Introduction to Apache Hivemall v0.5.0:
Machine Learning on Hive/Spark
Makoto YUI @myui
ApacheCon North America 2018
Takashi Yamamuro @maropu
@ApacheHivemall
1). Principal Engineer,
2). Research Engineer,
1
Plan of the talk
1. Introduction to Hivemall
2. Hivemall on Spark
ApacheCon North America 2018
A quick walk-through of feature, usages, what's
new in v0.5.0, and future roadmaps
New top-k join enhancement, and a feature plan
for Supporting spark 2.3 and feature selection
2
We released the first Apache release
v0.5.0 on Mar 3rd, 2018 !
hivemall.incubator.apache.org
ApacheCon North America 2018
We plan to start voting for the 2nd Apache release (v0.5.2) in
the next month (Oct 2018).
3
What’s new in v0.5.0?
Anomaly/Change Point
Detection
Topic Modeling
(Soft Clustering)
Algorithm:
LDA, pLSA
Algorithm:
ChangeFinder, SST
Hivmall on Spark
2.0/2.1/2.1
SparkSQL/Dataframe support,
Top-k data processing
ApacheCon North America 2018 4
What is Apache Hivemall
Scalable machine learning library built
as a collection of Hive UDFs
Multi/Cross
platform VersatileScalableEase-of-use
ApacheCon North America 2018 5
Hivemall is easy and scalable …
ML made easy for SQL developers
Born to be parallel and scalable
Ease-of-use
Scalable
100+ lines
of code
CREATE TABLE lr_model AS
SELECT
feature, -- reducers perform model averaging in parallel
avg(weight) as weight
FROM (
SELECT logress(features,label,..) as (feature,weight)
FROM train
) t -- map-only task
GROUP BY feature; -- shuffled to reducers
This query automatically runs in parallel on Hadoop
ApacheCon North America 2018 6
Hivemall is a multi/cross-platform ML library
HiveQL SparkSQL/Dataframe API Pig Latin
Hivemall is Multi/Cross platform ..
Multi/Cross
platform
prediction models built by Hive can be used from Spark, and conversely,
prediction models build by Spark can be used from Hive
ApacheCon North America 2018 7
Hadoop HDFS
MapReduce
(MRv1)
Hivemall
Apache YARN
Apache Tez
DAG processing
Machine Learning
Query Processing
Parallel Data
Processing Framework
Resource Management
Distributed File System
Cloud Storage
SparkSQL
Apache Spark
MESOS
Hive Pig
MLlib
Hivemall’s Technology Stack
Amazon S3
ApacheCon North America 2018 8
Hivemall on Apache Hive
ApacheCon North America 2018 9
Hivemall on Apache Spark Dataframe
ApacheCon North America 2018 10
Hivemall on SparkSQL
ApacheCon North America 2018 11
Hivemall on Apache Pig
ApacheCon North America 2018 12
Online Prediction by Apache Streaming
ApacheCon North America 2018 13
Versatile
Hivemall is a Versatile library ..
ü Not only for Machine Learning
ü provides a bunch of generic utility functions
Each organization has own sets of
UDFs for data preprocessing
Don’t Repeat Yourself!
Don’t Repeat Yourself!
ApacheCon North America 2018 14
Hivemall generic functions
Array and Map Bit and compress String and NLP
Brickhouse UDFs are merged in v0.5.2 release.
We welcome contributing your generic UDFs to Hivemall
Geo Spatial
Top-k processing
> BASE91
> UNBASE91
> NORMALIZE_UNICODE
> SPLIT_WORDS
> IS_STOPWORD
> TOKENIZE
> TOKENIZE_JA/CN
> TF/IDF
> SINGULARIZE
> TILE
> MAP_URL
> HAVERSINE_DISTANCE
ApacheCon North America 2018 15
JSON
> TO_JSON
> FROM_JSON
ApacheCon North America 2018
student class score
1 b 70
2 a 80
3 a 90
4 b 50
5 a 70
6 b 60
Top-k query processing
List top-2 students for each class
SELECT * FROM (
SELECT
*,
rank() over (partition by class order by score desc)
as rank
FROM table
) t
WHERE rank <= 2
RANK over() query does not finishes in 24 hours L
where 20 million MOOCs classes and avg 1,000 students in each classes
16
ApacheCon North America 2018
student class score
1 b 70
2 a 80
3 a 90
4 b 50
5 a 70
6 b 60
Top-k query processing
List top-2 students for each class
SELECT
each_top_k(
2, class, score,
class, student
) as (rank, score, class, student)
FROM (
SELECT * FROM table
DISTRIBUTE BY class SORT BY class
) t
EACH_TOP_K finishes in 2 hours J
17
Map tiling functions
ApacheCon North America 2018 18
Tile(lat,lon,zoom)
= xtile(lon,zoom) + ytile(lat,zoom) * 2^n
Map tiling functions
Zoom=10
Zoom=15
ApacheCon North America 2018 19
List of Supported Algorithms
Classification
✓ Perceptron
✓ Passive Aggressive (PA, PA1, PA2)
✓ Confidence Weighted (CW)
✓ Adaptive Regularization of Weight
Vectors (AROW)
✓ Soft Confidence Weighted (SCW)
✓ AdaGrad+RDA
✓ Factorization Machines
✓ RandomForest Classification
Regression
✓Logistic Regression (SGD)
✓AdaGrad (logistic loss)
✓AdaDELTA (logistic loss)
✓PA Regression
✓AROW Regression
✓Factorization Machines
✓RandomForest Regression
SCW is a good first choice
Try RandomForest if SCW does not
work
Logistic regression is good for getting a
probability of a positive class
Factorization Machines is good where
features are sparse and categorical ones
ApacheCon North America 2018 20
Generic Classifier/Regressor
OLD Style New Style from v0.5.0
ApacheCon North America 2018 21
•Squared Loss
•Quantile Loss
•Epsilon Insensitive Loss
•Squared Epsilon Insensitive
Loss
•Huber Loss
Generic Classifier/Regressor
Available Loss functions
•HingeLoss
•LogLoss (synonym: logistic)
•SquaredHingeLoss
•ModifiedHuberLoss
• L1
• L2
• ElasticNet
• RDA
Other options
For Binary Classification:
For Regression:
• SGD
• AdaGrad
• AdaDelta
• ADAM
Optimizer
• Iteration support
• mini-batch
• Early stopping
Regularization
ApacheCon North America 2018 22
RandomForest in Hivemall
Ensemble of Decision Trees
ApacheCon North America 2018 23
Training of RandomForest
Good news: Sparse Vector Input (Libsvm
format) is supported since v0.5.0 in
addition Dense Vector input.
