofilm
0
10
20
30
40
50
60
70
80
90
100
0 50 100 150 200 250 300 350
Levofloxacinrelease(%)
T (h)
MSN
MSNConA
5001000150020002500300035004000
MSN
MSNConA
MSNSATES
NHbend
COOH
Amide
cm-1
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 20183
Targeting to bacterial biofilm
Microbiology assays:
CONFOCAL MICROSCOPE
5-20 μg/mL
90 min
Biofilm targeting
assays
E. coli
MSN MSN-ConA
5-10 μg/mL
E. coli, S.aureus
90 min
Effectiveness biofilm
assays
MSN@Levo MSN-ConA@Levo
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to bacterial biofilm
MSN-ConA 50ug/mL
MSN 10ug/mL MSN 50ug/mL
20µm
Biofilm polysaccharide matrix
Nanoparticles (MSN and MSNConA)
Alived bacteria
20µm
20µm
MSN-ConA 10ug/mL
20µm
Antimicrobial effect of MSN-ConA
MSN-ConA 10ug/mLMSN 10ug/mLBiofilm
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Biofilm polysaccharide matrix
Alived bacteria
Dead bacteria
Targeting to bacterial biofilm
20mm20mm20mm
Antimicrobial effect of MSN-ConA@Levo
MSN-ConA Levo 10ug/mLMSN-Levo 10ug/mLBiofilm
20mm20mm20mm
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to bacterial biofilm
levofloxacin
20 mm20 mm
Effective biofilm destruction with levofloxacin
loaded Lectin decorated-MSN
E. coli E. coli biofilm
MSNConA-L
1 h
Targeting to the bacterial biofilm
OH
OHSiO2
OH
OH
MSN-ConA-
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Multifunctional 3D implants
Use mesoporous materials
able to inhibit the bone
infection and to regenerate
new bone
Aim #3:
Robocasting
Atomic-scale
5 nm 5 nm
SiO2-P2O5-CaO
OH-
OH-OH-
OH-OH-
OH-
OH-
OH-
OH-
OH-
OH-
OH-
OH-OH-OH-
OH-
Si
P
Ca
O
Sol-gel glass Ordered mesoporous glass
Atomic-scale
50nm
Meso-scale
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
M. Vallet-Regí, Chem. Eur. J. 12 (2006) 5934–5943.
M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla. Phil. Trans. R. Soc. A 370 (2012) 1400–142.
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
GRIFMGLEVPVAVAN
MGLEVPVAVAN
5 mm
LEV-contained
MG
VAN-contained
PVA solution
+
Gelatin-Glu
solution
with RIF
5 mm
Slurry
Robocasting
3D
scaffold
Dip-coated
50nm50nm
-CH2-CH-CH2-CH-
OH
-
OH
-
Polyvinyl alcohol (PVA)
Vancomycin (VAN)
50 nm
Polymer PVA part
Mesostructured bioceramic part
+
Nanocomposite MGHA material
Levofloxacin (LEV)
+
Antibiofilm agent: Rifampicin (RIF)
External Gelatin-Glu coating
Drug compartmented
3D scaffold
R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
50nm50nm
50nm
R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
1 h
In vitro assays in SBF: Degradability and Bioactivity
R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2 Rifampin
0 30 60 90 120 150 180
0.0
0.2
0.4
0.6
0.8
1.0
Levofloxacin
0 10 20 30
0.0
0.1
0.2
0.3
Time (hours)
Vancomycin
Multi-therapy: Drug release
R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
M.Cicuéndez, J.C. Doadrio, A. Hernández, M.T. Portolés, I. Izquierdo-Barba, M. Vallet-Regí.
Acta Biomaterialia 65 (2018) 450–461
0
5
10
15
Rifampicin
Levofloxacin
Vancomycin
1 6 24 t / h
µg·mg-1
Time (hours)
pH 5.5
pH 6.7
pH 7.4
0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Qt/Q0
pH-sensitive release
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
VL
1h
1h
24h
24h
GRIFMGLEVPVAVAN
MGLEVPVAVAN
SA Bacteria biofilm (initial)
Alived bacteria
Extracellular polysaccharide
matrix biofilm
Dead bacteria
10 mm 10 mm
10 mm 10 mm
20 mm
R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
Antimicrobial effect: importance of multitherapy
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
10 mm
20 mm
Osteoregeneration processes (preosteoblast assays)
R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
0
2
4
GRIFMGLEVPVAVAN
U/LLDH
LDH 1d
Control
0.0
0.1
0.2
0.3
0.4
0.5
MitochondrialActivity
MTT 7d
0
2
4
6
U/LALP
ALP 7d
GRIFMGLEVPVAVANControl
GRIFMGLEVPVAVANControl
*
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Alived bacteria
Surface
Dead bacteria Biofilm matrix
Surface Surface Surface
Multidrug
3D scaffold
Vancomycin Osteoblast
Bioactive layer
Bone Tissue
regeneration
Levofloxacin
Rifampin
Preliminary results
Hyperthermia in biofilm treatment
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Preliminary
assays:
NIR
radiation
AuNR
AuNR@MSN
50nm
0.5 0.6 0.7 1.0
0
5
10
15
20
25
30
50 mg/mL
75 mg/mL
T(ºC)
Nominal Power (W/cm2
)
T
Hyperthermia
20 mm 20 mm
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
 New nanoantibiotics based on mesoporous silica nanoparticles
(MSNs) with targeting agents and loaded with antibiotics have
been developed.
 New 3D multifunctional implants which combine the merits of
osseous regeneration and local multidrug have been developed.
 These nanodevices are envisioned as a promising alternative to
conventional infection treatments by improving the antimicrobial
efficacy and reducing side effects.
Conclusions
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Funding:
European Research Council (ERC-2015-AdG). Advanced Grant Verdi-694160
Ministerio de Economía y Competitividad (MINECO), Spain, through projects
MAT2012-35556, MAT2015-64831-R
Organizing committee:
Acknowledgements
Thank you very much
Grupo de Investigación en Biomateriales Inteligentes (GIBI)
Smart Biomaterials Research Group
https://www.ucm.es/valletregigroup/
polyValent
mEsopoRous
nanosystem for
bone DIseases
VERDI
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Targeting to Gram-negative bacteria
B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe,
I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia
68 (2018) 261-271.
52.5
C4,C5
21.2
C2
*
#
MSN-DAMO
10.7
C1
38.6
C3
47.1
C4,C5
10090 80 70 60 50 40 30 20 10 0 -10
MSN
#
*
d (ppm)
*
C
1
C
2
C
3
C
4
C
5
Si N
NH3
H
O
O
O
#
#
#
*
13C CP MAS NMR
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Hypothesis
Use MSNs with targeting
properties to release
antibiotics in the
environment of the bacteria
that cause the infection.
G. Domenico. The procession of the trojan horse
into Troy, 1760
Targeting bacteria
20 mm
Targeting biofilm
Source: National Healthcare Safety Network (NHSN) data base (March od 2018)
2015
2,400,000
Risk
0.5—2%
Infected
96,000
Infection of orthopedic implants
Cost 1
50,000 $
Total Cost
4,8 B$
Risk Groups
Diabetes mellitus
Previous skin infection
Rheumatoid arthritis
Obesity/Malnutrition
Urinary infection
5%
2020
4,800,000
Hip prosthesis
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
MSN-ConA 50ug/mL MSN-ConA 10ug/mL MSN-ConA 5ug/mL
Targeting to bacterial biofilm
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
Biofilm polysaccharide matrix
Nanoparticles (MSN and MSNConA)
Alived bacteria
M. Martínez-Carmona, I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí (under preparatiom)
Multifunctional 3D implants
International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
GRIFMGLEVPVAVAN
Extracellular polysaccharide matrix
biofilm
Dead bacteriaLive bacteria
EC Bacteria biofilm
(initial)
1h 3h 24h
20 mm 20 mm 20 mm 20 mm
1h
24h
GRIFMGLEVPVAVANMGLEVPVAVAN
SA biofilm
log[CFU]
0
5
10
15
20
25
0
5
10
15
20
25
6h
1h
24h6h
*
GRIFMGLEVPVAVANMGLEVPVAVAN
EC biofilm
*
log[CFU]
Gram-positive Gram-negative
1h
24h
6h
1h
24h6h

