EECS0712 Adaptive Signal Processing
1
Introduction to Adaptive Signal
Processing
EECS0712 Adaptive Signal Processing
1
Introduction to Adaptive Signal
Processing
Assoc. Prof. Dr. Peerapol Yuvapoositanon
Dept. of Electronic Engineering
CESdSP ASP1-1
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Course Outline
• Introduction to Adaptive Signal Processing
• Adaptive Algorithms Families:
• Newton’s Method and Steepest Descent
• Least Mean Squared (LMS)
• Recursive Least Squares (RLS)
• Kalman Filtering
• Applications of Adaptive Signal Processing in
Communications and Blind Equalization
• Introduction to Adaptive Signal Processing
• Adaptive Algorithms Families:
• Newton’s Method and Steepest Descent
• Least Mean Squared (LMS)
• Recursive Least Squares (RLS)
• Kalman Filtering
• Applications of Adaptive Signal Processing in
Communications and Blind Equalization
CESdSP ASP1-2
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Evaluation
• Assignment= 20 %
• Midterm = 30 %
• Final = 50 %
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-3
Textbooks
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-4
http://embedsigproc.wordpress.com
/eecs0712-adaptive-signal-processing/
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-5
QR code
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-6
Adaptive Signal Processing
• Definition: Adaptive signal processing is the
design of adaptive systems for signal-
processing applications.
[http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr
ocessing]
• Definition: Adaptive signal processing is the
design of adaptive systems for signal-
processing applications.
[http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr
ocessing]
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-7
System Identification
• Let’s consider a system called “plant”
• We need to know its characteristics, i.e., The
impulse response of the system
CESdSP ASP1-8
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Plant Comparison
CESdSP ASP1-9
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Error of Plant Outputs
CESdSP ASP1-10
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Error of Estimation
• Error of estimation is represented by the
signal energy of error
2 2
2 2
( )
2
e d y
d dy y
 
  
CESdSP ASP1-11
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
2 2
2 2
( )
2
e d y
d dy y
 
  
Adaptive System
• We can do it adaptively
CESdSP ASP1-12
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• Adjust the weight for minimum error e
One-weight
CESdSP ASP1-13
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
2 2
2 2
2 2
0 0 0 0
( )
2
( ) 2( )( ) ( )I I
e d y
d dy y
w x w x w x w x
 
  
  
CESdSP
2 2
2 2
2 2
0 0 0 0
( )
2
( ) 2( )( ) ( )I I
e d y
d dy y
w x w x w x w x
 
  
  
ASP1-14
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Error Curve
• Parabola equation
CESdSP ASP1-15
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Partial diff. and set to zero
• Partial differentiation
• Set to zero
• Result:
2
2 2
0 0 0 0
0 0
2 2
0 0
( ) 2( )( ) ( )
2 2
I I
I I
I
e
w x w x w x w x
w w
w x w x
 
  
 
  
• Partial differentiation
• Set to zero
• Result:
CESdSP
2
2 2
0 0 0 0
0 0
2 2
0 0
( ) 2( )( ) ( )
2 2
I I
I I
I
e
w x w x w x w x
w w
w x w x
 
  
 
  
2 2
0 00 2 2 I
w x w x  
0 0
I
w w
ASP1-16
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Multiple Weight Plants
• We calculate the weight adaptively
• Questions:
– What is the type of signal “x” to be used, e.g.
Sine, Cosine or Random signals ?
– If there is more than one weight w0 , i.e., w0….wN-
1, how do we calculate the solution?
• We calculate the weight adaptively
• Questions:
– What is the type of signal “x” to be used, e.g.
Sine, Cosine or Random signals ?
– If there is more than one weight w0 , i.e., w0….wN-
1, how do we calculate the solution?
CESdSP ASP1-17
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Plants with Multiple Weight
• If we have multiple weights
CESdSP
1
0 1w w z
 w
ASP1-18
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• In the case of two-weight
Two-weight
CESdSP ASP1-19
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Input
• From
• We construct the x as vector with first
element is the most recent
(3), (2), (1), (0), ( 1), ( 2),...x x x x x x 
• From
• We construct the x as vector with first
element is the most recent
CESdSP
[ (3) (2) (1) (0)...]T
x x x xx
ASP1-20
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Plants with Multiple Weight
(aka “Transversal Filter”)
• If we have multiple weights
( )x n ( 1)x n 
CESdSP
0 ( )w x n
0 ( 1)w x n 
0 0( ) ( ) ( 1)y n w x n w x n  
ASP1-21
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Regression input signal vector
• If the current time is n, we have “Regression
input signal vector”
[ ( ) ( 1) ( 2) ( 3)...]T
x n x n x n x n   x
CESdSP
[ ( ) ( 1) ( 2) ( 3)...]T
x n x n x n x n   x
ASP1-22
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
0
0 1
1
[ ]T
w
w ww
 