ApacheCon North America 2018 24
Prediction of RandomForest
ApacheCon North America 2018 25
Decision Tree Visualization
ApacheCon North America 2018 26
Decision Tree Visualization
ApacheCon North America 2018 27
SELECT train_xgboost_classifier(features, label) as (model_id, model)
FROM training_data
XGBoost support in Hivemall (beta version)
SELECT rowed, AVG(predicted) as predicted
FROM (
-- predict with each model
SELECT xgboost_predict(rowid, features, model_id, model) AS (rowid, predicted)
-- join each test record with each model
FROM xgboost_models CROSS JOIN test_data_with_id
) t
GROUP BY rowid;
ApacheCon North America 2018 28
Supported Algorithms for Recommendation
K-Nearest Neighbor
✓ Minhash and b-Bit Minhash
(LSH variant)
✓ Similarity Search on Vector
Space
(Euclid/Cosine/Jaccard/Angular)
Matrix Completion
✓ Matrix Factorization
✓ Factorization Machines
(regression)
each_top_k function of Hivemall is useful for
recommending top-k items
ApacheCon North America 2018 29
Other Supported Algorithms
Feature Engineering
✓Feature Hashing
✓Feature Scaling
(normalization, z-score)
✓ Feature Binning
✓ TF-IDF vectorizer
✓ Polynomial Expansion
✓ Amplifier
NLP
✓Basic Englist text Tokenizer
✓English/Japanese/Chinese
Tokenizer
Evaluation metrics
✓AUC, nDCG, logloss, precision
recall@K, and etc
ApacheCon North America 2018 30
Feature Engineering – Feature Hashing
ApacheCon North America 2018 31
Feature Engineering – Feature Binning
Maps quantitative variables to fixed number of
bins based on quantiles/distribution
Map Ages into 3 bins
ApacheCon North America 2018 32
ApacheCon North America 2018
Feature Engineering – Feature Binning
33
Evaluation Metrics
ApacheCon North America 2018 34
Other Supported Features
Anomaly Detection
✓Local Outlier Factor (LoF)
✓ChangeFinder
Clustering / Topic models
✓Online mini-batch LDA
✓Online mini-batch PLSA
Change Point Detection
✓ChangeFinder
✓Singular Spectrum
Transformation
ApacheCon North America 2018 35
Efficient algorithm for finding change point and outliers from
time-series data
J. Takeuchi and K. Yamanishi, A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE transactions on
Knowledge and Data Engineering, pp.482-492, 2006.
Anomaly/Change-point Detection by ChangeFinder
ApacheCon North America 2018 36
Take this…
Anomaly/Change-point Detection by ChangeFinder
ApacheCon North America 2018 37
Anomaly/Change-point Detection by ChangeFinder
…and do this!
ApacheCon North America 2018 38
Efficient algorithm for finding change point and outliers from
timeseries data
Anomaly/Change-point Detection by ChangeFinder
J. Takeuchi and K. Yamanishi, A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE transactions on
Knowledge and Data Engineering, pp.482-492, 2006.
ApacheCon North America 2018 39
• T. Ide and K. Inoue, "Knowledge Discovery from Heterogeneous Dynamic Systems using Change-Point
Correlations", Proc. SDM, 2005T.
• T. Ide and K. Tsuda, "Change-point detection using Krylov subspace learning", Proc. SDM, 2007.
Change-point detection by Singular Spectrum Transformation
ApacheCon North America 2018 40
Online mini-batch LDA
ApacheCon North America 2018 41
Probabilistic Latent Semantic Analysis - training
ApacheCon North America 2018 42
Probabilistic Latent Semantic Analysis - predict
ApacheCon North America 2018 43
ü Spark 2.3 support
ü Merged Brickhouse UDFs
ü Field-aware Factorization Machines
ü SLIM recommendation
What’s new in the coming v0.5.2
ApacheCon North America 2018
Xia Ning and George Karypis, SLIM: Sparse Linear Methods for Top-N Recommender Systems, Proc. ICDM, 2011.
Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin, "Field-aware Factorization Machines for CTR
Prediction", Proc. RecSys. 2016.
State-of-the-art method for CTR prediction, often used algorithm in Kaggle
Very promising algorithm for top-k recommendation
44
ü Word2Vec support
ü Multi-class Logistic Regression
ü More efficient XGBoost support
ü LightGBM support
ü Gradient Boosting
ü Kafka KSQL UDF porting
Future work for v0.6 and later
PR#91
PR#116
ApacheCon North America 2018 45
Copyright©2018 NTT corp. All Rights Reserved.
Copyright©2018 NTT corp. All Rights Reserved.
,
• .
•
• .. . / /
Copyright©2018 NTT corp. All Rights Reserved.
- : -:
•
• 8 8 .4- .4- 8 . 4-
. 4
• :
• . 8 8. ,
4
• :
• 8 .8 .8
(Copyright©2018 NTT corp. All Rights Reserved.
-: , : 2
• - :1 . -:
• - 31 - 1:- 1 31
• 31 :
$ E F > AA
> E E F $ E 9> $DF= :D AD : $> A
9 A - A A E F $F :$ L 1 A 4 ./ $ : "
9 A - A $ A F $9D M5E F ""$9D "
F 2D = )
Copyright©2018 NTT corp. All Rights Reserved.
• ( 0 2 244 0 24 40
10 0 1 00 0 0
• )0 10 0 2
• ) E F F 1C :
• C .F5 C E * C E
• EC : 0 / C :
• : 2 C
• I
3 *0.0
FCE C C E 5 F EE ( 5 E H H
Copyright©2018 NTT corp. All Rights Reserved.
•
• / 1 5 5 *55 -51 13 5 / 1 :
5 5 53 5 A 5 3 5 A 2 .D ,
Copyright©2018 NTT corp. All Rights Reserved.
• .
• +55- /25 -2- + / + + +2-
• 2- / / /- -+ - / 5+
• .
• 2 / -2+ / / 5+
• - +25 - -+ / / +5 5
• /25 - 2- / 5- 2+ - / 5+
.
Copyright©2018 NTT corp. All Rights Reserved.
•
• / . / ++ 3 : / . /3 /
. 5 5 5 . 3 / /3 .
*Copyright©2018 NTT corp. All Rights Reserved.
• ,7 299 A 3 7 A 7 2
,-1 ).. ( 2
• - 1 :3 4 13 1 23
A A 2 A
5 1: 3 $$5 0 1 $/ /1 3$ 1 0/ 3 /::
12 1 0/ 3 /::
/1 /53 , -3
: / 53 $ /
/ 53 $ 3 /:: / * ... D 23 3 23 1 3 /
Copyright©2018 NTT corp. All Rights Reserved.
• . 3 3 3
• 4 . 3
• 1 24 1
• 4 43
2 1
Copyright©2018 NTT corp. All Rights Reserved.
• 6 . .21 6 6
• ## :2. 6 .- # 26# 2 : 5 :#-
:. :# .0 .::2 6 5 $$ /2-/
0 6 6 .1.1 1 6 6 6
0. ## :2. 6 .- # 26# 2 : 5 :#- :. :#
.0 .::2 6# $$ 26
0. ## :2. 6 .- # 26# 2 : 5 :#- :. :#
.0 .::2 6# $$ .:
(Copyright©2018 NTT corp. All Rights Reserved.
2 . .
// Downloads Spark v2.3 and launches a spark-shell with Hivemall
$ 5 D C= D: >> < CD
/C E 0 E 2C C E: 5 7 > 5D C EE 7 >
D6 > . > EC 0 - D C=$C 7$ C E > 5D "$> 7 )$EC $5 "
D6 > . EC 0 $ C E 6:
C E
> 5 > 7 F5> F>> 5> - ECF "
EFC D 6E C F>> 5> - ECF "
Copyright©2018 NTT corp. All Rights Reserved.
3 . -
= . . .=> (
. 8: , ) > . , > . - : .> = . "
: B .> "
. 5> $ . "
Copyright©2018 NTT corp. All Rights Reserved.
- -.
= D ( L CF, = L D = E C O CF D
= D ( L
D EG> D, D
P 5 LM " ) O CABL )5 O CABL
P .
P 5 L CF:DGA A LM " D D
P )5 LM " O CABL
P . CF D
P
P 9 LM
L C ACF
(Copyright©2018 NTT corp. All Rights Reserved.
. .-
E 6 6 6EF )
6 : * F EF : E F"DB = "# : 6F D E #
B FBD" : 6F D E #
6
B D = F=B E
: >B= " B : :" : 6F D # *** B " : 6F D # 0. . #
DB , " DB = #
6 "E= B= "E " = F $ 6 ###
Copyright©2018 NTT corp. All Rights Reserved.