More Related Content

What's hot

Listado de proyectos Programa INPhINIT-CSIC
Listado de proyectos Programa INPhINIT-CSICListado de proyectos Programa INPhINIT-CSIC
Listado de proyectos Programa INPhINIT-CSIC
Departamento de Posgrado y Especialización (DPE)/CSIC
 
Korte_S
Korte_SKorte_S
Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.
Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.
Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.
Marios Stylianou
 
Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...
Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...
Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...
AI Publications
 
Project Report on Monoclonal antibodies By Vanshika
Project Report on Monoclonal antibodies By VanshikaProject Report on Monoclonal antibodies By Vanshika
Project Report on Monoclonal antibodies By Vanshika
VanshikaBeniwal
 
Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...
Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...
Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...
John Blue
 
The environmental dimensions of antibiotic resistance
The environmental dimensions of antibiotic resistanceThe environmental dimensions of antibiotic resistance
The environmental dimensions of antibiotic resistance
SIANI
 
Emergence of antibiotic resistance in captive wildlife
Emergence of antibiotic resistance in captive wildlifeEmergence of antibiotic resistance in captive wildlife
Emergence of antibiotic resistance in captive wildlife
Bhoj Raj Singh
 

What's hot (8)

Listado de proyectos Programa INPhINIT-CSIC
Listado de proyectos Programa INPhINIT-CSICListado de proyectos Programa INPhINIT-CSIC
Listado de proyectos Programa INPhINIT-CSIC
 
Korte_S
Korte_SKorte_S
Korte_S
 
Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.
Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.
Marios Stylianou_Paper III_Antifungal application of nonantifungal drugs.
 
Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...
Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...
Clinical Manifestations of Plasmodium bergheiANKA Infection in Juvenile Mice:...
 
Project Report on Monoclonal antibodies By Vanshika
Project Report on Monoclonal antibodies By VanshikaProject Report on Monoclonal antibodies By Vanshika
Project Report on Monoclonal antibodies By Vanshika
 
Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...
Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...
Dr. Kurt Stevenson - Antimicrobial Resistance Surveillance and Management in ...
 
The environmental dimensions of antibiotic resistance
The environmental dimensions of antibiotic resistanceThe environmental dimensions of antibiotic resistance
The environmental dimensions of antibiotic resistance
 
Emergence of antibiotic resistance in captive wildlife
Emergence of antibiotic resistance in captive wildlifeEmergence of antibiotic resistance in captive wildlife
Emergence of antibiotic resistance in captive wildlife
 

Similar to Isabel Izquierdo Barba Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN).

ENMM Paper
ENMM PaperENMM Paper
ENMM Paper
Dr. Harish Handral
 
A Research on Genetic Engineering in Different Fields
A Research on Genetic Engineering in Different FieldsA Research on Genetic Engineering in Different Fields
A Research on Genetic Engineering in Different Fields
Associate Professor in VSB Coimbatore
 
A Research On Genetic Engineering In Different Fields
A Research On Genetic Engineering In Different FieldsA Research On Genetic Engineering In Different Fields
A Research On Genetic Engineering In Different Fields
Kayla Smith
 
CV Ranghieri June 2016
CV Ranghieri June 2016CV Ranghieri June 2016
CV Ranghieri June 2016
massimo ranghieri
 
Future trends in synthetic biology
Future trends in synthetic biology Future trends in synthetic biology
Future trends in synthetic biology
Dinithi De Silva
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
shaik mahboob
 
Nano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A Review
Nano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A ReviewNano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A Review
Nano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A Review
inventionjournals
 
Role of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRole of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease Management
Ravikumar Vaniya
 
Ethics Of Nanotechnology Essay
Ethics Of Nanotechnology EssayEthics Of Nanotechnology Essay
TOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICAL
TOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICALTOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICAL
TOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICAL
Mohd Asad Farooqui
 
Prediction of antitubercular_peptides_from_sequenc
Prediction of antitubercular_peptides_from_sequencPrediction of antitubercular_peptides_from_sequenc
Prediction of antitubercular_peptides_from_sequenc
ShahidAkbar22
 
CV.1
CV.1CV.1
Application of nanotechnology in agriculture
Application of  nanotechnology in agriculture Application of  nanotechnology in agriculture
Application of nanotechnology in agriculture
Amit Bishnoi
 
Gene therapy conference 2020
Gene therapy conference 2020Gene therapy conference 2020
Gene therapy conference 2020
DelveInsight Business Research
 
BenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePosterBenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePoster
Benjamin Reynard
 
Life After the Golden Age of Antibacterials
Life After the Golden Age of AntibacterialsLife After the Golden Age of Antibacterials
Life After the Golden Age of Antibacterials
Ourlad Alzeus Tantengco
 
ALABI'S UPDATED SLIDES.pptx
ALABI'S UPDATED  SLIDES.pptxALABI'S UPDATED  SLIDES.pptx
ALABI'S UPDATED SLIDES.pptx
AYODELEADESOJI
 
B26007011
B26007011B26007011
B26007011
IJERA Editor
 
Essence of Nanosafety
Essence of NanosafetyEssence of Nanosafety
Essence of Nanosafety
ijtsrd
 
Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...
sunilsuriya1
 

Similar to Isabel Izquierdo Barba Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). (20)

ENMM Paper
ENMM PaperENMM Paper
ENMM Paper
 
A Research on Genetic Engineering in Different Fields
A Research on Genetic Engineering in Different FieldsA Research on Genetic Engineering in Different Fields
A Research on Genetic Engineering in Different Fields
 
A Research On Genetic Engineering In Different Fields
A Research On Genetic Engineering In Different FieldsA Research On Genetic Engineering In Different Fields
A Research On Genetic Engineering In Different Fields
 
CV Ranghieri June 2016
CV Ranghieri June 2016CV Ranghieri June 2016
CV Ranghieri June 2016
 