  
  
w
CESdSP
0
0 1
1
[ ]T
w
w ww
 
  
  
w
0
0 1
1
ˆ [ ]
I
I I T
I
w
w w
w
 
 
  
 
 
w
ASP1-23
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Convolution
• Output of plant is a convolution
• Ex For N=2
1
1
( ) ( )
N
k
k
y n w x n k


 
• Output of plant is a convolution
• Ex For N=2
CESdSP
1
1
( ) ( )
N
k
k
y n w x n k


 
0 0( ) ( 0) ( 1)y n w x n w x n   
ASP1-24
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
0 1
0 1
0 1
0 1
0 1
(3) (3) (2)
(2) (2) (1)
(1) (1) (0)
(0) (0) ( 1)
( 1) ( 1) ( 2)
y w x w x
y w x w x
y w x w x
y w x w x
y w x w x
 
 
 
  
    
CESdSP
0 1
0 1
0 1
0 1
0 1
(3) (3) (2)
(2) (2) (1)
(1) (1) (0)
(0) (0) ( 1)
( 1) ( 1) ( 2)
y w x w x
y w x w x
y w x w x
y w x w x
y w x w x
 
 
 
  
    
ASP1-25
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• We can use a vector-matrix multiplication
• For example, for n=3 we construct y(3) as
• For example, for n=1 we construct y(1) as
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
T
x
y w x w x w w
x
 
     
  
w x
• We can use a vector-matrix multiplication
• For example, for n=3 we construct y(3) as
• For example, for n=1 we construct y(1) as
CESdSP
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
T
x
y w x w x w w
x
 
     
  
w x
0 1 0 1
(1)
(1) (1) (0) [ ] (1)
(0)
T
x
y w x w x w w
x
 
     
  
w x
ASP1-26
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
(2)
(2) (2) (1) [ ] (2)
(1)
(1)
(1) (1) (0) [ ] (1)
(0)
(2)
(0) (0) ( 1) [ ] (0
(1)
T
T
T
T
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
 
     
  
 
     
  
 
     
  
 
      
  
w x
w x
w x
w x )
CESdSP
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
(2)
(2) (2) (1) [ ] (2)
(1)
(1)
(1) (1) (0) [ ] (1)
(0)
(2)
(0) (0) ( 1) [ ] (0
(1)
T
T
T
T
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
 
     
  
 
     
  
 
     
  
 
      
  
w x
w x
w x
w x )
ASP1-27
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• The error squared is
• Let us stop there to consider Random signal
theory first.
2 2
2 2
2 2
( )
2
ˆ ˆ( ) 2( )( ) ( )T T T T
e d y
d dy y
 
  
  w x w x w x w x
• The error squared is
• Let us stop there to consider Random signal
theory first.
CESdSP
2 2
2 2
2 2
( )
2
ˆ ˆ( ) 2( )( ) ( )T T T T
e d y
d dy y
 
  
  w x w x w x w x
ASP1-28
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Review of Random Signals
CESdSP ASP1-29
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Wireless Transmissions
• Ideal signal transmission
11 00 11 00 11 0011 11 11 000011
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-30
11 00 11 00 11 0011 11 11 000011
Information
Information is Random
Random variable
CESdSP ASP1-31
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Random Variable
• Random variable is a function
• For a single time Coin Tossing
1,
( )
-1,
x H
X x
x T
 
 
• Random variable is a function
• For a single time Coin Tossing
CESdSP
1,
( )
-1,
x H
X x
x T
 
 
ASP1-32
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Our signal x(n) is a Random
Variable
• For a series of Coin Tossing
1,
( )
-1,
i
i
i
x H
X x
x T
 