. - 4
N >G>) JABG C MB>OB6M B G> B:B FBR T JABG:> GB
N >G>) AC MB>OB6M B G> B:B FBR T:BNO:> GBT
N >G>) >NOB
NLG
S . .,: MJRFA NFD JFA >GPB " RBFDEO * MBAF OBA
S 6 :M>FI:> GB O
S . : 6 :. 61 JABG:> GB
S 6 O CB>OPMB ( CB>OPMB
S 6 = MJRFA
NOMF >MDFI
(Copyright©2018 NTT corp. All Rights Reserved.
• - . .
- . :
• , :
• .2 6 2 2 ) /- 2> 6 :=:C
-: : -
2 2+ :>C 6=2
C
6 ) C :> > 23 6 C 6
2 6) C :> > 23 6 C 6
) 3 6 > 23 6 2 6
2 2+ 62 C :C $" ".2 (" 6"), $" 6 ".2 (" "))
, = C6 C 6>C :6 62
(Copyright©2018 NTT corp. All Rights Reserved.
•
• 3 A J KN I=D KA J$ K = E K=J K > I = I
-
J D , JK=)
D K C > + D=>K > B A IA K >$ I R )) AD$ R"
J=D= K D=>K > I "$ D=>K > R" IA K > PR"" J J I=R"
NAK D E
I C $ I C " =I IKAKA .P I R" I<=I.P J I= <=J """
N =I= I C + K "
E K=J K :P JA IC ADD -6 J DP
(Copyright©2018 NTT corp. All Rights Reserved.
• : 3 : : .
• A J KN I=D KA J$ K = E K=J K 4 > I = I
>3 :1 : 3:> : . 13>> :
J D , JK=)
D K C > + D=>K > B A IA K >$ I R )) AD$ R"
J=D= K D=>K > I "$ D=>K > R" IA K > PR"" J J I=R"
NAK D E
I C $ I C " =I IKAKA .P I R" I<=I.P J I= <=J """
N =I= I C + K 4"
E K=J K 4 :P JA IC ADD -6 J DP
:> 3
- 2 : 3 1
3 2
Copyright©2018 NTT corp. All Rights Reserved.
• ::-
• .= AD= : A = A = > A A=> 5= 6 = >
- : :- -
: ) > A
: A=> +5 ( : 5A+5 :
: A A=> 6 A+5 : 5A+5 6 = >H ((( 6 A+5 6 = >H
: 5A+5 H 6 A+5 H = H
- >: A 55 A 5 - , ::
Copyright©2018 NTT corp. All Rights Reserved.
• : :
-
Copyright©2018 NTT corp. All Rights Reserved.
• : :
-
K-length
priority queue
Computes top-K rows
by using a priority queue
Copyright©2018 NTT corp. All Rights Reserved.
• : :
-
K-length
priority queue
Computes top-K rows
by using a priority queue
Only joins top-K rows
Copyright©2018 NTT corp. All Rights Reserved.
• - -
• ) 9 6 96 6 9 , /9
, 6 6 , ,
- :
) 9 ( 66 9 9
Copyright©2018 NTT corp. All Rights Reserved.
• - -
• 0 / 7 , /
7/ / 7 7 /
- :
7/
(Copyright©2018 NTT corp. All Rights Reserved.
• - - *: -::
• H: K> :DD > > :K>J 2: : => E : L DK
H J :D HD: # : = EH D>J > > LK>J K
:- - :
J :D:. K H / > HD:
-- J :D D: --
L D>=1:J 2 7 H (# 8 LH ( # 8 LH )
, 0 : > :J H: K K LH ( # )
, :D7: D> : 8 LH ( # ((
0 : > :J H: K K LH ) # )
:D7: D> : 8 LH ) # )+
- -* -* : * - - *
Copyright©2018 NTT corp. All Rights Reserved.
• - 3:
3 -:1 : 1 1
! :1 : : : : : -
Copyright©2018 NTT corp. All Rights Reserved.
• : -: : :
: =: -:
• -7 1 73 1: 8 1 1-7 73
- 7 73 - - 1 8 1 1- 1 :1 1 87:
+ : : -:
Data Extraction (e.g., by SQL) Feature Selection (e.g., by scikit-learn)
Selected Features
Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu, To Join or Not to Join?: Thinking Twice
about Joins before Feature Selection, Proceedings of SIGMOD, 2016.
Copyright©2018 NTT corp. All Rights Reserved.
• : -: : :
: =: -:
• -7 1 4 47 1: 8 4 1 1-747
-4747 - - 1 8 1 1- 1 :1 1 487:
+ : : -:
Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu, To Join or Not to Join?: Thinking Twice
about Joins before Feature Selection, Proceedings of SIGMOD, 2016.
Data Extraction + Feature Selection
Join Pruning by Data Statistics
Conclusion and Takeaway
Hivemall is a multi/cross-platform ML library
providing a collection of machine learning algorithms as Hive UDFs/UDTFs
The 2nd Apache release (v0.5.2) will appear soon!
We welcome your contributions to Apache Hivemall J
HiveQL SparkSQL/Dataframe API Pig Latin
ApacheCon North America 2018 75
Thank you! Questions?
ApacheCon North America 2018 76

Introduction to Apache Hivemall v0.5.0

  • 1.
    Introduction to ApacheHivemall v0.5.0: Machine Learning on Hive/Spark Makoto YUI @myui ApacheCon North America 2018 Takashi Yamamuro @maropu @ApacheHivemall 1). Principal Engineer, 2). Research Engineer, 1
  • 2.
    Plan of thetalk 1. Introduction to Hivemall 2. Hivemall on Spark ApacheCon North America 2018 A quick walk-through of feature, usages, what's new in v0.5.0, and future roadmaps New top-k join enhancement, and a feature plan for Supporting spark 2.3 and feature selection 2
  • 3.
    We released thefirst Apache release v0.5.0 on Mar 3rd, 2018 ! hivemall.incubator.apache.org ApacheCon North America 2018 We plan to start voting for the 2nd Apache release (v0.5.2) in the next month (Oct 2018). 3
  • 4.
    What’s new inv0.5.0? Anomaly/Change Point Detection Topic Modeling (Soft Clustering) Algorithm: LDA, pLSA Algorithm: ChangeFinder, SST Hivmall on Spark 2.0/2.1/2.1 SparkSQL/Dataframe support, Top-k data processing ApacheCon North America 2018 4
  • 5.
    What is ApacheHivemall Scalable machine learning library built as a collection of Hive UDFs Multi/Cross platform VersatileScalableEase-of-use ApacheCon North America 2018 5
  • 6.
    Hivemall is easyand scalable … ML made easy for SQL developers Born to be parallel and scalable Ease-of-use Scalable 100+ lines of code CREATE TABLE lr_model AS SELECT feature, -- reducers perform model averaging in parallel avg(weight) as weight FROM ( SELECT logress(features,label,..) as (feature,weight) FROM train ) t -- map-only task GROUP BY feature; -- shuffled to reducers This query automatically runs in parallel on Hadoop ApacheCon North America 2018 6
  • 7.
    Hivemall is amulti/cross-platform ML library HiveQL SparkSQL/Dataframe API Pig Latin Hivemall is Multi/Cross platform .. Multi/Cross platform prediction models built by Hive can be used from Spark, and conversely, prediction models build by Spark can be used from Hive ApacheCon North America 2018 7
  • 8.
    Hadoop HDFS MapReduce (MRv1) Hivemall Apache YARN ApacheTez DAG processing Machine Learning Query Processing Parallel Data Processing Framework Resource Management Distributed File System Cloud Storage SparkSQL Apache Spark MESOS Hive Pig MLlib Hivemall’s Technology Stack Amazon S3 ApacheCon North America 2018 8
  • 9.
    Hivemall on ApacheHive ApacheCon North America 2018 9
  • 10.
    Hivemall on ApacheSpark Dataframe ApacheCon North America 2018 10
  • 11.
    Hivemall on SparkSQL ApacheConNorth America 2018 11
  • 12.
    Hivemall on ApachePig ApacheCon North America 2018 12
  • 13.
    Online Prediction byApache Streaming ApacheCon North America 2018 13
  • 14.
    Versatile Hivemall is aVersatile library .. ü Not only for Machine Learning ü provides a bunch of generic utility functions Each organization has own sets of UDFs for data preprocessing Don’t Repeat Yourself! Don’t Repeat Yourself! ApacheCon North America 2018 14
  • 15.
    Hivemall generic functions Arrayand Map Bit and compress String and NLP Brickhouse UDFs are merged in v0.5.2 release. We welcome contributing your generic UDFs to Hivemall Geo Spatial Top-k processing > BASE91 > UNBASE91 > NORMALIZE_UNICODE > SPLIT_WORDS > IS_STOPWORD > TOKENIZE > TOKENIZE_JA/CN > TF/IDF > SINGULARIZE > TILE > MAP_URL > HAVERSINE_DISTANCE ApacheCon North America 2018 15 JSON > TO_JSON > FROM_JSON
  • 16.
    ApacheCon North America2018 student class score 1 b 70 2 a 80 3 a 90 4 b 50 5 a 70 6 b 60 Top-k query processing List top-2 students for each class SELECT * FROM ( SELECT *, rank() over (partition by class order by score desc) as rank FROM table ) t WHERE rank <= 2 RANK over() query does not finishes in 24 hours L where 20 million MOOCs classes and avg 1,000 students in each classes 16
  • 17.
    ApacheCon North America2018 student class score 1 b 70 2 a 80 3 a 90 4 b 50 5 a 70 6 b 60 Top-k query processing List top-2 students for each class SELECT each_top_k( 2, class, score, class, student ) as (rank, score, class, student) FROM ( SELECT * FROM table DISTRIBUTE BY class SORT BY class ) t EACH_TOP_K finishes in 2 hours J 17
  • 18.
    Map tiling functions ApacheConNorth America 2018 18
  • 19.
    Tile(lat,lon,zoom) = xtile(lon,zoom) +ytile(lat,zoom) * 2^n Map tiling functions Zoom=10 Zoom=15 ApacheCon North America 2018 19
  • 20.
    List of SupportedAlgorithms Classification ✓ Perceptron ✓ Passive Aggressive (PA, PA1, PA2) ✓ Confidence Weighted (CW) ✓ Adaptive Regularization of Weight Vectors (AROW) ✓ Soft Confidence Weighted (SCW) ✓ AdaGrad+RDA ✓ Factorization Machines ✓ RandomForest Classification Regression ✓Logistic Regression (SGD) ✓AdaGrad (logistic loss) ✓AdaDELTA (logistic loss) ✓PA Regression ✓AROW Regression ✓Factorization Machines ✓RandomForest Regression SCW is a good first choice Try RandomForest if SCW does not work Logistic regression is good for getting a probability of a positive class Factorization Machines is good where features are sparse and categorical ones ApacheCon North America 2018 20
  • 21.
    Generic Classifier/Regressor OLD StyleNew Style from v0.5.0 ApacheCon North America 2018 21
  • 22.
    •Squared Loss •Quantile Loss •EpsilonInsensitive Loss •Squared Epsilon Insensitive Loss •Huber Loss Generic Classifier/Regressor Available Loss functions •HingeLoss •LogLoss (synonym: logistic) •SquaredHingeLoss •ModifiedHuberLoss • L1 • L2 • ElasticNet • RDA Other options For Binary Classification: For Regression: • SGD • AdaGrad • AdaDelta • ADAM Optimizer • Iteration support • mini-batch • Early stopping Regularization ApacheCon North America 2018 22
  • 23.
    RandomForest in Hivemall Ensembleof Decision Trees ApacheCon North America 2018 23
  • 24.
    Training of RandomForest Goodnews: Sparse Vector Input (Libsvm format) is supported since v0.5.0 in addition Dense Vector input. ApacheCon North America 2018 24
  • 25.
  • 26.
  • 27.
  • 28.
    SELECT train_xgboost_classifier(features, label)as (model_id, model) FROM training_data XGBoost support in Hivemall (beta version) SELECT rowed, AVG(predicted) as predicted FROM ( -- predict with each model SELECT xgboost_predict(rowid, features, model_id, model) AS (rowid, predicted) -- join each test record with each model FROM xgboost_models CROSS JOIN test_data_with_id ) t GROUP BY rowid; ApacheCon North America 2018 28
  • 29.
    Supported Algorithms forRecommendation K-Nearest Neighbor ✓ Minhash and b-Bit Minhash (LSH variant) ✓ Similarity Search on Vector Space (Euclid/Cosine/Jaccard/Angular) Matrix Completion ✓ Matrix Factorization ✓ Factorization Machines (regression) each_top_k function of Hivemall is useful for recommending top-k items ApacheCon North America 2018 29
  • 30.
    Other Supported Algorithms FeatureEngineering ✓Feature Hashing ✓Feature Scaling (normalization, z-score) ✓ Feature Binning ✓ TF-IDF vectorizer ✓ Polynomial Expansion ✓ Amplifier NLP ✓Basic Englist text Tokenizer ✓English/Japanese/Chinese Tokenizer Evaluation metrics ✓AUC, nDCG, logloss, precision recall@K, and etc ApacheCon North America 2018 30
  • 31.
    Feature Engineering –Feature Hashing ApacheCon North America 2018 31
  • 32.
    Feature Engineering –Feature Binning Maps quantitative variables to fixed number of bins based on quantiles/distribution Map Ages into 3 bins ApacheCon North America 2018 32
  • 33.
    ApacheCon North America2018 Feature Engineering – Feature Binning 33
  • 34.
  • 35.
    Other Supported Features AnomalyDetection ✓Local Outlier Factor (LoF) ✓ChangeFinder Clustering / Topic models ✓Online mini-batch LDA ✓Online mini-batch PLSA Change Point Detection ✓ChangeFinder ✓Singular Spectrum Transformation ApacheCon North America 2018 35
  • 36.
    Efficient algorithm forfinding change point and outliers from time-series data J. Takeuchi and K. Yamanishi, A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE transactions on Knowledge and Data Engineering, pp.482-492, 2006. Anomaly/Change-point Detection by ChangeFinder ApacheCon North America 2018 36
  • 37.
    Take this… Anomaly/Change-point Detectionby ChangeFinder ApacheCon North America 2018 37
  • 38.
    Anomaly/Change-point Detection byChangeFinder …and do this! ApacheCon North America 2018 38
  • 39.
    Efficient algorithm forfinding change point and outliers from timeseries data Anomaly/Change-point Detection by ChangeFinder J. Takeuchi and K. Yamanishi, A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE transactions on Knowledge and Data Engineering, pp.482-492, 2006. ApacheCon North America 2018 39
  • 40.
    • T. Ideand K. Inoue, "Knowledge Discovery from Heterogeneous Dynamic Systems using Change-Point Correlations", Proc. SDM, 2005T. • T. Ide and K. Tsuda, "Change-point detection using Krylov subspace learning", Proc. SDM, 2007. Change-point detection by Singular Spectrum Transformation ApacheCon North America 2018 40
  • 41.
    Online mini-batch LDA ApacheConNorth America 2018 41
  • 42.
    Probabilistic Latent SemanticAnalysis - training ApacheCon North America 2018 42
  • 43.
    Probabilistic Latent SemanticAnalysis - predict ApacheCon North America 2018 43
  • 44.
