SlideShare a Scribd company logo
TABLE OF CONTENTS




Chapter 1 Vector Analysis 1

Chapter 2 Electrostatics 22

Chapter 3 Special Techniques 42

Chapter 4 Electrostatic Fields in Matter 73

Chapter 5 Magnetostatics 89

Chapter 6 Magnetostatic Fields in Matter 113

Chapter 7 Electrodynamics 125

Chapter 8 Conservation Laws 146

Chapter 9 Electromagnetic Waves 157

Chapter 10 Potentials and Fields 179

Chapter       11    Radiation           195

Chapter 12 Electrodynamics and Relativity 219
Chapter 1

Vector Analysis


(a) Prom the diagram, |B + C| cos^s = |B| cos^i + |C| cos02. Multiply by |A|,
   |A||B + C| cos 03 = |A||B| cos 01 + |A||C| cos 02-
   So: A-(B + C) = A-B + A-C. (Dot product is distributive.)
   Similarly: |B + C| sin 63 = |B| sin 61 + |C| sin62. Muhtply by |A| n.
   |A||B + C| sin03 n = |A||B| sin0i n + |A||C| sin02 n.
   If n is the unit vector pointing out of the page, it follows that
   Ax(B + C) = (AxB) + (AxC). (Cross product is distributive.)
(b) For the general case, see G. E. Hay's Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
   Section 8 (cross product).


   The triple cross-product is not in general associative. For example,
   suppose A = B and C is perpendicular to A, as in the diagram.
   Then (BxC) points out-of-the-page, and Ax(BxC) points down,
   and has magnitude ABC. But (AxB) = 0, so (AxB)xC = 0 ,1^
   Ax(BxC).
Problem 1.3


   A = +lx+ly-lz;A = /3;B = lx+ly + lz;5 = x/3. / ,                           B
   A-B = +1 + 1-1 = l = .45cos0 = /3/3cos0 ^cos0 = i.

   |0 = cos-i(|) (w 70.5288"!                                          Li X _J 1/
Problem 1.4

   The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):
   A = -lx + 2y + 0z;B = -lx + 0y + 3z.
CHAPTER 1. VECTOR ANALYSIS


                X   y   z
   AxB= -1 2 0 =6x + 3y + 2z.
               I -1 0 3 I
This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its

                                          ^   -   AXB
   |AxBi = VSe + 9 + 4 = 7.                               |x+|y+|z
Problem 1.5

                    I          X              y          z           I
   Ax(BxC)=                          Ao;            Ay         ^
                    I iByC,-B,Cy) (B.C^-B^C,) (B^Cy-ByC^) I
              = x[Ay{B.Cy - ByC.) " A,{B,C^ - B^C,)] + y() + z()
               (I'll just check the x-component; the others go the same way.)
              = ±{AyB^Cy - AyByC^ " A.B^C^ + A.B^C,) + y() + z().
   B(A-C) - C(A-B) = [BMxC^ + AyCy + yl^C^) - C^{Aa,B^ + A3,5j, + A,B,)] x + () y + () z
= x(AygxCy + A.B^C, - AyByC^ - A.B^C^) + y() + z(). They agree.
Problem 1.6

   Ax(BxC)+Bx(CxA)+Cx(AxB)=B(A.C)-C(A-B) + C(A-B)-A(C.B)+A(B-C)-B(C.A)=0.
    So: Ax(BxC) - (AxB)xC = -Bx(CxA) = A(B.C) - C(A.B).
If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or
one is zero), or else B-C = B-A — 0, in which case B is perpendicular to A and C (including the case B = 0).
Conclusion: Ax(BxC) = (AxB)xC <=4' either A is parallel to C, or B is perpendicular to A and C. I
Problem 1.7

>t=Dx + 6y + 8z)-Bx + 8y + 7z) = [2x-2y+ z|
-i = V4 + 4+l = [3]

Problem 1.8

(a) AyBy + AzBz = {cos(f>Ay +sm(j)Az){cos(f>By + sm(j)Bz) + {-smcpAy + cos(f>Ai){-sin(f>By +cos05j)
       = cos^ (pAyBy + sin (f> cos (f>{AyBz + A^By) + sin^ (pA^B^ + sin^ 4>'^yBy - sin (f>cos (f>{AyB^ + A^By) +
cos^ (f)AzBz
      = (cos^ (f) + sin^ (f>)AyBy + (sin^ (j) + cos^ (j))AzBz = AyBy + AzBz- /
(b) (Z.J + (Ay)^ + (Az)^ - ^UAA = ^U {T.]^iRijA,) (SLii?,fcAfc) = S,,A (S,iJ,,iJ,,) A,Ak.

This equals Al + AI + A provided '. T.UKR^'c-^ 0 •/ ]^k]
Moreover, if R is to preserve lengths for all vectors A) then this condition is not only sufficient but also
necessary. For suppose A = A,0,0). Then S^,*; (Sj RijRrk) AjAk — Sj RiiRii, and this must equal 1 (since we
wantZj,+Zj,+34j = 1). Likewise, Sf^iiZt2-Ri2 = S^=i-Rj3-Rt3 = 1- To check the case j 7^ k, choose A = A,1,0).
Then we want 2 = Sj,^ (Ej RtjRik) AjAk = Sj R,iRii + Sj Rz2Ri2 + S, RtiRt2 + Sj RtzRii- But we already
know that the first two sums are both 1; the third and fourth are equal, so Sj RtiRi2 = Sj R12R11 = 0, and so
on for other unequal combinations of j", k. / In matrix notation: RR = 1, where R is the transpose of R.
Looking down the axis:            dk

   A 120° rotation carries the z axis into the y (= z) axis, y into x (= y), and x into z (= x). So Ax — Az,

            0 0 1
    i?= ( 1 0 0
            0 1 0

Problem 1.10

(a) I No changeTj (A^ = Ax,^y — Ay, A^ = A^)
(b) IA —>■ -A7^ in the sense {Ax = —A^, Ay = -Aj,, ^^ : -A.)
(c) (AxB) —> (-A)x(-B) = (AxB). That is, if C = AxB, | C —^ C |. No minus sign, in contrast to
behavior of an "ordinary" vector, as given by (b). If A and B are pseudovectors, then (AxB) —> (A) x (B) =
(AxB). So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector
and a pseudovector, one changes sign, the other doesn't, and therefore the cross-product is itself a vector.
Angular momentum (L = rxp) and torque (N = rxF) are pseudovectors.
(d) A-(BxC) —> (-A)-((-B)x(-C)) = -A.(BxC). So, if o = A.(BxC), then | o —? -^ a
changes sign under inversion of coordinates.
Problem 1.11

     (a)V/ = = 2xx + 3y^y + 4z^ z

     F)V/ = = 2a;y= z'^x + Sx^y'^z'^y-i Ax'^y^z^ z

     (c)V/ = = e*si n 2/ In z X -f- e^ cos y Inzy-l-e^ smy{l/z)z

Problem 1.12

(a) V/i = W[{2y - 6x - 18) x + Ba; - 8y + 28) y]. V/i = 0 at summit, so


   22y = 66=^y^3=^2x-2A + 2& = 0^^^x = ~2.
   Top is 13 miles north, 2 miles west, of SouthHadleyJ
(b) Putting in a; = -2, y = 3:
   h = 10(-12 - 12 - 36 -I- 36 -t- 84 -t-12) = | 720 ft. |
(c) Putting in a; = 1, y = 1: Vfe = 10[B - 6 - 18) x + B - 8 -f- 28) y] = 10(-22x 4- 22y) =: 220(- x -f- y).
   |V/i| = 220v^ Pb 1311 ft/mile]; direction: | northwest. |
4       CHAPTER                             1.           VECTOR                          ANALYSIS


Problem 1.13

   * - (a; - x') X + B/ - 2/') y + B - z') z; -> = y/{x - x')^ + {y - y'f + {z - z'f.
(a)V@-^[(a;-a:r + (y-yr + (-^-^')']x+|^()y + ^()i = 2(x-x')x + 2(y-2/')y + 2(z-z'U = 2*.
(b) V(i) = U{x- x'f + {y- y'? + {z - z'?]-h x + f^{)-h y + ^()-^ g
   = _i()-|2(x-x')x-|()-i2(y-y')y-|()-^2(z-z'J
   - -()-i[(x - x')i + B/ - y')y + (^ - ^')z] = -dA^)* = -(lA^)^
(c) ^(*") -n^"->f =n^"-nH2*.) =^^"-''i., so|v(^")^n^"^
Problem 1.14

   y = +2/ cos 0 + z sin </>; multiply by sin </>: j/sin 0 = +j/ sin </> cos </> + z sin^ 0.
   z — —y sin 0 + z cos 0; multiply by cos 0: ?cos 0 = — y sin 0 cos (f)-- z cos^ 0.
   Add: 27sin0 + 2COS0 = z(sin^ 0 + cos^ 0) = z. Likewise, 27cos0 - ?sin0 = y.
   So || = cos 0; ll = - sin 0; |= = sin 0; |= = cos 0. Therefore

    M^ = i^ii"'ii^"'"^'^f^"'^'"t^^{^^oV/transformsa.avector. qed
Problem 1.15


     (o)V-v? = ^(a^') + |?Ca;^') + ^(-2a:2) - 2a; + 0 - 2a; -0.
     F)V.V6 = ^(^^2/) + iBy^) + l -Cxz)=y + 2a; + 3a;.
     (c)V-Vc = £B/') + li-^^y + z' + U^yz) = 0 + Ba;) + By) -2(x + y)-
Problem 1.16


   V-V = f^{^) + l{^) + l,{^) = A [3:(a;2 + y2 + ^2)-|] +|. [j,(^2 + ^2 + ^2)-|] +^ [^(^2 + ^2 + ^2)-|J
        = ()-§ + x(-3/2)()-t2x + ()-§ + y(-3/2)()-i22/ + ()-§ + z(-3/2)()-l22
        - 3r-3 - 3r-5(x2 + y^ + ^2) ^ 3^-3 _ 3^-3 ^ q.
This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from the
origin. How, then, can V-v = 0? The answer is that V'V = 0 everywhere except at the origin, but at the
origin our calculation is no good, since r = 0, and the expression for v blows up. In fact, V-v is infinite at
that one point, and zero elsewhere, as we shall see in Sect. 1.5.
Problem 1.17

   Vy — COS (j)Vy + sm.(j)Vz;vz = — sin (f>Vy + cos 0 v^.
   ^ - ^ COS0 + % sin0 = (^f| + I^H) COS0+ (^1 + ^H) sin0. Use result in Prob. 1.14:
      = (^ COS0+ ^ sin0) COS0+ (^ COS0+ ^ sin0) sin0.
   ^ = -^ sin0+ %- COS0 = - (^i + ^i) sin0+ (^i| + ^i) cos0
      - - (-^ sin0+ ^ COS0) sin0+ (-^ sin0+ ^ cos0) cos0. So
^ + ^ ^ 1^ cos2 0 + ^ sin0cos0 + ^ sin0cos0 + %■ sin^ 0 + ^ sin^ 0 - |^ sin0cos0
-^ sm0cos0 + ^
                        ^ (cos^0 + sin^0) + ^ (sm^0 + cos^0) = ^ + ^. /
                    X       y         z
                    0                 a
(a) Vxv? =                  i
                                     a?        = x@ - 6x2) + y@ + 2z) + z{3z^ - 0) = -6xzyi + 2zy+ 32"^ z.
               X^ 3xz' -2a;z
                X               z
                        y
                0               a

                        1?      51
                                          =
                                              x@ - 2y) + y@ - 82) + z@ - a;) = |-2yx-3zy - a:z. |
               a;2/ 2yz 3a;z


(c) Vxv, =                                       = xB2 - 22) + y@ - 0) + zBy - 2y) = [o7]
                        {2xy + ^2) 2yz
Problem 1.19

  V = y X + X y; on V = yz X + xz y + xy z; or V = {3x^z - 2^) x + 3 y + (a;^ - Zxz^) z;
  or V = (sin a;) (cosh J/) x - (cosa;)(sinhj/) y; etc.
Problem 1.20


(i)V(/,) = Mx+M5. + M2=(/|.+,|£Mc+(/|| + ,g)y+(/if+,il)z
      = f{^^+lly+^^)+9{U^+%y+U^)=fi'^9) + 9{'^f). qed
(iv) V.(AxB) = £ [AyB, - A,By) + §-^ {A,B, - A,B,) + ^ {A.By - AyB.)
               =^Ay'-t + B.'-t-A.'-t-By'-t + A.^ + Bj-^~A.'-t-B.'-^
                    ^A^'-t + By'-t-^y'-t-B.'-t
           -B.[^-'-t)-^By{^-^-t)^B.[^-^-^)-A.[^-^-§f)
                -^.(l^-l^)-^^(^-^)=B-(VxA)-A.(VxB). qec
(V) Vx (/A) = (^ - 5IIM) 5t + (^IM^ - ?i|M) y + BiM^ - ^^



              = /(VxA)-Ax(V/). qed
Problem 1.21


(a)(A.V)B=(A.^ + ^,^ + ^.^)x+(^.^ + A,^ + A.^)y


  [(f.V)fL = ^(x£+,4; + zf)-
6     CHAPTER                         1.           VECTOR                       ANALYSIS




  Same goes for the other components. Hence: (f-V) f = 0 .

(c) (v?.V) V6 =(x^^+ 3xz^^ - 2xz^) [xy x + 2y2y + 3a;2 z)
            = x^ B/ X + 0 y + 32 z) + 3x2^ (a; x + 22 y + 0 z) - 2x2 @ x + 2?/ y + 3a; z)
            = (x^y + 3x22^) X + Fx2^ - 4xy2) y + Cx^2 - 6x^2) z
            = I x2 B/ + 322) ^ ^ 2x2 C2^ - 22/) y - 3x^22 I
  Problem                          1.22                 ~        ~~~~

(ii) [V(A.B)], = £(A.5. + AyBy + A,B.) = S^B. + A,^ + ^By + Ay^ + M.B, + a,^
  [Ax{VxB)l^AyiVxB),-A.iVxB)y::.Ay{?t-^)-M^-^)
  [Bx(VxA)L = B,(^-^)-B.(^-^)
  [iA.y7)Bl = {A.£ + Ay^ + A.^^)B. = A.^ + Ay^ + A.^
  [(B.V)A], = B,S^ + By^ + B,^
  So[Ax(VxB)+Bx(VxA) + (A-V)B + (B-V)A]^
     = Ay^ oxAy^ ay A,^ oz A,^ox By^ - y oy" ^ oz H" B,^
         y -  y  - ^ + ^ + y ox By^           ^^^ * ox



     = [V(A-B)]jj (same for y and 2)
(vi) [Vx(AxB)], = ^{AxB),--§-^{AxB)y = ^{A^By-AyB^)--l^{A,B^-A^B,)
                    - aj, ^y + ^X gy Sf^X Ay gy g^ H^ ^ Z -Q^ + Q^ ^J 4" ^X "gj^
  [(B-V)A - (A.V)B + A(V.B) - B(V.A)]x
   = B.^ + By^-^ + B.^-A.^-Ay^^-A.S^ + A4^-t + '-^ + '-t)-Bx{^ + '-^ + '-t)

      + M-^)+M-t)+B4^)
   = [Vx(AxB)]j, (same for y and 2)
Problem 1.23

    v(//ff) = -LUl9)^ + -§-y{fl9)y + Ufl9)i
            ^ ^fJT/ltx+^iM^y + ^ii^z

    V-(A/ff) = ^(A./5) + |;(A,/ff) + ^(A./5)

               - 1 L ?M^ 4- Ma. 4. M^^i ^( A ^4-/4 ^4-/4 ^"^1 - aV-A-A-Vg ,
               - 5^ [5^^ ax + aj, + a^ ; V^^a?+^2'aj,+^^a^;J - ^ P ^- ^^^
IMvlg)




Problem 1.24

                 y   z
(a) AxB =        2y Zz := xFxz) + y{9zy) + i{-2x^ - 6y^)
                -2x 0


  V.(AxB) = ^i6xz) + ^i9zy) + ^(-2x2 - 6y^) =6z + 9z + 0 = 15z
  VxA = X [^(Zz) - ^By)) + y {^{x) - £Cz)) + z (£By) - ^(x)) = 0; B-(VxA) = 0
  VXB = X A^@) - ^(-2x)) + y {^{Zy) ~ ^@)) + z (^(-2x) - ^{3y)) = -5z; A.(VxB) --
  V-(AxB) ^ B.(Vx A) - A.(VxB) = 0 - (-15z) = 15^. /
(b) A-B = 3a;y - 4a;y = -xy ; V(A.B) = V{-xy) = x£(-a;y) + y|^(-xy) =      -xy



  Ax(VxB) = X 2y Zz = x(-10y)+yEa;); Bx(VxA) = 0
                 0   0-5


  (A.V)B = (a;^ + 2y^ + Zz^) Cy x - 2a;y) = xFy) + y(-2a;)
  (B.V)A = C2/^ - 2a;|;) (a; X + 2y y + Zz z) = xCy) + y(-4a;)
  Ax(VxB) + Bx(VxA) + (A.V)B + (B-V)A
     = -10yx + 5a;y+ 6yx-2a;y+ 3yx-4a;y = -yx-xy = V-(A-B). /

(c) Vx(AxB) - X (|^(-2x2 - 62/2) - ^(9^2/)) + y (^Fa;z) - ^(-2x2 - 6y2)) + z (£{9zy) - |^ Fxz))
      = x(-12y - 9y) + yFx + 4x) + z@) = -21yx + lOxy

  V-A = ^(x) + ^By) + ^Cz) = 1 + 2 + 3 - 6; V-B = ^Cy) + ^{-2x) - 0
  (B-V)A - (A.V)B + A(V.B) - B(V-A) = 3y x - 4x y - 6y x + 2x y - 18y x + 12x y = -21y x
      =              Vx(AxB)./
Problem 1.25

(a) ^ = 2; ^ = ^ = 0 =!> I V2r? = 2.1
                                      -3r6 =


(c) 0 = 25T, ; 0^ = -ler, ; ^ = -9T, ^  S/^T, = 0. |
id) ^^2;^ = ^=0 ^ W^v^=2
    li^ = ^=0;|^-6x => V
CHAPTER 1. VECTOR ANALYSIS


Problem 1.26


      ■(V XV) -ai[-gf--gf) + si{^-^) + g^[-a^--S^)
        - (& - fe) + (fe - fe) + (& - fe) = 0' by equality of cross-derivatives.
   PromProb. 1.18: Vxvt =-2yx - 3zy - xz ^ V.(VXV6) = ^(-2y) + ^(-82) + ^(-a;) = 0. /
Problem 1.27 =========================^^ ====__

   Vx(Vi)-                           _ ,->/ a't a't  , ,%( a't a^i  . a^ a''t e^t^


        = 0, by equality of cross-derivatives.
   In Prob. 1.11(b), V/ - 2xy'^z^ x + Zx'^y'^z^ y + 4x^^323 z, so
       I X y z ■
   Vx(V/)= ^ ^ ^
                  I 2xy^z'* 3a;^y3;j;4 4a;2j^3^
   = xC • 4x^y^z3 _ 4 . 3a;2y2^3) ^ ^^D . 2xy^z^ - 2 • 4a;y3^3) + ^B . 3a:y2;^4 - 3 • 2xy^z'^) = 0. /
Problem 1.28

(a) @,0,0)—> A,0,0). a;:0-^l,y = z = 0;dl = da;x;v-dl = x2da;;/v-dl = /o'a;2da. = (a.3/3)|i^l/3
   A,0,0) —> A,1,0). x= l,j/ :0-> l,z = 0;cfl = dj/y;v-dl = 2j/2d2/ = 0;/v-dl = 0.
   A,1,0) —^ A, l,l).x = y = 1, z: 0 -> 1; dl = d^ z; v • dl = y^ ^z = dz; / v • dl = /(J dz = z|J = 1.
    Total: / V • dl = A/3) + 0 + 1 = |4/3.|
(b) @,0,0) —> @,0,1). a; = 2/= 0,2:0->l;dl = d2z; vdl = 2/2 dz = 0;/v dl = 0.
   @,0,1) —)• @,1,1). a; = 0,y : 0-> 1,2 = l;dl = dyy;v-dl = 2y2dy = 2j/dy;/ vdl =/o 2j/dy = j/2|i ^ 1
   @,1,1) —)• A,1,1). X : 0 -> 1, y = z = 1; dl = da;x; v • dl = a;^ da;; / v • dl = /? a;^ da; = (a;3/3)|J = 1/3.
    Total: / V • dl = 0 -)-1 + A/3) = 14/3. |
(c) X = y = z : 0 -> 1; da; = dy = dz; V • dl = a;2 da; + 2yz dy + y^dz = j? dx + 2a;^ da; -)- a;^ da; = 4a;^ da;;
 / V • dl = /o' 4a;2 da; = Da;3/3)|S - [l/s]
(d)/vdl=D/3)-D/3) = [0l| ____^__
Problem 1.29

x,y : 0 -> l,z = 0;da - dxdyz;v ■ da = y(z^ - Z)dxdy = -Zydxdy;Jv ■ da = -Zj^dx^^ydy =
-3(a;|o)Dlo) = -3B)B) = 112. | In Ex. 1.7 we got 20, for the same boundary line (the square in the a;y-
plane), so the answer is |no: | the surface integral does not depend only on the boundary line. The total flux
for the cube is 20 + 12 = |32. |
Problem 1.30

jTdr = J z^ dxdy dz. You can do the integrals in any order—here it is simplest to save z for last:

                                                l''[l{h)'"h
The sloping surface isa; + y + z=l,so the x integral is /q ^ ^ da; = 1 - y - z. For a given z, y ranges from 0 to
1 - z, so the y integral is J^'-'^ {l-y-z)dy = [il-z)y- (y 72)]!^'^ = il-z)^-[{l- zf/l] = A - 2) V2 =
A/2) - z + (zV2). Finally, the z integral is ll zW - ^ + 4) dz = /o'D - z^ + 4) dz = (^ - ^ + '^) =
-e-
Problem 1.31
                                        +               T6                        =       W^
   T(b) = 1 + 4 + 2-7; T(a) = 0. => | T(b) - T(a) ^tTJ
   VT = Ba; + 4y)x + Da; + 2z^)y + {6yz^)z; VT-dl = Ba; + 4y)da; + Da; + 2x^)dy + {6yz'^)dz

(a) Segment 1: x : 0-^1, y = z = dy = dz = 0. ^VT-dl = /^ Ba;) dx = x'^l = 1.
    Segment 2: !/: 0 -> 1, a; = 1, 2 = 0, da; = dz = O./VT-dl = /q D)dy = 4y|J = 4.  jl^T-di = 7. /
   Segment 3: z:0-^l, a; = y = l, dar = dy = O./VT-dl = J^{Qz'^)dz = 2z3|J = 2.
(b) Segment 1; 0-^1, a; = y = da; = dy = 0. /VT-dl = /? @) dz = 0.
    Segment 3; 00 -^ 1, ya;= = 0,1, dy1, dz = =0.dz/VT-dl = Jl{2x + 4) da; = 2y|J = 2. J^ VT-dl = 7. /
    Segment
            2: -> 1, 2 = 2 = = da;                   = O./VT-dl = Jq B)dy
                    (a;2+4a;)|; = l + 4 = 5.
(c) a;: 0 ->■ 1, y = x, z = x^, dy = dxdz = 2xdx.
   VT-dl = {2x + 4x)dx + Da; + 2a;^)da; + Fa;a;'*Ja; da; = A0a; + 14a;?)dx.

   f^ VT-dl = /o A0a; + 14a;?')da; = (Sa;^ + 2x'^)l = 5 + 2 = 7./
Problem 1.32

   V-v = y + 2z + 3a;

    Ji'V'v)dT = /(y + 2z + Zx) dxdydz = J J {/q (y + 2z + 3a;) dx}dydz
                ^[iy + 2z)x[y2+ +lx']l+ =6)y]l = +4 2z)+6+ =6)/{/oBj/16+ 4z + 6)dy}dz
                        M-        {4z
                                           2{y + 2Dz = 8z +
                = f^iSz + 16)dz = D^2 + 16z) lo = 16 + 32 = [IsTI
  Numbering the surfaces as in Fig. 1.29:

   (i) da = dy dz X, a; = 2. v-da = 2y dy dz. /v-da = //2y dy dz = 2y^ |o — ^•
   (ii) da = —dydz%x = 0. v-da = 0. Jv-d& = 0.
   (iii) dsL — dxdzy,y = 2. v-da =:Azdx dz. JvdsL = JjAz dx dz = 16.
   (iv) da = -da;dzy,y = 0. v-da = 0./v-da = 0.
   (v) da = dx dy z, z = 2. v-da = 6a; da; dy. /v-da = 24.
   (vi) da = —da; dy z, 2; = 0. v-da = 0. /v-da = 0.
   ^     /v-da               =      8       +     16        +      24         =      48   /
Problem 1.33

   Vxv = x@-2y) + y@ - 32) + z@ - a;) = -2yit-3zy - xz.
   da = dy dz x, if we agree that the path integral shall run counterclockwise. So
   (Vxv)-da = -2ydydz.
CHAPTER 1. VECTOR ANALYSIS




   /(Vxv)-da = j{j^-'i-2y)dy}dz
                             ^y^l-' = -{2-zr
                 = -J^i4-4z + z^)dz = -[4z-2z' + i)l
  Meanwhile, vdl = (a;j/)da; + {2yz)dy + {Zzx)dz. There are three segments.




  {l)x = z = Q; da; = dz = 0. y : 0 -^ 2. /vdl = 0.
  B) a; = 0; z = 2-y dx = 0, dz = -dy, y : 2 -^ 0. vdl = 2yzdy.
       /vdl = /° 2y{2 - y)dy = - J^i4y - 2y')dy = - {2y^ - y^) |J = - (8 - | • 8) = -|.
  C) a; = 2/ = 0; da; = dy = 0; 2:2-^0. v-dl = 0. /v-dl = 0. So /v-dl = -|. /
Problem 1.34

  By Corollary 1, /(Vxv)'da should equal |. Vxv = {4z^ - 2x)± + 2zz.
  (i) da = dyd2x, a; = 1; y,2 : 0 -^ 1. (Vxv).da = {4z^ - 2)dydz; /(Vxv).da = /^ D^2 _ 2)dz

  (ii) da = -dxdyz, z = 0; x,y:0^1. (Vxv).da = 0; /(Vxv)-da = 0.
  (ill) da = da;d2y, y = 1; x,z:0^1. (Vxv)-da = 0; /(Vxv)-da = 0.
  (iv) da = -dxdzy, y = 0; a;,z : 0 -^ 1. (Vxv).da = 0; /(Vxv)-da = 0.
  (v) da = da;dyz, z = 1; a;,y : 0-^ 1. (Vxv)-da = 2dxdy; /(Vxv)-da = 2.
  =i>/(Vxv)-da=-|                                               +       2=|.               /
Problem 1.35

 (a) Use the product rule Vx(/A) = /(VxA) -Ax (V/) :

        /"/(VxA).da=^5 ^5x (V/)] • da = / /A-dl+ /"[A x (V/)] • da. qed.
       75
                    /" Vx(/A)-da+ /"[A ./P    ^5

    (I used Stokes' theorem in the last step.)
 (b) Use the product rule V-(A x B) = B • (VxA) - A ■ (VxB) :

     /"B-(VxA)dr= /" V.(AxB)dr+ /" A(VxB)dr= /(AxB)da+ / A-(VxB)dr. qed.
    (I used the divergence theorem in the last step.)
Problem 1.36 r = i/a;2 +y^+ z"^; 9 = cos'^                                     P=tan-i(f),
Problem 1.37

There are many ways to do this one—probably the most illuminating way is to work it out by trigonometry
from Fig. 1.36. The most systematic approach is to study the expression:

                             r = x^ + yy + zz = rsmOcos<^x + TsinOsm(f)y + rcosOz.

