Míriam Bellver
miriam.bellver@bsc.edu
PhD Candidate
Barcelona Supercomputing Center
Instance Segmentation
Day 2 Lecture 4
#DLUPC
http://bit.ly/dlcv2018
Semantic Segmentation
Label every pixel!
Don’t differentiate
instances (cows)
Classic computer
vision problem
Slide Credit: CS231n 2
Instance Segmentation
Detect instances,
give category, label
pixels
“simultaneous
detection and
segmentation” (SDS)
Label are
class-aware and
instance-aware
Slide Credit: CS231n 3
Outline
Instance Segmentation Methods
● Proposal-Based
● Recurrent
● Instance Embedding
4
Proposal-based
Slide Credit: CS231nHariharan et al. Simultaneous Detection and Segmentation. ECCV 2014
External
Segment
proposals
Mask out background
with mean image
Similar to R-CNN, but with segment proposals
5
He et al. Mask R-CNN. ICCV 2017
Proposal-based Instance Segmentation: Mask R-CNN
Faster R-CNN for Pixel Level Segmentation as a parallel prediction of masks
and class labels
6
He et al. Mask R-CNN. ICCV 2017
Mask R-CNN
● Classification & box detection losses are identical to those in Faster R-CNN
● Addition of a new loss term for mask prediction:
The network outputs a K x m x m volume for mask prediction, where K is the
number of categories and m is the size of the mask (square)
7
Mask R-CNN
He et al. Mask R-CNN. ICCV 2017
He et al. Mask R-CNN. ICCV 2017
Mask R-CNN: RoI Align
Reminder: RoI Pool from Fast R-CNN
Hi-res input image:
3 x 800 x 600
with region
proposal
Convolution
and Pooling
Hi-res conv features:
C x H x W
with region proposal
Fully-connected
layers
Max-pool within
each grid cell
RoI conv features:
C x h x w
for region proposal
Fully-connected layers expect
low-res conv features:
C x h x w
x/16 & rounding → misalignment ! + not differentiable
9
Mask R-CNN: RoI Align
10
Roi Pooling example
Figure Credit: Deepsense.aiHe et al. Mask R-CNN. ICCV 2017
Figure Credit: Silvio Galesso
Mask R-CNN: RoI Align
He et al. Mask R-CNN. ICCV 2017
use bilinear
interpolation
12
Limitations of Proposal-based models
13
1. Two objects might share the same bounding box: Only
one will be kept after NMS step.
2. Choice of NMS threshold is application dependant
3. Same pixel can be assigned to multiple instances
4. Number of predictions is limited by the number of
proposals.
Recurrent Instance Segmentation
Romera-Paredes & H.S. Torr. Recurrent Instance Segmentation ECCV 2016
14
Sequential mask generation
Recurrent Instance Segmentation
Romera-Paredes & H.S. Torr. Recurrent Instance Segmentation ECCV 2016 15
Recurrent Semantic Instance Segmentation
Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From
Pixels to Object Sequences: Recurrent Semantic Instance Segmentation.
Recurrent Semantic Instance Segmentation
Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From
Pixels to Object Sequences: Recurrent Semantic Instance Segmentation.
Recurrent Semantic Instance Segmentation
Pascal VOC
Cityscapes
CVPPP
Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From
Pixels to Object Sequences: Recurrent Semantic Instance Segmentation.
Recurrent Semantic Instance Segmentation
Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From
Pixels to Object Sequences: Recurrent Semantic Instance Segmentation.
Object discovery patterns
Instance Embedding
Basis of Instance Embedding Segmentation
● Each pixel in the output of the network is a point in the embedding space
● Pixel belonging to same object are close in the embedding space, and pixels belonging to different
objects, are distant
● Parsing the image embeddings involves some clustering
embedding dimension K
Instance Embedding
Brabandere et al. Semantic Instance Segmentation with a Discriminative Loss Function. CVPRW 2017
Instance Embedding
22
Mapping pixels to a N-dimensional space where pixels belonging to the same object are close to each other.
Results on Cityscapes
Brabandere et al. Semantic Instance Segmentation with a Discriminative Loss Function. CVPRW 2017
Outline
Instance Segmentation Methods
● Proposal-Based
● Recurrent
● Instance Embedding
23
Questions?
24

Instance Segmentation - Míriam Bellver - UPC Barcelona 2018

  • 1.
    Míriam Bellver miriam.bellver@bsc.edu PhD Candidate BarcelonaSupercomputing Center Instance Segmentation Day 2 Lecture 4 #DLUPC http://bit.ly/dlcv2018
  • 2.