    ü Spark 2.3support ü Merged Brickhouse UDFs ü Field-aware Factorization Machines ü SLIM recommendation What’s new in the coming v0.5.2 ApacheCon North America 2018 Xia Ning and George Karypis, SLIM: Sparse Linear Methods for Top-N Recommender Systems, Proc. ICDM, 2011. Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin, "Field-aware Factorization Machines for CTR Prediction", Proc. RecSys. 2016. State-of-the-art method for CTR prediction, often used algorithm in Kaggle Very promising algorithm for top-k recommendation 44
  • 45.
    ü Word2Vec support üMulti-class Logistic Regression ü More efficient XGBoost support ü LightGBM support ü Gradient Boosting ü Kafka KSQL UDF porting Future work for v0.6 and later PR#91 PR#116 ApacheCon North America 2018 45
  • 46.
    Copyright©2018 NTT corp.All Rights Reserved.
  • 47.
    Copyright©2018 NTT corp.All Rights Reserved. , • . • • .. . / /
  • 48.
    Copyright©2018 NTT corp.All Rights Reserved. - : -: • • 8 8 .4- .4- 8 . 4- . 4 • : • . 8 8. , 4 • : • 8 .8 .8
  • 49.
    (Copyright©2018 NTT corp.All Rights Reserved. -: , : 2 • - :1 . -: • - 31 - 1:- 1 31 • 31 : $ E F > AA > E E F $ E 9> $DF= :D AD : $> A 9 A - A A E F $F :$ L 1 A 4 ./ $ : " 9 A - A $ A F $9D M5E F ""$9D " F 2D = )
  • 50.
    Copyright©2018 NTT corp.All Rights Reserved. • ( 0 2 244 0 24 40 10 0 1 00 0 0 • )0 10 0 2 • ) E F F 1C : • C .F5 C E * C E • EC : 0 / C : • : 2 C • I 3 *0.0 FCE C C E 5 F EE ( 5 E H H
  • 51.
    Copyright©2018 NTT corp.All Rights Reserved. • • / 1 5 5 *55 -51 13 5 / 1 : 5 5 53 5 A 5 3 5 A 2 .D ,
  • 52.
    Copyright©2018 NTT corp.All Rights Reserved. • . • +55- /25 -2- + / + + +2- • 2- / / /- -+ - / 5+ • . • 2 / -2+ / / 5+ • - +25 - -+ / / +5 5 • /25 - 2- / 5- 2+ - / 5+ .
  • 53.
    Copyright©2018 NTT corp.All Rights Reserved. • • / . / ++ 3 : / . /3 / . 5 5 5 . 3 / /3 .
  • 54.
    *Copyright©2018 NTT corp.All Rights Reserved. • ,7 299 A 3 7 A 7 2 ,-1 ).. ( 2 • - 1 :3 4 13 1 23 A A 2 A 5 1: 3 $$5 0 1 $/ /1 3$ 1 0/ 3 /:: 12 1 0/ 3 /:: /1 /53 , -3 : / 53 $ / / 53 $ 3 /:: / * ... D 23 3 23 1 3 /
  • 55.
    Copyright©2018 NTT corp.All Rights Reserved. • . 3 3 3 • 4 . 3 • 1 24 1 • 4 43 2 1
  • 56.
    Copyright©2018 NTT corp.All Rights Reserved. • 6 . .21 6 6 • ## :2. 6 .- # 26# 2 : 5 :#- :. :# .0 .::2 6 5 $$ /2-/ 0 6 6 .1.1 1 6 6 6 0. ## :2. 6 .- # 26# 2 : 5 :#- :. :# .0 .::2 6# $$ 26 0. ## :2. 6 .- # 26# 2 : 5 :#- :. :# .0 .::2 6# $$ .:
  • 57.
    (Copyright©2018 NTT corp.All Rights Reserved. 2 . . // Downloads Spark v2.3 and launches a spark-shell with Hivemall $ 5 D C= D: >> < CD /C E 0 E 2C C E: 5 7 > 5D C EE 7 > D6 > . > EC 0 - D C=$C 7$ C E > 5D "$> 7 )$EC $5 " D6 > . EC 0 $ C E 6: C E > 5 > 7 F5> F>> 5> - ECF " EFC D 6E C F>> 5> - ECF "
  • 58.
    Copyright©2018 NTT corp.All Rights Reserved. 3 . - = . . .=> ( . 8: , ) > . , > . - : .> = . " : B .> " . 5> $ . "
  • 59.
    Copyright©2018 NTT corp.All Rights Reserved. - -. = D ( L CF, = L D = E C O CF D = D ( L D EG> D, D P 5 LM " ) O CABL )5 O CABL P . P 5 L CF:DGA A LM " D D P )5 LM " O CABL P . CF D P P 9 LM L C ACF
  • 60.
    (Copyright©2018 NTT corp.All Rights Reserved. . .- E 6 6 6EF ) 6 : * F EF : E F"DB = "# : 6F D E # B FBD" : 6F D E # 6 B D = F=B E : >B= " B : :" : 6F D # *** B " : 6F D # 0. . # DB , " DB = # 6 "E= B= "E " = F $ 6 ###
  • 61.