If I only vary r slightly, then dr = ^(r)dr is a short vector pointing in the direction of increase in r. To make
it a unit vector, I must divide by its length. Thus:




   1^ = sin0cos0x + sin0sin0y + cos0z; |^| = sin^ 0cos^ 0 + sin^ 0sin^ ^ + cos^ 0 = 1.
   If = r cos ^ cos 0X + r cos 0 sin 0y - >" sin 0 z; 11| | = r^ cos^ 6 cos^ <j!> + r^ cos^ 9 sin^ (p + r"^ sm^ 9 =
                                               sin^z;

   dit)            flsin^x + rsin^cos^y; |0| =                            + r-' sin"" 6 cos'' (p - r^ sin"" (

          f — sin 9 cos ^ X + sin 0 sin 0y + COS0Z.
          e = cos 9 COS (f)jt + cos 9sm(f)y - sin 9 z.
          0 = — sin^x + cos0y.
     Check: f-f = sin^ ^(cos^ 0 + sin^ 0) + cos=^ 9 = sin^ 9 + cos^ 9 = 1, /
              9-^=:-cos9sm(f)cos<l> + cos9sm(f)cos(f) = 0, / etc.
   sin9r = sin^ 0cos0x + sin^ 9sm(j>y + sin9cos9z.
   cos90 = cos^ 9cos(j)x. + cos^6sin0y — sin^cos9z.
Add these:
    A) sinfif + cos^e ^+cos0x + sin^y;
    B) 4> - -sm(f)Tt + cos<py.
Multiply A) by cos0, B) by sin0, and subtract:


                                        h=- sinfl COS^f + COS0 COS 00 - sin 0 0.1
Multiply A) by sin0, B) by cos0,, and add:
                                   and add:


                                        |j == sinS sin 0 f + COS 9 sin 0 0 + cos (j) 0.1
   cos^f = sin0cos0cos0x + sin0cos0sin0y+ cos2(
   sin ^ 0 = sin 9 cos 0 cos 0 x + sin 9 cos ^ sin 0 y - sin^ (
Subtract these:
CHAPTER 1. VECTOR ANALYSIS


Problem 1.38

(a) V-v, = ^i:{r^r^) - ^4^^ = 4r
   /(V-v,)dr = f{4r)ir^sin0drded,f>) ^ {4) J^r^dr J^ sin0d0 Jl^dcj, = D) (^) B)B7r) =^¥
   /vi-da - /(r2f).(r2 sin^d^d^f) = r" /J" sin0d0f^' d<j) = 4nR'^ / (iVote; at surface of sphere r = /2.)
(b) V.V2-J.|:(r2 4,)=:0 =^ /(V.V2)dr = 0
   /v2-da = /(^f) (r2sin6ld6l#f) = JsinOdOd^) = [i^
They rfon'i agree! The point is that this divergence is zero except at the origin, where it blows up, so our
calculation of /(V-V2) is incorrect. The right answer is 4ir.
Problem 1.39

    V-v = 4,|,(r2rcos0) + ;:^^(sin0rsin0) + ^^(rsin0cos0)
            — ^ 3r^ cos 9 + ^gl^g r 2 sin 0 cos 0 + j^^ r sin 0{— sin 0)
            = 3cos0 + 2cos^ — sin0 = 5cos0 — sin0

   J{V-v)dT = /E cos 0 - sin 0) r^ sin 0 dr d0 d(f> = f^ r^ dr j} U^""E cos 0 - sin 0) d^l dB sin 0
                                                                                                                    M'27rEcos0)
   = (f )A07r)//sine cos 0,d0
                              -^-^1^ = 1

   Two surfaces—one the hemisphere: da = i?^ sin 0 d0 d0 f; r =^ R; 0 : 0 ->■ 27r, 0 : 0 -> |.
       Jv-da = J{rcos0)R^ sin0d0d(t) - R^ // sin0cos0d0 J^" d<j) = R^ (|) {2-k) = ttR^.
   other the flat bottom: da = (dr)(r sin 0d0)(+0) = rdrd(j>e (here 0 = f). r : 0 -^ J?, 0 : 0 -> 27r.
       /v.da = /(r sin 0)(r drd0) = J^ r"" dr J^"' d(f, = 2n^.
   Total: Jv-da. = ttR^ + ^nR^ = ^nR^ /
Problem 1.40 Vt = (cos0+ sin0cos0)f + (-sin0 + cos0cos0H+ -:AT-(-si)if0sin0)^
    W'H = V-{Vt)

           = ^ (r2(cos0 + sin0cos0) + ^Jj^ (sin0(-sin0+ cos0cos0) + ^ri^ {-sin(j) — -^ 2r(cos0 + sin6cos0) + ^ l^ (-2sin0cos0 + cos^ 0cos0 - sin^ 0cos0) - ^:^t^ cos0
          = 7^^ [2 sin 0COS 0 + 2 sin^ 0 cos 0 - 2 sin 0Cos 0 + cos^ 0 cos 0 - sin^ 0 cos 0 - cos 0]
          = j^ [(sin^ 0 + cos^ 0) cos 0 - cos 0] = 0.
       ^ [Vh = 01
Check: rcos0 = z, rsin0cos(f> — x ^ in Cartesian coordinates t = x + z. Obviously, Laplacian is ze:

Gradient Theorem: f^ Vt-di = f (b) - f (a)
   Segment i; 0 = f, 0 = 0, r : 0 -> 2. dl = drf; Vt-dl = (cos0 + sin0cos0)dr = @ + I)dr = dr.
                  fVt-d[ = f^dr = 2.
   Segment g; 0 = f, r = 2, 0 : 0 -> f. dl = rsin0d00 = 2d0^.
                  Vf-dl = (-sin0)Bd0) = -2sin0d0. /Vf-dl = - f^ 2sin<pdcp = 2cos0|| = -2.
Segment 3: r = 2, 0 = f; 0 : f -^ 0.
                         dl = rdee = 2d0e; Vf-dl= (-sm0 + cos0cos0)Bd0) = -2smed9.
                         JVt-dl^-J°2smedd^ 2cos0|l =2.
     Tota/; /^'' Vf-dl = 2-2 + 2 = [2]. Meanwhile, f (b) - f (a) = [2A + 0)] - [0( )] = 2. /
Problem 1.41 Prom Fig. 1.42, s = COS0X +sin</iy; 0 = — sin</ix + cos</iy; z = z
    Multiply first by cos 0, second by sin <p, and subtract:
          s cos 0 — ^ sin 0 = cos^ 0 x + cos 0 sin 0 y + sin^ 0 x — sin 0 cos 0 y = x(sin^ 0 + cos^ 0) = x.
    So X = cos 0 s — sin 0 0.
    Multiply first by sin 0, second by cos 0, and add:
       s sin 0 + 0 cos 0 = sin 0 cos 0 x + sin^ 0 y - sin 0 cos 0 x + cos^ 0 y = y(sin^ 0 + cos^ 0) = y•
    So y = sin0§ + cos00. |z = z. |
Problem 1.42

(a) V-v = i^(ssB + sin2 0))+i^(ssin0cos0) + ^Cz)
                   = i 2sB + sin^ 0) + 7 s(cos2 0 - sin^ 0) + 3
                   = 4 + 2 sin^ 0 + cos^ 0 - sin^ 0 + 3
                   = 4 + sin^ 0 + cos^ 0 + 3 = [sT]
(b) /(V-v)dr = /(8)sds d<pdz = 8 f^ s ds J^ d<j) f^ dz = 8B) (f) E) = 140n. 
    Meanwhile, the surface integral has five parts:

    top: z = 5, da — sdsdcj) z; v-da = 3z s ds d0 = 15s ds d0. /v-da = 15 /^ s ds f^' d(f) = 157r. bottom: z = 0, da = —sdsdcpz; v-da = —Zzsds-dcj) = 0. /v-da = 0.
    back: 0 = f, da = ds dz 0; V'da = s sin 0 cos (j)dsdz = 0. J v-da = 0.

    left: 0 = 0, da = —ds dz 0; v-da = —s sin 0 cos (pdsdz = 0. fv'da = 0. front: s = 2, da = sd(j>dz s; v-da = sB + sin^ 0)s d0dz = 4B + sin^ 0)d0dz.
              Jvda = 4/o? B + sin2 0)d0/o dz = D)Gr + f )E) = 257r.
    So /vda = 157r + 257r = AOtt. /

(c) Vxv = (i^Cz)-^(ssin0cos0))s+(^(sB + sin2 0))-^Cz)H
           + J {mi^^sin0cos0) - ^ (sB + sin20))) z
                     = ^Bssin0cos0 - s2sin0cos0) = [qT]
Problem 1.43

(a) 3C2) _ 2C) _ 1 ^ 27 - 6 - 1 = [2071
(b)cos7r = m
(c) I zero. I
(d) ln(-2 + 3) = In 1 = [^eroT]
Problem 1.44

(a) f_^{2x + 3)|<J(a:) dx = |@ + 3) = [I]
(b) By Eq. 1.94, 5A - a;) = 5(x - 1), so 1 + 3 + 2 = [gT]
CHAPTER 1. VECTOR ANALYSIS




(d)|l(ifa>6), 0(ifa<6O|
Problem 1.45

(a) JZo /(^) [^^<^(^)] d^ = xnx)dix)C^ - jr^ £ ixfix)) 5{x) dx.
   The first term is zero, since 5{x) = 0 at ±oo; ^ {x f{x)) -x^ +^f = x§^ + f.
   So the integral is - /^ {x% + /) 5{x) dx ^ 0 - /(O) = -/(O) = - fZo fi^)^i^) dx.
   So, x£S{x) = -Six), qed
(b) !Zo m^dx = fix)eix)'^^ - fZ, fj{x)dx = /(CO) - /o°° £dx = /(oo) - (/(oo) - /(O))
    - m - /.Too /(^)'^(a:) da:. So £ = <5(x). qed
Problem 1.46

(a) p{r)^q5^{r-r'). Check: /p(r)dr = q f5^{r - r') dr = q. /

(c) Evidently p{r) = AS{r — R). To determine the constant A, we require
      Q^JpdT = jASir - iZL7rr2 dr = A47riZ2. So A = 4^. p{r) = ^5{r - R).
Problem 1.47

(a) a^ + a-a + a"^ - |3a^.|
(b)/(r-bJ^53(r)dr = ^62 = ^D2+32) = g]
(c) c^ = 25 + 9 + 4 = 38 > 36 = 6^, so c is outside V, so the integral is
(d) (e - Bx + 2y + 2z))^ = (Ix + Oy + (-1) z)^ = 1 + 1 = 2 < A.5J ^ 2.25, so e is ins
   and hence the integral is e-(d - e) = C,2, l)-(-2,0,2) = -6 + 0 + 2 = [T]
Problem                                   1.48                      ~~
First method: use Eq. 1.99 to write J = / e"'' D7r5^(r)) dr = 47re"° = |47r.|
Second method: integrating by parts (use Eq. 1.59).


          J ^ - / 4 • "^(^"'■) dr+ ie-"-—- da. But V (e-"-) = (§^e~'') f = -
                    V              5



              = / -^e~''A7rr^ dr + / e"""-^ • r^sinfld^d^f = 47r / e~''dr + e~^ / sin
                  47r (-e-'-) |~ + 4ne-^ = Att (-6"°° + e"") - 47r./ (Here R =              -0.)


Problem 1.49 (a) V-Fi = £{0) + ^@) + ^ (x^) = [o]; V-F^ = ^ + ^ + ^ = 1+ 1 + 1 =[z]
                        X y z                                                   X   y   z

                                          -y^(x^)=E23= ^x^^ =
                        ^ .a. A                                                 a   a   a
                        Sx 8y dz                                                dx di m = 0
                         0 0 a;2                                                x   y   z
IF2 is a gradient; Fi is a curl [ rt/2 = ^ (a;^ + 2/^ + 2^H would do (F2 = VU2).
For Ai, we want (^ - ^) = (^ - ^) - 0; ^-^=x^. Ay = ^, A^ = A, :^ 0 would do it.
Ai = |x^ y (Fi — Vx Ai). (But these are not unique.)

(b) V.F3 = ^(yz) + ^{xz) + f^ixy) = 0; VXF3                                z x{x-x) + y {y-y) + z{z-z) = 0
                                                           yz xz xy 
So F3 can be written as the gradient of a scalar (F3 = VC/3) and as the curl of a vector (F3 = VXA3). In
fact, Uz — xyz does the job. For the vector potential, we have


                  dy dz = yz, which suggests A^ - y'^z + f{x,z) Ay = -yz'^ + g{x,y)
                          = xz, suggesting Ax = z'^x + h{x,y); Az = -zx^ + Jiy,z)
                          = xy, so Ay = x^y+ k{y,z); Ax =-xy'^+l{x,y)

Putting this all together: A3 = j {x [z^ - J/^) x + y (a;^ — z^)y + z (y^ — a;^) z} (again, not unique).
Problem 1,50
(d) =i' (a): VxF = Vx(-VC/) = 0 (Eq. 1.44 - curl of gradient is always zero).
(a) ^ (c): fF-d[ = /(VxF) • da -: 0 (Eq. 1.57-Stokes' theorem).
(c)^(b):/^>.dl-/^V-'^l = /a>-^ + /bV.dl=i^F.dl = 0,so

                                            / F.dl= / Fdl.
                                           ■/a / Ja II

(b) ^ (c): same as (c) ^ (b), only in reverse; (c) =^ (a): same as (a)^ (c).
Problem 1.51
(d) ^ (a); V-F = V'(VxW) = 0 (Eq 1.46—divergence of curl is always zero).
(a) ^ (c); §F -da- /(V-F) dr = 0 (Eq. 1.56—divergence theorem).
(c) ^ (b): /^ F • da - /r^ F • da - f F • da = 0, so

                                             /Fda= f I
                                             Ji  Jii

{Note: sign change because for ^ F • da, da is outward, whereas for surface II it is inward.)
(b) ^ (c): same as (c) ^ (b), in reverse; (c)^ (a): same as (a)^ (c) .
Problem 1.52

In Prob. 1.15 we found that V-Vg = 0; in Prob. 1.18 we found that Vxvc = 0. So
  Vc can be written as the gradient of a scalar; Vo can be written as the curl of a vector. E
 (a) To find t:

      A) ^=^y'^t^y^x + f{y,z)
      B) IL={2xy + z^)
      C) t - 2yz
CHAPTER 1. VECTOR ANALYSIS



      Prom A) & C) we get % =2yz =^ f = yz^ + g{y) =^ t = y^x + yz^ + g{y), so ^ = 2xy + 2^ + || =
      2xy + z^ (from B)) =*■ || = 0. We may as well pick 5 = 0; then | f = xy^ + yz^. 
 (b)TofindW: ^ - ^ = a^^l ^"^ : Zz'^x;
      Pick ly^ = 0; then


                                     dx   = -3xz2 =>W, = -^x^z^ + f{y, z)
                                    dWy = -2xz^Wy==-x'^z + g{y,z).
                                     dx


                    = i^ + ^' - if = ^' ^ S - if = 0- May as well pick / = g = 0.


      Check: VxW =                               = X (x2) + y Cx22) + 2 (_2xz)./
                             0 -x^z -^xh
      You can add any gradient (V*) to W without changing its curl, so this answer is far from unique. Some
      other solutions:

      W = xz^x — x^zy;
      W = [2xyz + xz^) X + x'^y z;
      W = xyz X - ^x^z y + ^x^ [y - 32^) g.
Probelm 1.53




             W = l|.(r2r2cos0) + -l^^(sin0r2cos.^) = -^-|-(-r2cos0sm^)
                    = -x^r^ cos0 H r-^ cos0r^ cos 6 + —r-T f-r^ cosfl cos0)

                    = . [4 sin 0 + cos 0 - cos 0] = 4r cos 9.




                 l{V-)dT = I {4r cose)r^sinedr ded<f> = 4 I r^ dr I cose sine de I d^


Surface consists of four parts:
A) Curved: dsL = R^ sineded<pT; r = R. v ■ da = (J?^cose) (i?^;
                                          7r/2            7r/2                ^
                           f vd& = R'' f cose sine de f d(i> = R''U (|)=r![|-.
B) Left: da = -rdrdd^; 0 = 0. v • da = (r^ cos^sin^) {rdrdB) = 0. /v • da = 0.
C) Back: da = rdrde^; cj) = 7r/2. v • da = (-r^ cos 9 sin 0) (r dr dB) = -r^ cos 0 dr d9

                           /"vda= Ir^dr f cos9de = -(^R^^{+l) = -^R*.
                                      0       0


D) Bottom: da = r sin dr d(jN; 9 = i^j^. v • da = [r^ cos 0) (r dr d(f)).
                                                  R   7r/2

                                     / V • da = r^dr / cos^d^ = -i?''.
                                                  0    0



rota/; f V • da = 7riZV4 + 0 - ii?" + iij4 ^ 2l|l. /
Problem 1.54 =======================================^ =__
        ■ X y z I
          £ ^ ^ =z(fe-a). So /(Vxv)-da=F-aOr/22.
          ay bx 0 I
vdl= (ayx + 6a;y) • (tfccx+ dyy+ dzz) = aydx + bxdy; x^ + y"^ = R"^ =i' 2xdx + 2ydy = 0,
so dy = —{x/y) dx. So v • dl = aydx + bx{-x/y) dx = ^ [ay"^ — bx^) dx.
For the "upper" semicircle, y = y/R"^ — x^, so v • dl = ° vna- a " ^^-

 |v.dl = |£^lz(i±M :|aiZ2sin-i(£)-(a + 6)[-|v^
             a/^^
                                                                                • a;-* + -r- sm
                                                                                                  ■(I)

           = ^R-'ia - b) sn-xlR) ^ = Ra - b) (sin-i(-l) - sin-H+l)) = Ra - b) (-| - |)
           = IwR-'ib-a).
And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) so
§ydl                        =          7rR^{b-a).                                                    /
Problem 1.55 =========::==.=^...==.=..::===== = =
{I) x = z = 0; dx = dz = 0; y : 0 -^ 1. v ■ dl - {y + 3x) dy = y dy.
                                              1       1



                                              J vdl= I ydy = -.
                                              0       0


B) X = 0; 2 = 2 - 2y; dz = -2dy; j/ : 1 -> 0. v • dl = (y + 3a;) dy + 6dz = ydy - 12dy = (y - 12) dy.
                                          0




                             |v.dl = y(y-12)dy = -Q-12)=-i + 12.
C) X = y = 0; da; = dy = 0; z : 2 -^ 0. v • dl = 6dz;
                                                        0


                                              fvdl= f6dz=-l2.
CHAPTER 1. VECTOR ANALYSIS


    Total: ,fv-dl= ^-| + 12-12 = [or|
Meanwhile, Stokes' thereom says /v • dl = /(Vxv) • da. Here da = dydz it, so all we need is
(Vxv)^ = ^{6) - ^{y + 3x) = 0. Therefore /(Vxv) • da = 0. /
Problem 1.56
Start at the origin.
 A) 0=1, 0 = 0; r:0->l. v • dl = (rcos^0) (dr) = 0. /v-dl = 0.

 B) r=l, e = ^; (f>-.0-^71/2. v • dl = Cr)(rsin0d0) = 3d0. /v • dl = 3 / d0 = ^.
                                                                              0



 C) (f> — f; rsinO — y = 1, so r = ^^, dr = ^^^cosOdO, 0 : | -> j.
                          / 9 ?N ,, ^ , ? ?^/ ,^x cos^0 / cosO , , cos0!
             v-dl = (rcos^0)(dr -(rcos^sin^ (rd^ =^-Z- T^]dtheta -,
                          ^    '^     '    ^    sm0          V     sin^^y         sin^
                            /cos^g cosg _ cosg /cos^g + sin'^gN cosg
                            Vsin^^ sin^y ~ sin0 I, sin^0 / ~ sin^0
      Therefore

                        f rn- 7 ^°^^ r/ft- ^ r^"- ^ ^-1_i-l
                       /"' y sin^fl'"^" 2sin2 0L/2 .(l/2) 2-(l)-^ 2-2"
 D) 61 = f, 0 = f; r : v^ -^ 0. v • dl = (r cos^ 9) (dr) = ^rdr.
                                    r     1    r     ir'^f           1    1




Stokes' theorem says this should equal /(Vxv) • da



                       + - [|-(-rr cos0sin0) - ^ (rcos^^)] 4>

                  - Scoter-60.

 A) Back face: da ^-r dr d9 4); (Vxv)-da-iO. /(Vxv)-da = 0.
 B) Bottom: da - -rsinOdrdcp6; (Vxv) -da — 6rsm0drd<l). 0 = |, so (Vxv) • da = 6rd
                                                       n/2


                                j{Vxv)-da^ j Qrdr j d<j,A. Q---^ ^'^
                                                     '
                                                         = ?.!.___   2 2 ■
Problem 1.57
V •dl = ydz.

 A) Left side: z = a-x; dz = -dx; y = 0. Therefore / v • dl = 0.
 B) Bottom: dz = 0. Therefore / v • dl = 0.

 {3) Back: z = a-^y; dz = -l/2dy; y:2a^0. fvdl=fy{-^dy) = -^^° = ^ =^
Meanwhile, Vxv = x, so /(Vxv) • da is the projection of this surface on the xy plane = - a-2a — c?. /
Problem                    1.58         ~~~~~              ~~~~            """


               V.v = 41- ('•''•' si" ^) + ^ 4 (si" ^ 4r2 cos Q) + ^ ~ (r^ tan 0)
                       = 4r^ sin e + -^4r^ (cos" 9 - sin^ 9)^-^ (sin^ 0 + cos^ 9 - sin^ 0)
                          , cos2 0
                             smp




Av-v) dr ^ f Dr^) (r' sin ^ dr d0 d<j>) = / r3 dr f cos^ 9dd fd<P= {R') B7r) [^ + ^11
                                                      0        0         0




Surface consists of two parts:

 A) The ice cream: r - R; (p :0 ^ 2n; 9 :0 ^ n/6; da = R'^ sin 9 d9 d(f> f; v-da = (J?^ sin 0) (J?^ sin 0 d0 d0) ==
     /ZSin^ 61 d0d0.


      /" v-da = /?"/' sin2 9 dJd j d<i> 0 [^9 - ^° = 27:/?" (^^ " | sin 60°^ " ^ ('^ ~ ^"T )
                   0
                                        = {R"^) {2n) sin 2^] ^ ^                 ^

 B) Tfte cone: 0 = f; 0 : 0 -^ 27r; r : 0 -^ J?; da = rsin0d0dr0 = ^rdrd^S; v • da = x/Sr^ drd^

                                 /"v • da = v/3 /r^dr /d0 = ^/3 ~ • 27r = ^Tri?".
                                              0     0




     Therefore / v • da = ^^ (f - ^^ + ^/3) = 2^ B7r + 3n/3) . /
Problem 1.59
(a) Corollary 2 says f (VT) -dl = 0. Stokes' theorem says f (VT) -dl = /[V x (VT)] -da. So /[V x (VT)] -da = 0,
and since this is true for any surface, the integrand must vanish: Vx(VT) = 0, confirming Eq. 1.44.
20         CHAPTER                          1.       VECTOR                     ANALYSIS


(b) Corollary 2 says/(Vxv)-da = 0. Divergence theorem says/(Vxv)-da = / V'(Vxv)dr. So/V'(Vxv)dr
= 0, and since this is true for any volume, the integrand must vanish: V(VXv) =0, confirming Eq. 1.46.
Problem 1.60
   (a) Divergence theorem: /v • da = /(V-v) dr. Let v = cT, where c is a constant vector. Using product
rule #5 in front cover: V-v = V-(cT) = r(V-c) + c • (VT). But c is constant so V-c = 0. Therefore we have:
/c • (VT) dr — jTc- da. Since c is constant, take it outside the integrals: c • / VTdr = c • /Tda. But c
is any constant vector—in particular, it could be be x, or y, or z—so each component of the integral on left
equals corresponding component on the right, and hence

                                                                  qed


   (b) Let V ^ (v X c) in divergence theorem. Then / V'(v x c)dr = /(v x c) • da. Product rule #6 ^
V-(v X c) = c • (Vxv) - V • (Vxc) = c • (Vxv). (Note: Vxc = 0, since c is constant.) Meanwhile vector
identity A) says da • (v x c) = c • (da x v) = —c • (v x da). Thus /c • (Vxv) dr = — /c • (v x da). Take c
outside, and again let c be x, y, z then:

                                       / (Vxv) dr - - V xda.
   (c) Let V = TVC/ in divergence theorem: / V-(TVf/) dr - J TVU-da. Product rule #E) => V-(TVC/) =
TV-(Vf/) + (Vf/) • (VT) = TV2[/ + (VC/) • (VT). Therefore

                             I {TV^U + (VC/) • (VT)) dr = [(TVU) ■ da. qed
   (d) Rewrite (c) with T <^ U : J {UW^T + (VT) • (VC/)) dr = J{UVT)-dai. Subtract this from (c), noting
that the (VC/) ■ (VT) terms cancel:

                            I {TV^U - UV^T) dr = [{TVU - UVT) ■ da. qed
    (e) Stoke's theorem: /(Vxv) • da = /v ■ dl. Let v = cT. By Product Rule #G): Vx(cT) = T(Vxc) -
c X (VT) = -c X (VT) (since c is constant). Therefore, - /(c x (VT)) ■ da = /To • dl. Use vector indentity
#1 to rewrite the first terra (c x (VT)) • da = c • (VT x da). So - / c • (VT x da) = /c • Tdl. Pull c outside,
and let c ->■ x, y, and z to prove:

                                        / VTxda = -ATdl. qed
Problem 1.61
(a) da = R^ sin 9dJ9dij)T. Let the surface be the northern hemisphere. The x and y components clearly integrate
to zero, and the z component of r is cos 6, so


            a= f R^smecoseded(f>z = 2nR'^z r singcosgdg = 2nR^ z^^^"^^ =  nR^ z.]
(b) Let T = 1 in Prob. 1.60(a). Then VT = 0, so /da = 0. qed.
(c) This follows from (b). For suppose aj 7^ a2; then if you put them together to make a closed surface,
/ da = ai - a2 7^ 0.
(d) For one such triangle, da = |(r x dl) (since r x dl is the area of the parallelogram, and the direction is
perpendicular to the surface), so for the entire conical surface, a = | /r x dl.
(e) Let T = c • r, and use product rule #4: VT = V(c • r) = c x (Vxr) + (c • V)r. But Vxr = 0, and (c-V)r= {cx-§i + ^?^ +Ci^)(a;x + ?/y = zz) - CxX + Cyy + c^z = c. So Prob. 1.60(e) says
            /Tdl= i{c-T)d = - f{VT)xd&=- /cxda = -cx /da =                                                                       -c X a = a X c.