Future trends in synthetic biology
Future trends in synthetic biology Future trends in synthetic biology
Future trends in synthetic biology
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Nano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A Review
Nano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A ReviewNano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A Review
Nano-Biomaterials and Their Biocompatibility in Restorative Dentistry: A Review
 
Role of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRole of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease Management
 
Ethics Of Nanotechnology Essay
Ethics Of Nanotechnology EssayEthics Of Nanotechnology Essay
Ethics Of Nanotechnology Essay
 
TOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICAL
TOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICALTOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICAL
TOXICITY AND SAFETY RELATED TO NANOPHARMACEUTICAL
 
Prediction of antitubercular_peptides_from_sequenc
Prediction of antitubercular_peptides_from_sequencPrediction of antitubercular_peptides_from_sequenc
Prediction of antitubercular_peptides_from_sequenc
 
CV.1
CV.1CV.1
CV.1
 
Application of nanotechnology in agriculture
Application of  nanotechnology in agriculture Application of  nanotechnology in agriculture
Application of nanotechnology in agriculture
 
Gene therapy conference 2020
Gene therapy conference 2020Gene therapy conference 2020
Gene therapy conference 2020
 
BenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePosterBenReynardNeonicotinoidsCapstonePoster
BenReynardNeonicotinoidsCapstonePoster
 
Life After the Golden Age of Antibacterials
Life After the Golden Age of AntibacterialsLife After the Golden Age of Antibacterials
Life After the Golden Age of Antibacterials
 
ALABI'S UPDATED SLIDES.pptx
ALABI'S UPDATED  SLIDES.pptxALABI'S UPDATED  SLIDES.pptx
ALABI'S UPDATED SLIDES.pptx
 
B26007011
B26007011B26007011
B26007011
 
Essence of Nanosafety
Essence of NanosafetyEssence of Nanosafety
Essence of Nanosafety
 
Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...
 

More from Fundación Ramón Areces

Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Fundación Ramón Areces
 
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
Fundación Ramón Areces
 
Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London. Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London.
Fundación Ramón Areces
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Fundación Ramón Areces
 
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Fundación Ramón Areces
 
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI). Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Fundación Ramón Areces
 
Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.
Fundación Ramón Areces
 
Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School. Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School.
Fundación Ramón Areces
 
Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School. Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School.
Fundación Ramón Areces
 
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
Fundación Ramón Areces
 
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
Fundación Ramón Areces
 
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Fundación Ramón Areces
 
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research. Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Fundación Ramón Areces
 
Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster. Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster.
Fundación Ramón Areces
 
Mercedes Ayuso - Universitat de Barcelona.
Mercedes Ayuso -  Universitat de Barcelona. Mercedes Ayuso -  Universitat de Barcelona.
Mercedes Ayuso - Universitat de Barcelona.
Fundación Ramón Areces
 
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics. Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Fundación Ramón Areces
 
Julia Campa - The Open University.
Julia Campa - The Open University. Julia Campa - The Open University.
Julia Campa - The Open University.
Fundación Ramón Areces
 
Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico. Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico.
Fundación Ramón Areces
 
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Fundación Ramón Areces
 
Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven. Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven.
Fundación Ramón Areces
 

More from Fundación Ramón Areces (20)

Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
Jordi Torren - Coordinador del proyecto ESVAC. Agencia Europea de Medicamento...
 
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...Dominique L. Monnet  Director del programa ARHAI (Antimicrobial Resistance an...
Dominique L. Monnet Director del programa ARHAI (Antimicrobial Resistance an...
 
Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London. Antonio Cabrales -University College of London.
Antonio Cabrales -University College of London.
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
 
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
Elena Bascones - Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Es...
 
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI). Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
Jonathan D. Ostry - Fondo Monetario Internacional (FMI).
 
Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.Martín Uribe - Universidad de Columbia.
Martín Uribe - Universidad de Columbia.
 
Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School. Thomas S. Robertson - The Wharton School.
Thomas S. Robertson - The Wharton School.
 
Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School. Diana Robertson - The Wharton School.
Diana Robertson - The Wharton School.
 
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...Juan Carlos López-Gutiérrez  - Unidad de Anomalías Vasculares, Hospital Unive...
Juan Carlos López-Gutiérrez - Unidad de Anomalías Vasculares, Hospital Unive...
 
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM).  I...
Víctor Martínez-Glez. - Instituto de Genética Médica y Molecular (INGEMM). I...
 
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
Rudolf Happle - Dermatología, University of Freiburg Medical Center, Freiburg...
 
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research. Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
Rafael Doménech - Responsable de Análisis Macroeconómico, BBVA Research.
 
Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster. Diego Valero - Presidente del Grupo Novaster.
Diego Valero - Presidente del Grupo Novaster.
 
Mercedes Ayuso - Universitat de Barcelona.
Mercedes Ayuso -  Universitat de Barcelona. Mercedes Ayuso -  Universitat de Barcelona.
Mercedes Ayuso - Universitat de Barcelona.
 
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics. Nicholas Barr - Profesor de Economía Pública, London School of Economics.
Nicholas Barr - Profesor de Economía Pública, London School of Economics.
 
Julia Campa - The Open University.
Julia Campa - The Open University. Julia Campa - The Open University.
Julia Campa - The Open University.
 
Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico. Juan Manuel Sarasua - Comunicador y periodista científico.
Juan Manuel Sarasua - Comunicador y periodista científico.
 
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
Marta Olivares - Investigadora Postdoctoral en Université catholique de Louva...
 
Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven. Frederic Lluis - Investigador principal en KU Leuven.
Frederic Lluis - Investigador principal en KU Leuven.
 

Recently uploaded

Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
PirithiRaju
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
frank0071
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR
 
Male reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptxMale reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptx
suyashempire
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
vluwdy49
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
Ritik83251
 
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptxBIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
goluk9330
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Sérgio Sacani
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
yourprojectpartner05
 
Introduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptxIntroduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptx
QusayMaghayerh
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
Leonel Morgado
 
Signatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coastsSignatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coasts
Sérgio Sacani
 
Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
Frédéric Baudron
 
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
eitps1506
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptxTOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
shubhijain836
 

Recently uploaded (20)

Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
 
Male reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptxMale reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptx
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
Alternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart AgricultureAlternate Wetting and Drying - Climate Smart Agriculture
Alternate Wetting and Drying - Climate Smart Agriculture
 
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
在线办理(salfor毕业证书)索尔福德大学毕业证毕业完成信一模一样
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
 
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptxBIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
 
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...Discovery of An Apparent Red, High-Velocity Type Ia Supernova at  𝐳 = 2.9  wi...
Discovery of An Apparent Red, High-Velocity Type Ia Supernova at 𝐳 = 2.9 wi...
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
 
Introduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptxIntroduction_Ch_01_Biotech Biotechnology course .pptx
Introduction_Ch_01_Biotech Biotechnology course .pptx
 
Immersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths ForwardImmersive Learning That Works: Research Grounding and Paths Forward
Immersive Learning That Works: Research Grounding and Paths Forward
 
Signatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coastsSignatures of wave erosion in Titan’s coasts
Signatures of wave erosion in Titan’s coasts
 
Farming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptxFarming systems analysis: what have we learnt?.pptx
Farming systems analysis: what have we learnt?.pptx
 
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptxTOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
TOPIC OF DISCUSSION: CENTRIFUGATION SLIDESHARE.pptx
 

Isabel Izquierdo Barba Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN).

  • 1. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Dra. Isabel Izquierdo-Barba Smart Bimaterials Research Group Dpto. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, España. ibarba@ucm.es VERDI polyValent mEsopoRous nanosystem for bone DIseases Recent advances in mesoporous materials for management of bone infection
  • 2. Infection !! Evolution in modern aseptic techniques International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
  • 3. Current therapies Antibiotics Replacements Amputation Death (7%) International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
  • 4. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Infection Persistence Antimicrobial Resistance (AMR) Development and maduration Detachment Antibiotic Immune system Free-Bacteria (Planktonic state) Substrate Biofilm Formation Adhesion Monolayer Proliferation Microcolony D. Campoccia, L. Montanaro, C.R. Arciola, Biomaterials 27 (2006) 2331–2339. Mature Biofilm Super Bug
  • 5. New Post antibiotic era: The next generation challenge? World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014 (WHO, 2014). G. Taubes, The bacteria fight back, Science 321 (2008) 356–361
  • 6. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Drug resistant deadlier than cancer by 2050 World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014 (WHO, 2014). G. Taubes, The bacteria fight back, Science 321 (2008) 356–361
  • 7. A ten point plan for beating drug resistant 1. A Global public awareness 2. Improve sanitation and prevent the spread of infection 3. Reduce unnecessary use of antimicrobials in agriculture 4. Improve global surveillance of drug resistance and antimicrobial consumption 5. Promote new rapid diagnostics 6. Promote use of vaccines 7. Improve the number, pay and recognition of people working in infection diseases 8. Increase the supply of new antimicrobial effective against drug-resistant bugs 9. A global innovation fund for early stage and non commercial R&D 10. Better incentives to promote investment for new drugs and improving existing ones The Review on Antimicrobial Resistance Chaired by Jim O’Neill December 2014 8. Increase the supply of new antimicrobial effective against drug-resistant bugs 9. A global innovation fund for early stage and non commercial R&D 10. Better incentives to promote investment for new drugs and improving existing ones
  • 8. Now WHAT TO DO? Nanomedicine: The future of infection treatment A.J. Huh, Y.J. Kwon, J. Control. Release 156 (2011) 128–145. L. Zhang, D. Pornpattananangku, C.M.J. Hu, C.M. Huang, Curr. Med. Chem. 17 (2010) 585–594 Drug delivery systems  Selectively transport antimicrobial agents (target site)  Controlled antimicrobial fashion  Improve antimicrobial efficacy  Safety and Biocompatibility  Repair damaged tissues International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
  • 9. Numberofpublications 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 Publication Year “Mesoporous + silica + drug + delivery” ISI Web of Science (7.107 publications) 1300 2018 International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 M. Vallet-Regí, F. Balas and D. Arcos Angew Chem Int Ed 46 (2007) 7548-7558. M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, M. Manzano, Molecules, 23 (2018) 47.
  • 10. 50 nm International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 MSN Stimuli- responsive drug delivery Targeting Biomolecules delivery Gene therapy Intracelullar labeling Diagnostic imaging Fluorescent molecule MRI agent Drugs Proteins Photosensitizer Photodynamic therapy Nucleid acids Dendritic polymer Responsive blocking caps Mesoporous Silica Materials Stimuli-responsive local drug delivery Local Biomolecules delivery Proteins Bone tissue regeneration 1 cm Local drug delivery Drugs Growth factors, peptides 3D scaffolds Responsive blocking caps Mesoporous Silica Nanoparticles MSM 50 nm M. Manzano, M. Colilla, M. Vallet-Regí Expert Opin Drug Deliv 6 (2009) 1-18. M. Vallet-Regí, L. Ruiz-González, I. Izquierdo-Barba, JM. González-Calbet J Mater Chem 16 (2006) 26-31. M. Vallet-Regí, M. Colilla, I. Izquierdo-Barba, M. Manzano, Molecules, 23 (2018) 47.
  • 11. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Hypothesis Use MSNs with targeting properties to release antibiotics in the environment of the bacteria that cause the infection. G. Domenico. The procession of the trojan horse into Troy, 1760 Targeting bacteria 20 mm Targeting biofilm
  • 12. Targeting to Gram-negative bacteria Gram (-) - - - - - - - - - - - - - Antimicrobial agent Levofloxacin Targeting agent Polycationic dendrimer (G3) +δ N N N N N NH2 NH2 NH2 NN N H2N H2N H2N NN N H2N H2N H2N H2N N N N NH2 NH2 NH2 NH2 NH2 N C NSi O O O H H O Nanoplatform MSN Nanoantibiotic +δ +δ +δ +δ +δ +δ +δ +δ +δ International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271. Aim #1:
  • 13. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 CH2Cl2 , N2 , RT N N N N N NH2 NH2 NH2 NN N H2N H2N H2N NN N H2N H2N H2N H2N N N N NH2 NH2 NH2 NH2 NH2 N C NSi O O O H H O G3 (NH2)15 MSN-G3 Targeting to Gram-negative bacteria Dry toluene N2 , 110 ºC, 16 h 1) 2) NH4NO3 / EtOH , 60 ºC (EtO)3Si N NH2 H Si N NH2 O O O H MSN-DAMO Si N NH2 O O O H Synthesis B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271.
  • 14. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 50 nm MSN 1 2 3 4 5 6 Intensity(a.u.) 2q (degree) 10 11 20 MSN MSN-DAMO MSN-G3 MSN-DAMO 50 nm MSN-G3 50 nm Targeting to Gram-negative bacteria B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271.
  • 15. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to Gram-negative bacteria B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271. D. Pedraza, J. Díez, I. Izquierdo, M. Colilla, M. Vallet-Regí, Biomed. Glasses. 4 (2018) 1-12 . z-potential/TGA Sample Potencial ζ (mV) F (mmol/g) MSN -36.4 - MSN-DAMO 37.4 1.86 MSN-G3 31.8 0.106 -20 -60 -100 -140 -180 -111.2 -102.2 Q4 Q3 MSN Q2 -95.4 -58.7 -68.1T2 T3 -94.7 -102.4 -111.8 Q2 Q3 Q4 MSN-DAMO d (ppm) MSN-G3 Q4 -112.4 Q3 -102.1 -92.8 Q2 29Si MAS NMR MSN-G3 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 d (ppm) N N N N N NH2 NH2 NH2 NN N H2N H2N H2N NN N H2N H2N H2N H2N N N N NH2 NH2 NH2 NH2 NH2 N C NSi O O O H H O # # 1H HRMAS NMR
  • 16. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 W/W0 Time (h) MSN-L MSN-DAMO-LMSN-G3-L MSN-L: W/W0 = 0.46(1-e-0.021t)0.56 ; R2 = 0.994 MSN-DAMO-L: W/W0 = 0.98(1-e-0.051t)0.68 ; R2 = 0.9997 MSN-G3-L: W/W0 = 0.99(1-e-0.239t)1.0 ; R2 = 0.995 3 Targeting to Gram-negative bacteria B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271. D. Pedraza, J. Díez, I. Izquierdo, M. Colilla, M. Vallet-Regí, Biomed. Glasses. 4 (2018) 1-12 . Levofloxacin Release
  • 17. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 20183 Targeting to Gram-negative bacteria B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271. D. Pedraza, J. Díez, I. Izquierdo, M. Colilla, M. Vallet-Regí, Biomed. Glasses. 4 (2018) 1-12 . Microbiology assays: E. coli 5 - 50 μg/mL 5-50 μg/mL 90 min Bacteria targeting assays E. coli 90 min Effectiveness biofilm assays CONFOCAL MICROSCOPE
  • 18. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 E. coli CONTROL 3 mm MSN 3 mm MSN-G3 3 mm MSN-DAMO 3 mm Targeting to Gram-negative bacteria
  • 19. MSN-G3 (5 mg/mL) 3 mm 3 mm MSN-G3 (10 mg/mL) MSN-G3 (20 mg/mL) International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to Gram-negative bacteria B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271.
  • 20. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 MSN-G3-L 20 mm MSN-DAMO-L 20 mm E. coli CONTROL 20 mm MSN-L 20 mm Targeting to Gram-negative bacteria Antimicrobial efefcts (biofilm):
  • 21. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to Gram-negative bacteria levofloxacin 20 mm20 mm3 mm Effective biofilm destruction with levofloxacin loaded dendrimer-decorated MSNs E. coli E. coli biofilm MSN-G3-L 1 h Targeting to Gram-negative bacteria N N N N N NH2 NH2 NH2 NN N H2N H2N H2N NN N H2N H2N H2N H2N N N N NH2 NH2 NH2 NH2 NH2 N C N H H O Si O O O MSN-G3
  • 22. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to bacterial biofilm 10 mm Ti6Al4V Nano-Ti6Al4V extracellular matrix S. Wagner, D.Hauck, M. Hoffmann, R. Sommer, I. Joachim, R.Mgller, A.Imberty, A. Varrot, A. Titz. Angew.Chem. Int. Ed. 2017, 56, 16559 –16564 M. Mlouka, T. Cousseau, P. Di Martino, AIMS Molecular Science, 3 (2016) 338-356. Lectins (Glycoconjugates) High Affinitty Polysaccharides DAPI (germs) FITC-Lentins TRITC-Lentins Cacofluor (matrix) SYTO (alive cells) IP (dead cells) Biofilm Specific stainned
  • 23. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 M. Martínez-Carmona, D. Lozano, M. Colilla, M. Vallet-Regí, Acta Biomater. 2018, 65, 393–404. MC3T3-E1 HOS Lectin-conjugated MSNs for targeted bone cancer treatment Targeting to bacterial biofilm
  • 24. Targeting to bacterial biofilm Antimicrobial agent Levofloxacin Targeting agent Lectin ConA Nanoplatform MSN Nanoantibiotic International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 MSN-ConA M. Martínez-Carmona, I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí (under preparatiom) Aim #2:
  • 25. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to bacteria biofilm SATES Toluen Anhydre conditions ConA EDC/ Sulfo-NHS Surfactant removal NH4NO3 (10 mg/mL) EtOH/H2O (95%) Levofloxacin Loading EtOH M. Martínez-Carmona, I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí (under preparatiom)
  • 26. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 50 nm 50 nm50 nm MSN MSNConAMSNSATES Targeting to bacterial biofilm 0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200 250 300 350 Levofloxacinrelease(%) T (h) MSN MSNConA 5001000150020002500300035004000 MSN MSNConA MSNSATES NHbend COOH Amide cm-1
  • 27. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 20183 Targeting to bacterial biofilm Microbiology assays: CONFOCAL MICROSCOPE 5-20 μg/mL 90 min Biofilm targeting assays E. coli MSN MSN-ConA 5-10 μg/mL E. coli, S.aureus 90 min Effectiveness biofilm assays MSN@Levo MSN-ConA@Levo
  • 28. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to bacterial biofilm MSN-ConA 50ug/mL MSN 10ug/mL MSN 50ug/mL 20µm Biofilm polysaccharide matrix Nanoparticles (MSN and MSNConA) Alived bacteria 20µm 20µm MSN-ConA 10ug/mL 20µm
  • 29. Antimicrobial effect of MSN-ConA MSN-ConA 10ug/mLMSN 10ug/mLBiofilm International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Biofilm polysaccharide matrix Alived bacteria Dead bacteria Targeting to bacterial biofilm 20mm20mm20mm Antimicrobial effect of MSN-ConA@Levo MSN-ConA Levo 10ug/mLMSN-Levo 10ug/mLBiofilm 20mm20mm20mm
  • 30. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to bacterial biofilm levofloxacin 20 mm20 mm Effective biofilm destruction with levofloxacin loaded Lectin decorated-MSN E. coli E. coli biofilm MSNConA-L 1 h Targeting to the bacterial biofilm OH OHSiO2 OH OH MSN-ConA-
  • 31. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Multifunctional 3D implants Use mesoporous materials able to inhibit the bone infection and to regenerate new bone Aim #3: Robocasting
  • 32. Atomic-scale 5 nm 5 nm SiO2-P2O5-CaO OH- OH-OH- OH-OH- OH- OH- OH- OH- OH- OH- OH- OH-OH-OH- OH- Si P Ca O Sol-gel glass Ordered mesoporous glass Atomic-scale 50nm Meso-scale Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 M. Vallet-Regí, Chem. Eur. J. 12 (2006) 5934–5943. M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla. Phil. Trans. R. Soc. A 370 (2012) 1400–142.
  • 33. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 GRIFMGLEVPVAVAN MGLEVPVAVAN 5 mm LEV-contained MG VAN-contained PVA solution + Gelatin-Glu solution with RIF 5 mm Slurry Robocasting 3D scaffold Dip-coated 50nm50nm -CH2-CH-CH2-CH- OH - OH - Polyvinyl alcohol (PVA) Vancomycin (VAN) 50 nm Polymer PVA part Mesostructured bioceramic part + Nanocomposite MGHA material Levofloxacin (LEV) + Antibiofilm agent: Rifampicin (RIF) External Gelatin-Glu coating Drug compartmented 3D scaffold R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
  • 34. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 50nm50nm 50nm R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
  • 35. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
  • 36. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 1 h In vitro assays in SBF: Degradability and Bioactivity R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126
  • 37. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Rifampin 0 30 60 90 120 150 180 0.0 0.2 0.4 0.6 0.8 1.0 Levofloxacin 0 10 20 30 0.0 0.1 0.2 0.3 Time (hours) Vancomycin Multi-therapy: Drug release R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126 M.Cicuéndez, J.C. Doadrio, A. Hernández, M.T. Portolés, I. Izquierdo-Barba, M. Vallet-Regí. Acta Biomaterialia 65 (2018) 450–461 0 5 10 15 Rifampicin Levofloxacin Vancomycin 1 6 24 t / h µg·mg-1 Time (hours) pH 5.5 pH 6.7 pH 7.4 0 50 100 150 200 250 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Qt/Q0 pH-sensitive release
  • 38. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 VL 1h 1h 24h 24h GRIFMGLEVPVAVAN MGLEVPVAVAN SA Bacteria biofilm (initial) Alived bacteria Extracellular polysaccharide matrix biofilm Dead bacteria 10 mm 10 mm 10 mm 10 mm 20 mm R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126 Antimicrobial effect: importance of multitherapy
  • 39. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 10 mm 20 mm Osteoregeneration processes (preosteoblast assays) R. García-Alvarez, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 49 (2017) 113–126 0 2 4 GRIFMGLEVPVAVAN U/LLDH LDH 1d Control 0.0 0.1 0.2 0.3 0.4 0.5 MitochondrialActivity MTT 7d 0 2 4 6 U/LALP ALP 7d GRIFMGLEVPVAVANControl GRIFMGLEVPVAVANControl *
  • 40. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Alived bacteria Surface Dead bacteria Biofilm matrix Surface Surface Surface Multidrug 3D scaffold Vancomycin Osteoblast Bioactive layer Bone Tissue regeneration Levofloxacin Rifampin
  • 41. Preliminary results Hyperthermia in biofilm treatment International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Preliminary assays: NIR radiation AuNR AuNR@MSN 50nm 0.5 0.6 0.7 1.0 0 5 10 15 20 25 30 50 mg/mL 75 mg/mL T(ºC) Nominal Power (W/cm2 ) T Hyperthermia 20 mm 20 mm
  • 42. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018  New nanoantibiotics based on mesoporous silica nanoparticles (MSNs) with targeting agents and loaded with antibiotics have been developed.  New 3D multifunctional implants which combine the merits of osseous regeneration and local multidrug have been developed.  These nanodevices are envisioned as a promising alternative to conventional infection treatments by improving the antimicrobial efficacy and reducing side effects. Conclusions
  • 43. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Funding: European Research Council (ERC-2015-AdG). Advanced Grant Verdi-694160 Ministerio de Economía y Competitividad (MINECO), Spain, through projects MAT2012-35556, MAT2015-64831-R Organizing committee: Acknowledgements
  • 44. Thank you very much Grupo de Investigación en Biomateriales Inteligentes (GIBI) Smart Biomaterials Research Group https://www.ucm.es/valletregigroup/ polyValent mEsopoRous nanosystem for bone DIseases VERDI
  • 45.
  • 46. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Targeting to Gram-negative bacteria B. González, M. Colilla, J. Diez, D. Pedraza, M. Guembe, I. Izquierdo-Barba, M. Vallet-Regí, Acta Biomaterialia 68 (2018) 261-271. 52.5 C4,C5 21.2 C2 * # MSN-DAMO 10.7 C1 38.6 C3 47.1 C4,C5 10090 80 70 60 50 40 30 20 10 0 -10 MSN # * d (ppm) * C 1 C 2 C 3 C 4 C 5 Si N NH3 H O O O # # # * 13C CP MAS NMR
  • 47. International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Hypothesis Use MSNs with targeting properties to release antibiotics in the environment of the bacteria that cause the infection. G. Domenico. The procession of the trojan horse into Troy, 1760 Targeting bacteria 20 mm Targeting biofilm
  • 48. Source: National Healthcare Safety Network (NHSN) data base (March od 2018) 2015 2,400,000 Risk 0.5—2% Infected 96,000 Infection of orthopedic implants Cost 1 50,000 $ Total Cost 4,8 B$ Risk Groups Diabetes mellitus Previous skin infection Rheumatoid arthritis Obesity/Malnutrition Urinary infection 5% 2020 4,800,000 Hip prosthesis International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018
  • 49. MSN-ConA 50ug/mL MSN-ConA 10ug/mL MSN-ConA 5ug/mL Targeting to bacterial biofilm International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 Biofilm polysaccharide matrix Nanoparticles (MSN and MSNConA) Alived bacteria M. Martínez-Carmona, I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí (under preparatiom)
  • 50. Multifunctional 3D implants International Symposium: Mesoporous Materials: From 1991 to 2018 Madrid, April 10 and 11, 2018 GRIFMGLEVPVAVAN Extracellular polysaccharide matrix biofilm Dead bacteriaLive bacteria EC Bacteria biofilm (initial) 1h 3h 24h 20 mm 20 mm 20 mm 20 mm 1h 24h GRIFMGLEVPVAVANMGLEVPVAVAN SA biofilm log[CFU] 0 5 10 15 20 25 0 5 10 15 20 25 6h 1h 24h6h * GRIFMGLEVPVAVANMGLEVPVAVAN EC biofilm * log[CFU] Gram-positive Gram-negative 1h 24h 6h 1h 24h6h

Editor's Notes

  1. Good afternoon Ladies and Gentleman. First of all, I would like to thank Areces Fundation and especially Professor Vallet-Regí to invite me to give this talking. I am delighted for this opportunity. It is a honor for me, as well, to be here and share panel with all these prestigious Scientifics in the mesoporous materials field. Today I will talking about our recent researches concerning the infection treatment by mesoporous materials.
  2. Despite of modern standard asepsis protocols and peri-operative antibiotics prophylaxis …. The infection associated to orthopedic implants still represents one of the most serious and devastating complications.
  3. In general, after infection diagnosis; it is necessary prolonged systemic treatment with different combinations of antibiotics and long periods of hospitalization. This kind of treatment provoke high side effect and antibiotic resistances. In most cases it is necessary a second replacement. If the bacteria infection is persistent it is necessary an amputation of the member and the in even in the 7% the dead is produced.
  4. This infection persistance is due to two main factors: The formation of biofilm. It is very well know that once bacteria attach to the implant surface, rapidly the biofilm is formed and the antimicrobial and antibiotics therapies are not very effective. The antimicrobial resistance, and apparition of denoted superbugs where an antibiotic is ineffective.
  5. Even it is talking about a new emergence post antibiotic era in which the antimicrobial treatment will be useless. This a very serious problem with important social and economical implications.
  6. Jim O Neel, one of the best world's macroeconomists warns governments that the drug resistant will be deadlier than cancer by 2050.
  7. And he recommends ten point plan for beating drug resistant, in which the last three points are addressed to increase and foment the research in the development of new antimicrobial agent more effective that current therapies.
  8. Now, what to do ??? Probably the answer it is in the Nanomedice which offers the possibility for designing drug delivery systems ….
  9. Mesoporous silica materials have received great attention by the biomedical scientific community, since they were proposed for the first time as drug delivery systems by Prof. Vallet-Regí in 2001.
  10. In this scenario we have two actors: Mesoporous materials. That Initially, they were purposed as bioceramics for local drug delivery and bone tissue regenerations due to their surface characteristics, such as biocompatibility and bioactivity, and their capability to load and release in a controlled fashion different therapeutic cargoes for the treatment of diverse pathologies. Recently, it is possible also to fabricate 3D macroporous scaffolds based on these materials which offers new possibility in regeneration proposed. Mesoporous silica nanoparticles offers new possibility in Nanomedicine and they has been proposed as promising alternatives in cancers therapies.
  11. As a Trojan horse…. We will design a new nanosystems based on Mesoporous Silica Nanoparticles with targeting to the bacteria surface and biofilm and able to release antibiotics in the environment of the bacteria that cause the infection.
  12. The first aim constitutes the design of a new nanoantibiotic Taking into account the negatively charged bacteria wall. We have designed a mesoporus silica nanoparticles by grafting a polycationics dendrimer, which confer positive density surfaces and also loading with levofloxacin as antimicrobial agent. This nanosystem will be able to internalize into gram-negative bacteria and release the levofloxacin inside and destroy the superbug.
  13. The synthesis of this nanosystems is very simple. For covalent anchorage of the dendrimers onto the external surface of the MSN sample, first we obtained the precursor silylated G3-PPI dendrimer, G3-Si(EtO)3, and immediately employed in the post-grafting reaction with the MSN material. For comparative purposes, we also functionalized the surface of MSN with small alcoxysilane contained two amine groups.
  14. Concerning the structural characterization XRD confirms the 2D hexagonal mesoporous arrangement, showing three well-defined reflections that can be indexed as 10, 11 and 20 of a p6mm plain group for all the materials. These results agree with TEM studies, which show spherical shaped nanoparticles with an average diameter of ca. 120 nm. Regarding the mesoporous structure, TEM images evidence the presence of typical of MCM-41 structure. These results reveal that neither the morphology nor the mesoporous order are affected by the used functionalization procedures.
  15. A deep physicochemical characterization has been performed. Concerning, the zetha-potential we can observe that after functionalization it is produces a drastic change on the MSN material from negative to positive charge. From 36.4 mV in bare MSN to ca. +35 mV in the hybrid materials The functionalization rate was determined by TGA an elemental analisis and we can observe that this value is higher in the case of DAMO group compared with G3 due to the the steric hindrance that occurs when macromolecules are employed to functionalize the silica surface, resulting in a more effective incorporation of the smaller alkoxysilane. . Both functionalized materials possess amine groups susceptible to protonation; however, the incorporation of the polycationic dendrimer does not exceed the positive value reached with the DAMO molecule. steric hindrance
  16. The next slide represent the release profiles of levofloxacin from different matrices. The obtained results evidence more accused release from the MSN-G3, followed of MSN-DAMO with respect to unmodificated MSN. All these profiles can be fitted Chapman's equation, where w (t) is the amount of LEVO released at each moment, w0 is the initially charged amount, A is the ratio between total LEVO released and total LEVO charged, k is the release kinetic constant and δ is a non-ideality parameter.
  17. Concerning the microbiology assays. We have performed two different assays. Bacteria targeting assay on plancktonic bacteria by adition of MSNs without antibiotic. Antimicrobial effect of completed nanoantibiotic, which was carried onto on previosly preformed biofilm. An d then the visulization by confocal microscopy
  18. Concerning to targeting effects. All images show the bacillus morphology of E. coli with the bacterial wall labeled in red, in good agreement with the control. In the case of pristine MSN, green scattered dots not close to the bacteria walls are observed. On the contrary, MSN-DAMO images display small domains of green aggregates corresponding to nanoparticles in the proximity of the bacterial wall obeying certain interactions between positive charges of amine groups and the negative bacterial wall. However, a complete internalization and uniform localization of MSN-G3 nanoparticles of the bacteria cells is appreciated. Difference in the successful internalization of both hybrid materials may be attributed to the G3 dendritic skeleton, which provides MSN-G3 of high surface flexibility. Consequently, there are more interaction points in the positively charged amine functional groups of MSN-G3 that are exposed to the negatively charged bacterial wall.
  19. This internalization is dosage dependent …. As you can see in the figure
  20. Concerning the antimicrobial effects microbiology assays was performed on preformed biofilm and after 90 min of incubation with the completed nanoantibiotic. Initially, the preformed biofilm displays a typical structure composed of colony live bacteria (green) covered by a protective mucopolysaccharide matrix (blue). After 90 min of incubation. MSN-L simple is not able to destroy the biofilm, appearing live bacteria colonies coated with its protective layer. However, small amounts of scattered dead bacteria are present onto the outermost surface probably due to the action of the LEVO released from this material. On the other hand, MSN-DAMO triggers the biofilm disruption, with the presence of small unfilled domains within the colony, showing vastly live cells (green), dispersed mucopolysaccharide (blue) fragments and scarcely dead cells (red). Finally, the best results are derived from MSN-G3-L assays, which is able to totally destroy the biofilm since no blue staining and almost negligible live cells are observed.
  21. A biofilm is a bacterial community in which bacteria are embedded into a extracellular matrix, which is mainly composed of polysaccharides. It constitutes a natural mechanism of defense of the microorganisms against external aggressions, including antibiotics and immune system. Lectins such as ConA are glycoproteins that are present in a variety of organisms, and most of them are isolated from plant components. They own the ability to weakly bind glycans with high specificity forming glycoconjugates.
  22. Actually, ConA has been successfully used to design drug-loaded tumour nanoparticles able to selectively bind and internalize in cancer cells overexpressing membrane glycans. Since glycan-type polysaccharides are also present in the bacterial biofilm, we hypothesize that ConA could be used to target MSNs towards extracellular biofilm matrix.
  23. Herein, we report the design of a new nanoantibiotic consisting of MSNs loaded with an antimicrobial agent (LEVO) and grafted in their outermost surface with ConA, which has been proved to selectively recognize and bind to certain glycans.