    Copyright©2018 NTT corp.All Rights Reserved. . - 4 N >G>) JABG C MB>OB6M B G> B:B FBR T JABG:> GB N >G>) AC MB>OB6M B G> B:B FBR T:BNO:> GBT N >G>) >NOB NLG S . .,: MJRFA NFD JFA >GPB " RBFDEO * MBAF OBA S 6 :M>FI:> GB O S . : 6 :. 61 JABG:> GB S 6 O CB>OPMB ( CB>OPMB S 6 = MJRFA NOMF >MDFI
  • 62.
    (Copyright©2018 NTT corp.All Rights Reserved. • - . . - . : • , : • .2 6 2 2 ) /- 2> 6 :=:C -: : - 2 2+ :>C 6=2 C 6 ) C :> > 23 6 C 6 2 6) C :> > 23 6 C 6 ) 3 6 > 23 6 2 6 2 2+ 62 C :C $" ".2 (" 6"), $" 6 ".2 (" ")) , = C6 C 6>C :6 62
  • 63.
    (Copyright©2018 NTT corp.All Rights Reserved. • • 3 A J KN I=D KA J$ K = E K=J K > I = I - J D , JK=) D K C > + D=>K > B A IA K >$ I R )) AD$ R" J=D= K D=>K > I "$ D=>K > R" IA K > PR"" J J I=R" NAK D E I C $ I C " =I IKAKA .P I R" I<=I.P J I= <=J """ N =I= I C + K " E K=J K :P JA IC ADD -6 J DP
  • 64.
    (Copyright©2018 NTT corp.All Rights Reserved. • : 3 : : . • A J KN I=D KA J$ K = E K=J K 4 > I = I >3 :1 : 3:> : . 13>> : J D , JK=) D K C > + D=>K > B A IA K >$ I R )) AD$ R" J=D= K D=>K > I "$ D=>K > R" IA K > PR"" J J I=R" NAK D E I C $ I C " =I IKAKA .P I R" I<=I.P J I= <=J """ N =I= I C + K 4" E K=J K 4 :P JA IC ADD -6 J DP :> 3 - 2 : 3 1 3 2
  • 65.
    Copyright©2018 NTT corp.All Rights Reserved. • ::- • .= AD= : A = A = > A A=> 5= 6 = > - : :- - : ) > A : A=> +5 ( : 5A+5 : : A A=> 6 A+5 : 5A+5 6 = >H ((( 6 A+5 6 = >H : 5A+5 H 6 A+5 H = H - >: A 55 A 5 - , ::
  • 66.
    Copyright©2018 NTT corp.All Rights Reserved. • : : -
  • 67.
    Copyright©2018 NTT corp.All Rights Reserved. • : : - K-length priority queue Computes top-K rows by using a priority queue
  • 68.
    Copyright©2018 NTT corp.All Rights Reserved. • : : - K-length priority queue Computes top-K rows by using a priority queue Only joins top-K rows
  • 69.
    Copyright©2018 NTT corp.All Rights Reserved. • - - • ) 9 6 96 6 9 , /9 , 6 6 , , - : ) 9 ( 66 9 9
  • 70.
    Copyright©2018 NTT corp.All Rights Reserved. • - - • 0 / 7 , / 7/ / 7 7 / - : 7/
  • 71.
    (Copyright©2018 NTT corp.All Rights Reserved. • - - *: -:: • H: K> :DD > > :K>J 2: : => E : L DK H J :D HD: # : = EH D>J > > LK>J K :- - : J :D:. K H / > HD: -- J :D D: -- L D>=1:J 2 7 H (# 8 LH ( # 8 LH ) , 0 : > :J H: K K LH ( # ) , :D7: D> : 8 LH ( # (( 0 : > :J H: K K LH ) # ) :D7: D> : 8 LH ) # )+ - -* -* : * - - *
  • 72.
    Copyright©2018 NTT corp.All Rights Reserved. • - 3: 3 -:1 : 1 1 ! :1 : : : : : -
  • 73.
    Copyright©2018 NTT corp.All Rights Reserved. • : -: : : : =: -: • -7 1 73 1: 8 1 1-7 73 - 7 73 - - 1 8 1 1- 1 :1 1 87: + : : -: Data Extraction (e.g., by SQL) Feature Selection (e.g., by scikit-learn) Selected Features Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu, To Join or Not to Join?: Thinking Twice about Joins before Feature Selection, Proceedings of SIGMOD, 2016.
  • 74.
    Copyright©2018 NTT corp.All Rights Reserved. • : -: : : : =: -: • -7 1 4 47 1: 8 4 1 1-747 -4747 - - 1 8 1 1- 1 :1 1 487: + : : -: Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu, To Join or Not to Join?: Thinking Twice about Joins before Feature Selection, Proceedings of SIGMOD, 2016. Data Extraction + Feature Selection Join Pruning by Data Statistics
  • 75.
    Conclusion and Takeaway Hivemallis a multi/cross-platform ML library providing a collection of machine learning algorithms as Hive UDFs/UDTFs The 2nd Apache release (v0.5.2) will appear soon! We welcome your contributions to Apache Hivemall J HiveQL SparkSQL/Dataframe API Pig Latin ApacheCon North America 2018 75
  • 76.
    Thank you! Questions? ApacheConNorth America 2018 76