Problem 1.62




        For a sphere of radius R:

                      /vda = f {^t)-{R^ sine d9d<i>t)=Rf sine d0d<j) = A7rR. ]
                                                                                              (R  I So divergence
                                                                                              fdrUf sineded<j>) = A-kR. f theorem checks.
        Evidently there is no delta function at the origin.


                                ^^ ('•"'^ = hi ('•''•") = hWr ('•"^'^ = ;^(" + 2)r"+> =|(n + 2)r"-^|
         (except for n — —2, for which we already know (Eq. 1.99) that the divergence is 47r5^(r)).
  B) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives | zero. |
        To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using
        Prob. 1.60(b): If Vx(r"f) = 0, then /(Vxv)dr = 0 = -§v x da. But v = r"f and da =
        I?sinedJ9dij)T sie both in the f directions, so v x da = 0. /
Chapter 2

Electrostatics

Problem 2.1

(a) I Zero. |

(b)
            47reo T where r is the distance from center to each numeral. F points toward the missing q.
      lanation: by superposition, this is equivalent to (a), with an extra -g at 6 o'clock—since the force of all
twelve is zero, the net folrce is that of —q only,

(c) I Zero. I

(d) 147reo pointing toward the missing q. Same reason as (b). Note, however, that if you explained (b) a
       qQ r^
a cancellation in pairs of opposite charges A o'clock against 7 o'clock; 2 against 8, etc.), with one unpaired q
doing the job, then you'll need a different explanation for (d).
Problem 2.2

(a) "Horizontal" components cancel. Net vertical field is: Ez = '^r^'§^ cos9.                 y
                                                      2qz
                  -(r
                                            4-0 (,2+AJ^
When z ? d you're so far away it just looks like a single charge 2q; the field
should reduce to E = j^^ff z. And it does (just set d —> 0 in the formula).
(b) This time the "vertical" components cancel, leaving
      E=4i^2^sin0x,or

      E = 47reo
Prom far away, {z ? d), the field goes like E w ^^Fj^fr z, which, as we shall see, is the field of a dipole. (If we
set d —> 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge
from far away, the net charge is zero, so E -> 0.)
^ +x^; cos9 = |) )se; (-^2


              dq = Xdx




               [{-'*7A^)^^{7^)i
For z^ L you expect it to look like a point charge q — XL: E - -^z. It checks, for with 2 ? L the x
term -^ 0, and the z term -¥ 4^^772-
Problem 2.4

  From Ex. 2.1, with L -^ | and z -> yz^ + (|) (distance from center of edge to P), field of one edge h
                                    1 Ao El-
                                          47reo ^22 + ^^^2 + 0^ + 3^'
  There are 4 sides, and we want vertical components only, so multiply by 4cos0 = 4 , '

                                                        4Aaz


                                      E= z 1 (-^ + f)
                                           47reo




                           "Horizontal" components cancel, leaving: E = ^^ {/^ cos^} z.
                           Here, -i^ = r^ + z^, cos0 = | (both constants), while Jdl = 2irr. So

                                    1 AB7rr)z
                                ' 4^ (^2 + ^2K/2

Problem 2.6
   Break it into rings of radius r, and thickness dr, and use Prob. 2.5 to express the field of each ring. Total
charge of a ring is a ■ 27rr • dr = X- 2nr, so A = adr is the "line charge" of each ring.

                               1 {adrJnrz _ ^ ^ [^ r ,
CHAPTER 2. ELECTROSTATICS



For i? > 2 the second term -^ 0, so Epiane = 4^'^''^^''

For z ?/2, ^^gl^ - i A + f )~'^'? i A - If^), so [
   and £; = ji^^^ =i^§s, where Q - TriZV. /
Problem 2.7

   E is clearly in the z direction. Prom the diagram,
   dq — ada — aR^ sin $
   -i2^i?2+z2-2iZzc(




   = J_ f crR^ sin 2/2z cos 61K/2
^ ~ 47r£o y (i?2 +                              Jd(f> = 27r.
                             B-i?cosg)sing                                                       0^u = +l 1
                                                                 = COS 9 du = - sin
                               22 -2iJz cos 61K/2

      47reo                        - 2Rzu)y- r^du. Integral can be done by partial fractions—or look it up.
        1                     zu-R
      47r£o              Vi?2 + z2 _ 2Rzu. 47reo z^ (jz-R) i-z +- R J'
                                            1 27rJZV {z-R z R) ]
For z > iZ (outside the sphere), -E^ = 5^
For z < /2 (inside), E^ = 0, so |E = 0. |
Problem 2.8
   According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge
were concentrated at the center, while all exterior shells contribute nothing. Therefore:


                                               E(r) = 47reo -f,
where Qmt is the total charge interior to the point. Outside the sphere, all the charge is interior, so


                                                 E = - 47reor
Inside the sphere, only that fraction of the total which is interior to the point counts:



                              " |7riZ3^ " R^ Q, so E = 47reoiZ3^r2 47reo R^
Problem 2.9

(a) p ^ eo V- E =: eo;nr^ (r^ • kr^) = eo^k{5r^) = | Sepfcr^ [
(b) By Gauss's law: Qenc = co/E • da = eo{kR^)i4nR'^) = |47reofci?^|
   By direct integration: Qenc = fpdr = J^{5 okr^)i4nr'^dr) = 20n ok J^r'^dr = AneokR^V
Problem 2.10
   Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface
of this larger cube gets the same flux as every other one, so:


                                          / E • da = — / E • da.



The latter is ^-q, by Gauss's law. Therefore /             ■ 24eo'




    /;;;;ZIZ:;X^ Gaussian surface: Inside: / E • da = Eiinr"^) = ^Qenc = 0 =i? | E ^ 0. L
    ( ( "F7 ) " Gaussian surface: Outside: E{A7rr^) = ^(aiTtR^) ^ E = ^ f. J >- (As in Prob. 2.7.)

Problem 2.12


                     - Gaussian surface    /E-da = E ■ 47tr^ ^ ^Qenc = = i|7rrV So

 u                                                               ^=i-o^'-
  ^    ^
Problem 2.13
                                           Since (Jtot =3"' ^'p^^=ik ;^f (as in Prob. 2.8).

                      Gaussian surface
                 t       /
                 ^

          (] [) Y J                                      E = -^s (same as Ex. 2.1).
                                                             2neos
               7"
Problem 2.14


                      Gaussian surface /E • da = S • Anr"^ = j^Qenc = 7^ Jp^t = 7^ K^^)(^^ ^^"^'^^'^

                                          E = -±-nkrH
                                                 47reo
CHAPTER 2. ELECTROSTATICS


Problem 2.15

    (i) Qenc = 0, SO I E = 0. I
    (ii) §E-da = E{A7tr^) = ^Qenc = j^fpdT = j^J^f^sin6dfd9dphi
           = ^Jldf=^{r-a): '-ii:-^y
    (iii) £D7rr2) = ^J^df=^ib- a), so


Problem 2.16




    •(^m                              - Gaussian surface    §E-da = E-2ns-l = j^Qeuc = j^P^s'^h


                                      - Gaussian surface



   ,., Q Fi                                                 §E.dsi = E-2ns-l= ^Oenc = ^iOTra^/;




              Q Yyy
                                         Gaussian surface

   (iii)

               r—^




Problem 2.17
   On the xz plane E — Qhy symmetry. Set up a Gaussian "pillbox" with one face in this plane and the
other at y.



                                  Gaussian pillbox / E • da = g • ^ = ^Qenc = T^Ayp;
                                                                          (for y < d).
<?enc = iiAdp =^ E = —dy (for y > d).




Problem 2.18

   Rrom Prob. 2.12, the field inside the positive sphere is E+ = 3f-r+, where r+ is the vector from the positive
center to the point in question. Likewise, the field of the negative sphere is — g^-r-. So the total field is




           VxE = Vx / -^pdr = / Vx [ -T I pdr (since p depends on r', not r)
                     47reo J i^ 47reo 7 [ * / J

                  = 0 (since Vx ( ^ j =0, from Prob. 1.62).
Problem 2.20


   A) VxEi =                           = k [x@ - 2y) + y@ - Zz) + z@ - a;)] ^ 0,
                    xy 2yz Zzx
0 El is an impossible electrostatic field.