 
• For a series of Coin Tossing
CESdSP
1,
( )
-1,
i
i
i
x H
X x
x T
 
 
0 1 2 3 4{ , , , , ,....}x x x x x x
ASP1-33
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Coin tossing and Random Variable
• If random
• We have random variable X
0 1 2 3 4
{ , , , , }
{ , , , , }
x H H T H T
x x x x x


CESdSP
• If random
• We have random variable X
0 1 2 3 4( ) { ( ), ( ), ( ), ( ), ( )}
{ ( ), ( ), ( ), ( ), ( )}
{1,1, 1,1, 1}
iX x X x X x X x X x X x
X H X H X T X H X T


  
ASP1-34
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Random Digital Signal
• If the random variable is a function of time, it
is called a stochastic process
CESdSP ASP1-35
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Mass Function
• We need also to define the probability of each
random variable
( ) { ( ), ( ), ( ), ( ), ( )}
{1,1, 1,1, 1}
X x X H X H X T X H X T
  
CESdSP
( ) { ( ), ( ), ( ), ( ), ( )}
{1,1, 1,1, 1}
X x X H X H X T X H X T
  
ASP1-36
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Mass Function
• PMF is for Discrete distribution function
CESdSP ASP1-37
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Time and Emsemble
CESdSP ASP1-38
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability of X(2)
CESdSP ASP1-39
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Density Function
• PDF is for Continuous Distribution Function
CESdSP ASP1-40
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
CESdSP ASP1-41
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Density Function
• PDF values can be > 1 as long as its area under
curve is 1
2
CESdSP
1/2
2
1
1
ASP1-42
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Cumulative Distribution Function
CESdSP
( ( )) Pr[ ( )]P x n X x n x
ASP1-43
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
( )
( ( )) ( )
x n
P x n p z dz

 x x
CESdSP
( )
( ( )) ( )
x n
P x n p z dz

 x x
ASP1-44
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Expectation Operator
{}E 
CESdSP
{}E 
ASP1-45
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Expected Value
• Expected value is known as the “Mean”
{ } ( )X XE x xp x dx


 
CESdSP
{ } ( )X XE x xp x dx


 
ASP1-46
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Example of Expected Value
(Discrete)
• We toss a die N times and get a set of
outcomes
• Suppose we roll a die with N=6, we might get
{ ( )} { (1), (2), (3),..., ( )}X i X X X X N
• We toss a die N times and get a set of
outcomes
• Suppose we roll a die with N=6, we might get
CESdSP
{ ( )} { (1), (2), (3),..., ( )}X i X X X X N
{ ( )} {2,3,6,3,1,1}X i 
ASP1-47
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Example of Expected Value
(Discrete)
• But, empirically we have Empirical (Monte
Carlo) estimate as Expected Value
6
1
{ } ( )Pr( ( ))
1 1 1 1
1 2 3 6
3 6 3 6
2.67
X
i
E x X i X X i

 
       


CESdSP
6
1
{ } ( )Pr( ( ))
1 1 1 1
1 2 3 6
3 6 3 6
2.67
X
i
E x X i X X i

 
       


ASP1-48
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Theoretical Expected Value
• But in theory, for a die
6
1
{ } ( )Pr( ( ))
1 1 1 1 1 1
1 2 3 4 5 6
6 6 6 6 6 6
3.5
X
i
E X X i X X i

 
           


1
Pr( ( ))
6
X X i 
CESdSP
6
1
{ } ( )Pr( ( ))
1 1 1 1 1 1
1 2 3 4 5 6
6 6 6 6 6 6
3.5
X
i
E X X i X X i

 
           


ASP1-49
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Ensemble Average
i ensembles
1 1 2 2Ensemble Average of (1) (1)Pr[ (1)] (1)Pr[ (1)]
(1)Pr[ (1)]N N
x x x x x
x x
  


1 ensemble
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-50
i ensembles
Ensemble Average
{ ( )}E x n 
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-51
{ ( )} ( ) ( ( )) ( )E x n x n p x n dx n


  x
{ ( )}E x n 
• I) Linearity
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-52
{ ( ) ( )} { ( )} { ( )}E ax n by n aE x n bE y n  
• II)
{ ( ) ( )} { ( )} { ( )}E x n y n E x n E y n
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-53
{ ( ) ( )} { ( )} { ( )}E x n y n E x n E y n
• III)
{ ( )} ( ( )) ( ( )) ( )E y n g x n p x n dx n


  x
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-54
{ ( )} ( ( )) ( ( )) ( )E y n g x n p x n dx n


  x
Autocorrelation
1 1( , ) { ( ) ( )}r n m E x n x mxx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-55
1 11 1 1 1 1 1( , ) ( ) ( ) ( ( ), ( )) ( ) ( )r n m x n x m p x n x m dx n x m
 
 
  xx x x
1 1(1,4) { (1) (4)}r E x xxx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-56
Autocorrelation
• n=m
2
( , ) ( , ) { ( )}r n m r n n E x n xx xx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-57
2
( , ) ( , ) { ( )}r n m r n n E x n xx xx
Autocorrelation Matrix
(0,0) (0,1) (0, 1)
(1,0) (1,1) (1, 1)
( 1,0) ( 1,1) ( 1, 1)
r r r N
r r r N
r N r N r N N
  
 
  
  
 
 
      
xx xx xx
xx xx xx
xx
xx xx xx
R

  

CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-58
(0,0) (0,1) (0, 1)
(1,0) (1,1) (1, 1)
( 1,0) ( 1,1) ( 1, 1)
r r r N
r r r N
r N r N r N N
  
 
  
  
 
 
      
xx xx xx
xx xx xx
xx
xx xx xx
R

  

Covariance
( , ) {[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-59
( , ) {[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx
Stationarity (I)
• I)
{ ( )} { ( )}E x n E x m  
n1
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-60
n2
Stationarity (II)
• II)
( , ) { ( ) ( )}r n n m E x n x n m  xx
1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-61
1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx
Expected Value of Error Energy
• Let’s take the expected value of error energy
2 2 2
ˆ ˆ{ } {( ) 2( )( ) ( ) }
ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )}
ˆ ˆ ˆ{ } 2 {( )( )} { }
ˆ ˆ ˆ2 {( )( )}
T T T T
T T T T T T
T T T T T T
T T T T
E e E
E E E
E E E
E
  
  
  
  
w x w x w x w x
w x x w x w w x w x x w
w xx w x w x w w xx w
w Rw x w x w w Rw
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-62
2 2 2
ˆ ˆ{ } {( ) 2( )( ) ( ) }
ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )}
ˆ ˆ ˆ{ } 2 {( )( )} { }
ˆ ˆ ˆ2 {( )( )}
T T T T
T T T T T T
T T T T T T
T T T T
E e E
E E E
E E E
E
  
  
  
  
w x w x w x w x
w x x w x w w x w x x w
w xx w x w x w w xx w
w Rw x w x w w Rw
Vector-Matrix Differentiation
ˆI)
ˆ
ˆ ˆ ˆII) 2
ˆ
T
T T






w x x
w
w xx w Rw
w
CESdSP
ˆI)
ˆ
ˆ ˆ ˆII) 2
ˆ
T
T T






w x x
w
w xx w Rw
w
ASP1-63
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Partial diff. and set to zero
• Differentiation
• Result:
ˆ0 2 {( ) } 2
ˆ
ˆ2 { } 2
ˆ2 2
T
E
E d

  

  
  
w x x Rw
w
x Rw
r Rw
• Differentiation
• Result:
CESdSP
ˆ0 2 {( ) } 2
ˆ
ˆ2 { } 2
ˆ2 2
T
E
E d

  

  
  
w x x Rw
w
x Rw
r Rw
1
ˆ 
w R r
ASP1-64
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
2-D Error surface
CESdSP
1
ˆ 
w R r
ASP1-65
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Four Basic Classes of Adaptive
Signal Processing
• I) Identification
• II) Inverse Modelling
• III) Prediction
• IV) Interference Cancelling
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-66
• I) Identification
• II) Inverse Modelling
• III) Prediction
• IV) Interference Cancelling
The Four Classes of Adaptive
Filtering
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-67
System Identification
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-68
Inverse Modelling
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-69
Prediction
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-70
Interference Canceller
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-71
What are we looking for in
Adaptive Systems?
• Rate of Convergence
• Misadjustment
• Tracking
• Robustness
• Computational Complexity
• Numerical Properties
• Rate of Convergence
• Misadjustment
• Tracking
• Robustness
• Computational Complexity
• Numerical Properties
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-72

