Physics Helpline
L K Satapathy
Indefinite Integrals 12
Physics Helpline
L K Satapathy
Indefinite Integrals - 12
Answer-1 ( )( )
. .
( )( )
a x a x a x
I dx dx
a x a x a x
  
 
   
2 2
2 , 2 . .
2
dt
For I Put a x t x dx dt x dx      Substitution :
1 22 2 2 2 2 2
.
. .
a x a x dx
dx dx I I
a x a x a x
 
    
  
  
1
1 2 2
sin
dx x
I a a
aa x

  

 2 2 2
.x dx
and I
a x




2 2
2
2
dt
I t C a x C
t
      
1 2 2
1 2 [s ]in
x
I I I a a AnC sx
a

      
Physics Helpline
L K Satapathy
Indefinite Integrals - 12
Answer-2
Substitution : 2 2
tan sec . sec .
dt
Put a x t a x dx dt x dx
a
    
2
2 2 2 2 2 2 2
sec .
sin cos tan
dx x dx
I
a x b x a x b
 
  
2 2
1 dt
I
a t b


11 1
tan
t
C
a b b
 
  
 
1
[ ]
1 tan
tan
a x
C
ab b
Ans  
  
 
11
tan
t
C
ab b

 
1
2 2
1
tan
dx x
using C
x a a a
  
    

Physics Helpline
L K Satapathy
Indefinite Integrals - 12
Answer-3
2
16 6
dx
I
x x

 

2
25 ( 6 9)
dx
x x

  

2
25 9 6
dx
x x

  

2 2
5 ( 3)
dx
x

 

1
[
3
sin
5
]
x
C Ans  
  
 
1
2 2
sin
dx x
using C
aa x
  
  
 

Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

Indefinite Integrals 12

  • 1.
    Physics Helpline L KSatapathy Indefinite Integrals 12
  • 2.
    Physics Helpline L KSatapathy Indefinite Integrals - 12 Answer-1 ( )( ) . . ( )( ) a x a x a x I dx dx a x a x a x          2 2 2 , 2 . . 2 dt For I Put a x t x dx dt x dx      Substitution : 1 22 2 2 2 2 2 . . . a x a x dx dx dx I I a x a x a x              1 1 2 2 sin dx x I a a aa x       2 2 2 .x dx and I a x     2 2 2 2 dt I t C a x C t        1 2 2 1 2 [s ]in x I I I a a AnC sx a        
  • 3.
    Physics Helpline L KSatapathy Indefinite Integrals - 12 Answer-2 Substitution : 2 2 tan sec . sec . dt Put a x t a x dx dt x dx a      2 2 2 2 2 2 2 2 sec . sin cos tan dx x dx I a x b x a x b      2 2 1 dt I a t b   11 1 tan t C a b b        1 [ ] 1 tan tan a x C ab b Ans        11 tan t C ab b    1 2 2 1 tan dx x using C x a a a         
  • 4.
    Physics Helpline L KSatapathy Indefinite Integrals - 12 Answer-3 2 16 6 dx I x x     2 25 ( 6 9) dx x x      2 25 9 6 dx x x      2 2 5 ( 3) dx x     1 [ 3 sin 5 ] x C Ans        1 2 2 sin dx x using C aa x         
  • 5.
    Physics Helpline L KSatapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline