This document summarizes research on graph-based approaches for sentiment analysis. It discusses different graph-based techniques proposed in previous studies, including using graphs to model relationships between tweets containing the same hashtag, between n-grams in documents, and between users, tweets, and features on Twitter. It also categorizes related works based on the proposed method, approach used, dataset, and limitations. The document concludes that graph-based approaches can provide higher accuracy for sentiment classification than other methods by capturing semantic relationships.