Introduction to adaptive signal processing

  • 1.
    EECS0712 Adaptive SignalProcessing 1 Introduction to Adaptive Signal Processing EECS0712 Adaptive Signal Processing 1 Introduction to Adaptive Signal Processing Assoc. Prof. Dr. Peerapol Yuvapoositanon Dept. of Electronic Engineering CESdSP ASP1-1 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 2.
    Course Outline • Introductionto Adaptive Signal Processing • Adaptive Algorithms Families: • Newton’s Method and Steepest Descent • Least Mean Squared (LMS) • Recursive Least Squares (RLS) • Kalman Filtering • Applications of Adaptive Signal Processing in Communications and Blind Equalization • Introduction to Adaptive Signal Processing • Adaptive Algorithms Families: • Newton’s Method and Steepest Descent • Least Mean Squared (LMS) • Recursive Least Squares (RLS) • Kalman Filtering • Applications of Adaptive Signal Processing in Communications and Blind Equalization CESdSP ASP1-2 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 3.
    Evaluation • Assignment= 20% • Midterm = 30 % • Final = 50 % CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-3
  • 4.
    Textbooks CESdSP EECS0712 Adaptive SignalProcessing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-4
  • 5.
    http://embedsigproc.wordpress.com /eecs0712-adaptive-signal-processing/ CESdSP EECS0712 Adaptive SignalProcessing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-5
  • 6.
    QR code CESdSP EECS0712 AdaptiveSignal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-6
  • 7.
    Adaptive Signal Processing •Definition: Adaptive signal processing is the design of adaptive systems for signal- processing applications. [http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr ocessing] • Definition: Adaptive signal processing is the design of adaptive systems for signal- processing applications. [http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr ocessing] CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-7
  • 8.
    System Identification • Let’sconsider a system called “plant” • We need to know its characteristics, i.e., The impulse response of the system CESdSP ASP1-8 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 9.
    Plant Comparison CESdSP ASP1-9 EECS0712Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 10.
    Error of PlantOutputs CESdSP ASP1-10 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 11.
    Error of Estimation •Error of estimation is represented by the signal energy of error 2 2 2 2 ( ) 2 e d y d dy y      CESdSP ASP1-11 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon 2 2 2 2 ( ) 2 e d y d dy y     
  • 12.
    Adaptive System • Wecan do it adaptively CESdSP ASP1-12 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 13.
    • Adjust theweight for minimum error e One-weight CESdSP ASP1-13 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 14.
    2 2 2 2 22 0 0 0 0 ( ) 2 ( ) 2( )( ) ( )I I e d y d dy y w x w x w x w x         CESdSP 2 2 2 2 2 2 0 0 0 0 ( ) 2 ( ) 2( )( ) ( )I I e d y d dy y w x w x w x w x         ASP1-14 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 15.
    Error Curve • Parabolaequation CESdSP ASP1-15 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 16.
    Partial diff. andset to zero • Partial differentiation • Set to zero • Result: 2 2 2 0 0 0 0 0 0 2 2 0 0 ( ) 2( )( ) ( ) 2 2 I I I I I e w x w x w x w x w w w x w x           • Partial differentiation • Set to zero • Result: CESdSP 2 2 2 0 0 0 0 0 0 2 2 0 0 ( ) 2( )( ) ( ) 2 2 I I I I I e w x w x w x w x w w w x w x           2 2 0 00 2 2 I w x w x   0 0 I w w ASP1-16 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 17.
    Multiple Weight Plants •We calculate the weight adaptively • Questions: – What is the type of signal “x” to be used, e.g. Sine, Cosine or Random signals ? – If there is more than one weight w0 , i.e., w0….wN- 1, how do we calculate the solution? • We calculate the weight adaptively • Questions: – What is the type of signal “x” to be used, e.g. Sine, Cosine or Random signals ? – If there is more than one weight w0 , i.e., w0….wN- 1, how do we calculate the solution? CESdSP ASP1-17 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 18.