  24. The nanoantibiotic, denoted as MSNConA@LEVO, was synthesized using several steps. Briefly, pure silica MSNs were synthetized by the well-known modified Stöber method and externally functionalized by grafting an alkoxysilane bearing carboxylic acid groups, which will allow the final anchorage of ConA by reaction with the amine groups present in the protein. LEVO loading was carried out by impregnation method in ethanol, and always before ConA grafting to prevent protein denaturation.
  25. A deep physical-chemical characterization of the nanosystem was performed. Structural characterization by TEM shows spherical nanoparticles with an average size of ca. 150 nm with 2D-hexagonal structure with a honeycomb mesoporous arrangement, in good agreement with XRD. FTIR studies demostrated the presence of the functional groups corresponding to the molecules anchoared. An in vitro levofloxacin reléase show a gradual antibiotic release from the matrices, the reléase is more acusate in te case of functionalized MSN.
  26. Concerning the microbiological assays we carried out three different experiments in order to study the effectiveness of the nanosystem. We performed bacteria targeting assays by soaking the different samples without antimicrobial with a suspension of E. coli. We also performed biofilm targeting assays by soaking the different materials (without levofloxacin) in a preformed biofilm. Finally in order to perform the effectiveness onto the biofilm in E. coli and S. aureus of complete systems, we carried out the experiment by soaking the different samples in a preformed biofilm with both strain.
  27. The 3rd aim is concerning the design of multifunctional 3D implants by using mesoporous materials able to inhibit the bone infection at the same to regenerate new bone.
  28. To design this type of 3D multifunctional materials it is necessary to fabricate bioactive surface in order to enhance the bone tissue regeneration capability. The synthesis of these mesoporous materials leads the incorporation of different elements as calcium and phosphorous into the silica network in order to prepare mesoporous glasses with similar composition to the conventional sol-gel glasses. In this case, this mesoporous glasses have a added value that it is the ordered mesoporous arrangement which provokes outstanding characteristics.
  29. In the image it is represented a Schematic design of these therapeutic multidrug 3D scaffolds for bone infection. These 3D scaffolds containing rifampin, levofloxacin and vancomycin, is formed by a mixture of MGHA and PVA processed rapid prototyping technique (MGLEVPVAVAN) and posterior coating with Gel-Glu layer (GRIFMGLEVPVAVAN). In the right, we can see the localization of the different antibiotics in order to make sequential and sustained release.
  30. Morphology study of the different 3D scaffolds was performed by SEM. Before dip-coating process, the MGLEVPVAVAN scaffolds exhibit a very high porosity in both, surface and inner structure. Giant macropores of about 1 mm can be observed as well as a regular and high porosity all over and in the scaffold. High magnification shows the presence of mesopores of around 50 um with high rate of interconnectivity. A detail of the surface shows a smooth polymeric surface with incrustations of MG ceramic material. In addition, TEM image and FT diagram (Fig. 3E) display a mesoporous arrangement in the 2D hexagonal structure, These results evidence the 3D hierarchical structure of these scaffolds containing Levofloxacin and Vancomicin.
  31. In order to obtain an early release of RIF antibiofilm, these scaffolds were coated by dip-coating method with a gelatin-glutaraldehyde mixture containing a RIF. SEM studies the 3D scaffolds after coating containing RIF are shown in Fig. The obtained results show that after coating the macropores corresponding to 1 mm are blocked by a layer of thickness of 5 um.
  32. In vitro degradability assay in SBF of these 3D multitherapy scaffolds was performed at different key times. After 1 h of incubation, SEM image displays the total dissolution of the RIF coating leaving empty pores 1 mm. In addition, the in vitro degradability assays in SBF were performed during long periods of incubation at 15 and 30 days. The obtained results show a partial degradation of scaffold. Higher magnification micrographs show also a typical layer of hydroxyapatite formed, which is identified by the needle-like particles observed all over the surface of the scaffolds indicating a high level of bioactivity.
  33. Concerning the In vitro release tests of these 3D scaffolds, in the case of VAN and LEV, the release profiles are more sustained and prolonged in time in comparison with the RIF release, which is characterized by a fast release in just 1 h, according to in vitro degradability tests. The Fig. displays the dosages corresponding to GRIFMGLEVPVAVAN sample after 1, 6 and 24 h of incubation. It is important to remark than the matrix an initial effective dosage formed by three antibiotics followed of an effective and sustained dosage for long periods of time (>10 days) for LEV and VAN. It is important also remark that Levofloxacin released from silica mesoporous matrix has a pH sensitive release according with different type of interaction between the matrix and levofloxacin molecules as function of pH. We observe a higher release at acidid pHs which are characteristics of a infection environment.
  34. Once determined release profiles, antimicrobial assays have been carried out to determine the effectiveness of these multidrug systems against S. aureus biofilms. These antimicrobial studies have been carried out for all scaffold containing one, or two or three drugs in order to determine the success of the proposed combined therapy. Initially, the preformed biofilm shows a typical structure formed by colony live bacteria (green) covered by protective mucopolysaccharide matrix (blue). After 1 h of incubation with the different samples, notable differences are observed in presence or not of RIF. MGLEVPVAVAN containing both LEV and VAN is not able to destroy completely the biofilm, appearing even live bacteria colonies coated with its protective layer as it can observe. However, GRIFMGLEVPVAVAN scaffolds totally destroy the biofilm, observing colonial killed bacteria without the presence of protective layer of mucopolysaccharides. After 24 h, the GRIFMGLEVPVAVAN scaffold shows complete destruction of biofilm appearing isolated fragments, while MGLEVPVAVAN scaffolds still exhibits bacteria colonies with protective covered, indicating no efficacy against biofilm. It is important to remark that after long time of exposure all scaffold containing one or two drugs showed a total destruction of studied biofilm. These results show that our multidrug systems formed by the combination of RIF, LEV and VAN together with the designed strategy designed are very effective for the total destruction of biofilm in the first 24 h of incubation, which is indicative of their antimicrobial efficient.
  35. Biocompatibility assays were performed using the MC3T3 preosteoblasts cell culture. The obtained results evidence their biocompatibility, exhibitting an adequate preosteoblast adhesion and spreading on the entire surface of 3D scaffold. The biochemistry studies, showing non cytotoxic effect of these scaffolds only a a slight decrease of ALP activity, which, could be attributed to the presence of antibiotics in the media.
  36. In this case, we have designed a 3D scaffolds containing 3 types of antimicrobial agents in different compartments into the scaffolds which display a sequential release of the different antimicrobials, first they release rifampicin, which is a antibiofilm agent , followed with a Levofloxacin and Vancomicin with a sustained release. At the same time, the surface of these scaffolds exhibits bioactivity and its able to attach osteoblast for bone tissue regeneration purposes.
  37. Relationship between the nominal power of the laser (emission at 808 nm) and the temperature increase achieved with the Au @ MSN sample.
  38. This has been develop in Smart Biomaterials Research Group of Complutense of Madrid
  39. Now, we will describe the design of new nanoantibiotics based on targeting to biofilm
  40. Orthopedic infections represent a serious problem due to the total number of hip and knee arthroplasties that are performed worldwide. In USA, only in hip implants, it was in 2015 a total of 2.4 millons and it is forecast that in 2020 will be 4.8 millons. According to the National Health-care Safety Network, if the rate of infection is around 0.5-2% percent, then the number of infected implant will be 96 thousand and taking into account the estimated cost of the medical costs are more than $ 50,000 per patient The total cost is too high, being a serious economic problem. These results are even more worrisome in risk group such as diabetes and so on, where rate of infection is increased up to 5%.
  41. The effectiveness of these multidrug systems has been also determined on gram-negative E. coli biofilms. In this case, the effectiveness is against Gram-negative biofilm is lower with respect to Gram-positive, due to after 1 h of incubation still appear small colonies of 20 lm, which are formed by live bacteria (green) coated with a protective matrix (blue). After 6 and 24 h of incubation, the scenery is very similar to S. aureus a few scattering formed by small fragments of protective biolayer (blue), dead bacteria (red) and small amount of lived bacteria (green). In order to quantify the number of live bacteria present in each biofilm after of different treatments, CFU was determined. The obtained results shows notable differences in both 3D scaffolds, containing and not RIF, showing the efficacy of combined therapy .