    Semantic Segmentation Label everypixel! Don’t differentiate instances (cows) Classic computer vision problem Slide Credit: CS231n 2
  • 3.
    Instance Segmentation Detect instances, givecategory, label pixels “simultaneous detection and segmentation” (SDS) Label are class-aware and instance-aware Slide Credit: CS231n 3
  • 4.
    Outline Instance Segmentation Methods ●Proposal-Based ● Recurrent ● Instance Embedding 4
  • 5.
    Proposal-based Slide Credit: CS231nHariharanet al. Simultaneous Detection and Segmentation. ECCV 2014 External Segment proposals Mask out background with mean image Similar to R-CNN, but with segment proposals 5
  • 6.
    He et al.Mask R-CNN. ICCV 2017 Proposal-based Instance Segmentation: Mask R-CNN Faster R-CNN for Pixel Level Segmentation as a parallel prediction of masks and class labels 6
  • 7.
    He et al.Mask R-CNN. ICCV 2017 Mask R-CNN ● Classification & box detection losses are identical to those in Faster R-CNN ● Addition of a new loss term for mask prediction: The network outputs a K x m x m volume for mask prediction, where K is the number of categories and m is the size of the mask (square) 7
  • 8.
    Mask R-CNN He etal. Mask R-CNN. ICCV 2017
  • 9.
    He et al.Mask R-CNN. ICCV 2017 Mask R-CNN: RoI Align Reminder: RoI Pool from Fast R-CNN Hi-res input image: 3 x 800 x 600 with region proposal Convolution and Pooling Hi-res conv features: C x H x W with region proposal Fully-connected layers Max-pool within each grid cell RoI conv features: C x h x w for region proposal Fully-connected layers expect low-res conv features: C x h x w x/16 & rounding → misalignment ! + not differentiable 9
  • 10.
    Mask R-CNN: RoIAlign 10 Roi Pooling example Figure Credit: Deepsense.aiHe et al. Mask R-CNN. ICCV 2017
  • 11.
    Figure Credit: SilvioGalesso Mask R-CNN: RoI Align He et al. Mask R-CNN. ICCV 2017 use bilinear interpolation
  • 12.
  • 13.
    Limitations of Proposal-basedmodels 13 1. Two objects might share the same bounding box: Only one will be kept after NMS step. 2. Choice of NMS threshold is application dependant 3. Same pixel can be assigned to multiple instances 4. Number of predictions is limited by the number of proposals.
  • 14.
    Recurrent Instance Segmentation Romera-Paredes& H.S. Torr. Recurrent Instance Segmentation ECCV 2016 14 Sequential mask generation
  • 15.
    Recurrent Instance Segmentation Romera-Paredes& H.S. Torr. Recurrent Instance Segmentation ECCV 2016 15
  • 16.
    Recurrent Semantic InstanceSegmentation Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From Pixels to Object Sequences: Recurrent Semantic Instance Segmentation.
  • 17.
    Recurrent Semantic InstanceSegmentation Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From Pixels to Object Sequences: Recurrent Semantic Instance Segmentation.
  • 18.
    Recurrent Semantic InstanceSegmentation Pascal VOC Cityscapes CVPPP Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From Pixels to Object Sequences: Recurrent Semantic Instance Segmentation.
  • 19.
    Recurrent Semantic InstanceSegmentation Salvador, A., Bellver, Campos. V, M., Baradad, M., Marqués, F., Torres, J., & Giro-i-Nieto, X. (2018) From Pixels to Object Sequences: Recurrent Semantic Instance Segmentation. Object discovery patterns
  • 20.
    Instance Embedding Basis ofInstance Embedding Segmentation ● Each pixel in the output of the network is a point in the embedding space ● Pixel belonging to same object are close in the embedding space, and pixels belonging to different objects, are distant ● Parsing the image embeddings involves some clustering embedding dimension K
  • 21.
    Instance Embedding Brabandere etal. Semantic Instance Segmentation with a Discriminative Loss Function. CVPRW 2017
  • 22.
    Instance Embedding 22 Mapping pixelsto a N-dimensional space where pixels belonging to the same object are close to each other. Results on Cityscapes Brabandere et al. Semantic Instance Segmentation with a Discriminative Loss Function. CVPRW 2017
  • 23.
    Outline Instance Segmentation Methods ●Proposal-Based ● Recurrent ● Instance Embedding 23
  • 24.