    Plants with MultipleWeight • If we have multiple weights CESdSP 1 0 1w w z  w ASP1-18 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 19.
    • In thecase of two-weight Two-weight CESdSP ASP1-19 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 20.
    Input • From • Weconstruct the x as vector with first element is the most recent (3), (2), (1), (0), ( 1), ( 2),...x x x x x x  • From • We construct the x as vector with first element is the most recent CESdSP [ (3) (2) (1) (0)...]T x x x xx ASP1-20 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 21.
    Plants with MultipleWeight (aka “Transversal Filter”) • If we have multiple weights ( )x n ( 1)x n  CESdSP 0 ( )w x n 0 ( 1)w x n  0 0( ) ( ) ( 1)y n w x n w x n   ASP1-21 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 22.
    Regression input signalvector • If the current time is n, we have “Regression input signal vector” [ ( ) ( 1) ( 2) ( 3)...]T x n x n x n x n   x CESdSP [ ( ) ( 1) ( 2) ( 3)...]T x n x n x n x n   x ASP1-22 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 23.
    0 0 1 1 [ ]T w www         w CESdSP 0 0 1 1 [ ]T w w ww         w 0 0 1 1 ˆ [ ] I I I T I w w w w            w ASP1-23 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 24.
    Convolution • Output ofplant is a convolution • Ex For N=2 1 1 ( ) ( ) N k k y n w x n k     • Output of plant is a convolution • Ex For N=2 CESdSP 1 1 ( ) ( ) N k k y n w x n k     0 0( ) ( 0) ( 1)y n w x n w x n    ASP1-24 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 25.
    0 1 0 1 01 0 1 0 1 (3) (3) (2) (2) (2) (1) (1) (1) (0) (0) (0) ( 1) ( 1) ( 1) ( 2) y w x w x y w x w x y w x w x y w x w x y w x w x               CESdSP 0 1 0 1 0 1 0 1 0 1 (3) (3) (2) (2) (2) (1) (1) (1) (0) (0) (0) ( 1) ( 1) ( 1) ( 2) y w x w x y w x w x y w x w x y w x w x y w x w x               ASP1-25 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 26.
    • We canuse a vector-matrix multiplication • For example, for n=3 we construct y(3) as • For example, for n=1 we construct y(1) as 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) T x y w x w x w w x            w x • We can use a vector-matrix multiplication • For example, for n=3 we construct y(3) as • For example, for n=1 we construct y(1) as CESdSP 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) T x y w x w x w w x            w x 0 1 0 1 (1) (1) (1) (0) [ ] (1) (0) T x y w x w x w w x            w x ASP1-26 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 27.
    0 1 01 0 1 0 1 0 1 0 1 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) (2) (2) (2) (1) [ ] (2) (1) (1) (1) (1) (0) [ ] (1) (0) (2) (0) (0) ( 1) [ ] (0 (1) T T T T x y w x w x w w x x y w x w x w w x x y w x w x w w x x y w x w x w w x                                              w x w x w x w x ) CESdSP 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) (2) (2) (2) (1) [ ] (2) (1) (1) (1) (1) (0) [ ] (1) (0) (2) (0) (0) ( 1) [ ] (0 (1) T T T T x y w x w x w w x x y w x w x w w x x y w x w x w w x x y w x w x w w x                                              w x w x w x w x ) ASP1-27 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 28.
    • The errorsquared is • Let us stop there to consider Random signal theory first. 2 2 2 2 2 2 ( ) 2 ˆ ˆ( ) 2( )( ) ( )T T T T e d y d dy y        w x w x w x w x • The error squared is • Let us stop there to consider Random signal theory first. CESdSP 2 2 2 2 2 2 ( ) 2 ˆ ˆ( ) 2( )( ) ( )T T T T e d y d dy y        w x w x w x w x ASP1-28 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 29.
    Review of RandomSignals CESdSP ASP1-29 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 30.
    Wireless Transmissions • Idealsignal transmission 11 00 11 00 11 0011 11 11 000011 CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-30 11 00 11 00 11 0011 11 11 000011 Information Information is Random
  • 31.
    Random variable CESdSP ASP1-31 EECS0712Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 32.
    Random Variable • Randomvariable is a function • For a single time Coin Tossing 1, ( ) -1, x H X x x T     • Random variable is a function • For a single time Coin Tossing CESdSP 1, ( ) -1, x H X x x T     ASP1-32 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 33.
    Our signal x(n)is a Random Variable • For a series of Coin Tossing 1, ( ) -1, i i i x H X x x T     • For a series of Coin Tossing CESdSP 1, ( ) -1, i i i x H X x x T     0 1 2 3 4{ , , , , ,....}x x x x x x ASP1-33 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 34.
    Coin tossing andRandom Variable • If random • We have random variable X 0 1 2 3 4 { , , , , } { , , , , } x H H T H T x x x x x   CESdSP • If random • We have random variable X 0 1 2 3 4( ) { ( ), ( ), ( ), ( ), ( )} { ( ), ( ), ( ), ( ), ( )} {1,1, 1,1, 1} iX x X x X x X x X x X x X H X H X T X H X T      ASP1-34 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 35.
    Random Digital Signal •If the random variable is a function of time, it is called a stochastic process CESdSP ASP1-35 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 36.
    Probability Mass Function •We need also to define the probability of each random variable ( ) { ( ), ( ), ( ), ( ), ( )} {1,1, 1,1, 1} X x X H X H X T X H X T    CESdSP ( ) { ( ), ( ), ( ), ( ), ( )} {1,1, 1,1, 1} X x X H X H X T X H X T    ASP1-36 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 37.
    Probability Mass Function •PMF is for Discrete distribution function CESdSP ASP1-37 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 38.
    Time and Emsemble CESdSPASP1-38 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 39.
    Probability of X(2) CESdSPASP1-39 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 40.
    Probability Density Function •PDF is for Continuous Distribution Function CESdSP ASP1-40 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 41.
    CESdSP ASP1-41 EECS0712 AdaptiveSignal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 42.
    Probability Density Function •PDF values can be > 1 as long as its area under curve is 1 2 CESdSP 1/2 2 1 1 ASP1-42 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 43.
    Cumulative Distribution Function CESdSP (( )) Pr[ ( )]P x n X x n x ASP1-43 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 44.
    ( ) ( ()) ( ) x n P x n p z dz   x x CESdSP ( ) ( ( )) ( ) x n P x n p z dz   x x ASP1-44 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 45.
    Expectation Operator {}E  CESdSP {}E ASP1-45 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 46.
    Expected Value • Expectedvalue is known as the “Mean” { } ( )X XE x xp x dx     CESdSP { } ( )X XE x xp x dx     ASP1-46 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 47.
    Example of ExpectedValue (Discrete) • We toss a die N times and get a set of outcomes • Suppose we roll a die with N=6, we might get { ( )} { (1), (2), (3),..., ( )}X i X X X X N • We toss a die N times and get a set of outcomes • Suppose we roll a die with N=6, we might get CESdSP { ( )} { (1), (2), (3),..., ( )}X i X X X X N { ( )} {2,3,6,3,1,1}X i  ASP1-47 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 48.
    Example of ExpectedValue (Discrete) • But, empirically we have Empirical (Monte Carlo) estimate as Expected Value 6 1 { } ( )Pr( ( )) 1 1 1 1 1 2 3 6 3 6 3 6 2.67 X i E x X i X X i              CESdSP 6 1 { } ( )Pr( ( )) 1 1 1 1 1 2 3 6 3 6 3 6 2.67 X i E x X i X X i              ASP1-48 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 49.
    Theoretical Expected Value •But in theory, for a die 6 1 { } ( )Pr( ( )) 1 1 1 1 1 1 1 2 3 4 5 6 6 6 6 6 6 6 3.5 X i E X X i X X i                  1 Pr( ( )) 6 X X i  CESdSP 6 1 { } ( )Pr( ( )) 1 1 1 1 1 1 1 2 3 4 5 6 6 6 6 6 6 6 3.5 X i E X X i X X i                  ASP1-49 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 50.
    Ensemble Average i ensembles 11 2 2Ensemble Average of (1) (1)Pr[ (1)] (1)Pr[ (1)] (1)Pr[ (1)]N N x x x x x x x      1 ensemble CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-50 i ensembles
  • 51.
    Ensemble Average { ()}E x n  CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-51 { ( )} ( ) ( ( )) ( )E x n x n p x n dx n     x { ( )}E x n 
  • 52.
    • I) Linearity CESdSP EECS0712Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-52 { ( ) ( )} { ( )} { ( )}E ax n by n aE x n bE y n  
  • 53.
    • II) { () ( )} { ( )} { ( )}E x n y n E x n E y n CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-53 { ( ) ( )} { ( )} { ( )}E x n y n E x n E y n
  • 54.
    • III) { ()} ( ( )) ( ( )) ( )E y n g x n p x n dx n     x CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-54 { ( )} ( ( )) ( ( )) ( )E y n g x n p x n dx n     x
  • 55.
    Autocorrelation 1 1( ,) { ( ) ( )}r n m E x n x mxx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-55 1 11 1 1 1 1 1( , ) ( ) ( ) ( ( ), ( )) ( ) ( )r n m x n x m p x n x m dx n x m       xx x x
  • 56.
    1 1(1,4) {(1) (4)}r E x xxx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-56
  • 57.
    Autocorrelation • n=m 2 ( ,) ( , ) { ( )}r n m r n n E x n xx xx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-57 2 ( , ) ( , ) { ( )}r n m r n n E x n xx xx
  • 58.
    Autocorrelation Matrix (0,0) (0,1)(0, 1) (1,0) (1,1) (1, 1) ( 1,0) ( 1,1) ( 1, 1) r r r N r r r N r N r N r N N                       xx xx xx xx xx xx xx xx xx xx R      CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-58 (0,0) (0,1) (0, 1) (1,0) (1,1) (1, 1) ( 1,0) ( 1,1) ( 1, 1) r r r N r r r N r N r N r N N                       xx xx xx xx xx xx xx xx xx xx R     
  • 59.
    Covariance ( , ){[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-59 ( , ) {[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx
  • 60.
    Stationarity (I) • I) {( )} { ( )}E x n E x m   n1 CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-60 n2
  • 61.
    Stationarity (II) • II) (, ) { ( ) ( )}r n n m E x n x n m  xx 1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-61 1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx
  • 62.
    Expected Value ofError Energy • Let’s take the expected value of error energy 2 2 2 ˆ ˆ{ } {( ) 2( )( ) ( ) } ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )} ˆ ˆ ˆ{ } 2 {( )( )} { } ˆ ˆ ˆ2 {( )( )} T T T T T T T T T T T T T T T T T T T T E e E E E E E E E E             w x w x w x w x w x x w x w w x w x x w w xx w x w x w w xx w w Rw x w x w w Rw CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-62 2 2 2 ˆ ˆ{ } {( ) 2( )( ) ( ) } ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )} ˆ ˆ ˆ{ } 2 {( )( )} { } ˆ ˆ ˆ2 {( )( )} T T T T T T T T T T T T T T T T T T T T E e E E E E E E E E             w x w x w x w x w x x w x w w x w x x w w xx w x w x w w xx w w Rw x w x w w Rw
  • 63.
    Vector-Matrix Differentiation ˆI) ˆ ˆ ˆˆII) 2 ˆ T T T       w x x w w xx w Rw w CESdSP ˆI) ˆ ˆ ˆ ˆII) 2 ˆ T T T       w x x w w xx w Rw w ASP1-63 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 64.
    Partial diff. andset to zero • Differentiation • Result: ˆ0 2 {( ) } 2 ˆ ˆ2 { } 2 ˆ2 2 T E E d            w x x Rw w x Rw r Rw • Differentiation • Result: CESdSP ˆ0 2 {( ) } 2 ˆ ˆ2 { } 2 ˆ2 2 T E E d            w x x Rw w x Rw r Rw 1 ˆ  w R r ASP1-64 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 65.
    2-D Error surface CESdSP 1 ˆ w R r ASP1-65 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 66.
    Four Basic Classesof Adaptive Signal Processing • I) Identification • II) Inverse Modelling • III) Prediction • IV) Interference Cancelling CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-66 • I) Identification • II) Inverse Modelling • III) Prediction • IV) Interference Cancelling
  • 67.
    The Four Classesof Adaptive Filtering CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-67
  • 68.
    System Identification CESdSP EECS0712 AdaptiveSignal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-68
  • 69.
    Inverse Modelling CESdSP EECS0712 AdaptiveSignal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-69
  • 70.
    Prediction CESdSP EECS0712 Adaptive SignalProcessing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-70
  • 71.
    Interference Canceller CESdSP EECS0712 AdaptiveSignal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-71
  • 72.
    What are welooking for in Adaptive Systems? • Rate of Convergence • Misadjustment • Tracking • Robustness • Computational Complexity • Numerical Properties • Rate of Convergence • Misadjustment • Tracking • Robustness • Computational Complexity • Numerical Properties CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-72