   B) VxEz = fc                              = k [x{2z - 2z) + y@ - 0) + zBy - 2y)] =
                          2xy + z^ 2yz
so E2 is a possible electrostatic field.
   Let's go by the indicated path:

       E • dl = (y2 dx + {2xy + z^)dy + 2yzdz)k                                         •(a;o.yo,2o)
   Step I: y = z = 0;dy = dz = O.E-dl. = ky^^ = 0.
   Step II: X = xo, y : 0 -^ yo, z = 0. dx = dz — 0.
            E-dl = k{2xy + z'^)dy = 2kxoy dy.
            JjjE'dl = 2kxoJ^°ydy^kxoyl                                X"
   Step III: X = xo, y = yo, z : 0 -> zq; dx = dy = 0.
CHAPTER 2. ELECTROSTATICS


               E . dl = 2kyzdz = 2kyQzdz.
               Jjjj E . dl = 2yok J^° zdz = kyoz^.

      V{xo,yo,zo) = - 7 E . dl = -k{xoyl + yoz^), or v{x,y,z) ^ -kixy"^ + yz'^).
      Check: -■VV=k[-^{xy''+yz')it+-^{xy''+yz^)$+-^{xy'+yz'')i]=kly'S.+Bxy+z'')y+2yzZ]=B /
Problem 2.21


      nr) = -X;E.dl. {Outside thethe sphere {r i?)R)::'E^-^^i^r.
                          Inside
                                  sphere (r > < E = ^—-^rr.
                                                               Q 1
So for r > iZ: F(r) = -/; (jJ^^) df = j5^9 (i) [             47r£o r'

and for r < R: F(r) = - J^ (^^^) dr - f^, {^-^r) df=^^[^--^ {^


      When r>R,VV=-^^{i:)T= —^^r, so E = -VF = j^^rf. /
When r<R,VV = j^^j: {s-^)f= j^ A J-w) ? - -J^S^?; ^o ^ = "W ^ ^^^rf./
Problem 2.22

      E = 45fj-^s (Prob. 2.13). In this case we cannot set the reference point at oo, since the charge i
extends to oo. Let's set it at s = a. Then


        V I Ja V47r,Eo s J 4^^^ Va/
(In this form it is clear why a = oo would be no good—likewise the other "natural" point, o = 0.)
      VV = - j^2A4 (In (f)) s = -7;^2Ais = -E. /
Problem 2.23

      V{0) = -/^E . dl = -XL(^^)dr-/;(^^)dr - f^{0)dr = { -^(ln(f)+a(i-i))
          Hl-f-ln(f)-l + f}=|^<^)-
Problem 2.24
      Using Eq. 2.22 and the fields from Prob. 2.16:

      FF)-F@) = -/o'E.dl = -/;E.dl-/?*E.dl=-2f^/;sds-|f^/?*ids

           =-F)C-tS'-i'=-^(^^""c)
Problem 2.25


(a)
               V-^+df
i^)y=^j-LM^ =



W ^ = 4^/o''5? = 4i^2^^ (V^^^"^)ir - ^ (n/^^
  In each case, by symmetry |^ = ^ = 0.

                                                                (agrees with Prob. 2.2a).




           47rfo y/z^+L^                                                   (agrees with Ex. 2.1).



WE = -4{l7H^2.-l}z                                                   with Prob. 2.6).

  If the right-hand charge in (a) is -q, then v = o], which, naively, suggests E = - VV = 0, in contradiction
with the answer to Prob. 2.2b. The point is that we only know V on the z axis, and from this we cannot
hope to compute -Sx = -f^ or J5j, = — ^. That was OK in part (a), because we knew from symmetry that
Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insufficient to determine E.
Problem 2.26
                                                                 2iTa 1 , /T-,, ah




                                   - I V ,.- -r ■<■' - V ^■<^'- -r -r= iiiv^ V/l2 + -^2 - V^/W + 2? - V2/1)

 = _^ [ft+-^lnB/H-272/1-^2/1)-ft-y=lnB/i-V2/i)] - —^= ~ [lnB/H-V2/i) - lnB/i-V2/1)]
     0 V2-V2; 4eo ^ 2 J - ln(l + V2).
  .'. F(a) - F(b) =         - In(l + V2)] .
CHAPTER 2. ELECTROSTATICS


Problem 2.27

  Cut the cylinder into slabs, as shown in the figure, and
  use result of Prob. 2.25c, with z -¥ x and a -> pdx:

         J (ViZ2 + x2 - x) dx

     2f^i [xVE"" +x^ + K' ln(x + ^R^ + x2) --^Ji; -L/2

      i%|(-+*)/?='+(-+*)='-(-t)/?=+(-t [•+^+/?=+(-+^ri -4
                                    ='+fl=ln L^-*+/?=+(^-^rJ
{Note: -{z+ f)' + (z - f)' = -z^ - zL - ^ + ^2 _ ;jL + ^ ^ _2zL.)




                                         U+| + ^2+(;,+ |J ,_L+^^2+(,_|Jj J
                                                             1      1




             L-^R^.[z.l)^R^.(z-iy
Problem 2.28


  Orient axes so P is on 2; axis.



     _ ^ pg f Here p is constant, dr = r^ sin 9 drd
       ^^i^J* { ^ = Vz'^+T'^-2rzcos9.
  ^^■dro I Vz^+J-lrzcole 'Jo '^'f> = 27r.

  lo v.^+r^'-Lcose'^^^^z (Vr2 + z2 _ 2rzcos0) 1^ = 5^ (Vr^ + z^ + 2rz - Vr^ + 22 _ 2rz)

                             '•-^'^^^ |r z) I 2/r ,ifr>z. J
Butp= ^, so V{z) = ^jly [r^ _ 4) = 5-2.^ C- ^) V{r] SttcoR V ^V
Problem 2.29


      V^y = 4;^V2/(f )dr = ji^ //9(r')(V2|)dr (since p is a function of r', not r)
      = ^fpin-^^SHr - r')] dr = -^p(r). / ___=^___
Problem 2.30.



(a) Ex. 2.4: Eabove = af^n; Ebeiow = "if^" (n always pointing up); Eabove - Ebeiow = ^n- /
      Ex. 2.5: At each surface, J5 = 0 one side and E = f- other side, so AE — f^. /

      Prob. 2.11: Eout = ^f = ^f; Esn = 0; so AE = ^f. /

(b)            ■ L"'- j^ Outside: /E • da = E{27rs)l - j^Qenc = ^B7ri?)/ ^ E = ^f i = ^i (at surface).
                                          = 0, so E = 0. .-. AE = -2^8. /




(c) Fout = S = ^ (at surface); T^? = ^^ ; so Kut = Kn- /
      ^ = -& = -^ (at surface); ^ = 0 ; so ^ - ^ = -^. /
Problem 2.31




      .-. ^4=9^- 47reoa 


(b) W^i = 0, W^2 = 5^^ {^); W,^^^ (;fe-^);^4 = (see(a)).
CHAPTER 2. ELECTROSTATICS


Problem 2,32


   (a) ly = I JpVdT. Prom Prob. 2.21 (or Prob. 2.28): V = ^ (^R"^ - ^^ = ^^^ (z- ^^
               -IpJ-J-T '^-^-=^4-mr&i^<
                2^47reo2J?yo

                 5eo 5eo fTrii^ 47reo VS-R;

   (b) ly = f jE^dr. Outside {r > R) E = ^^^r ; Inside {r < R) E = ^^-^rr.



                          1 Q

                       47reo 2 I V t-/ U ^^  5 / |o J 47reo 2 R 5R) 47reo 5 iZ''
                       47reo 2


   (c) W — ^ { jij VE • da + JyE'^dr}, where V is large enough to enclose all the charge, but otherwise
arbitrary. Let's use a sphere of radius a> R. Here V = 4^^-



                                                      4n

               1 eof q' K , 4nq^ -m
             ' 2  D7reoJ o '^ D7reoJ 5iZ "^ (Anco)^

             - J_^/I 4. J_ _ 1 + i = J_^g! ' 47reo 2la5J? a R) 47reo 5 i?
As o -> 00, the contribution from the surface integral f^^^fs) goes to zero, while the volume integral
(i^^fsdl - 1)) picks up the slack.
Problem 2.33

                        dW = dqV = dq{ J -, {q = charge on sphere of radius r).
                                                 47reo/ r

                                                                 {q = total charge on sphere).


                                           r^dr. dq = Anrdrp^j;^qdr^-
                                                1 (qr'l(Zq , _ 1 Zq,

                             W=J-^-^rr^dr=-^^^^^(^'-]/
                                47reo R^ Jo 47reo -R^ 5 4neo5 RJ'
Problem 2.34

  (a.)W = f J E'^ dr. E = ^^ (o < r < 6), zero elsewhere.
                                            rb 1
                                                     Sttco   :i-i)
  (b) W, ■■ ^4.^^2 = 8^^, ^^ = j^^rir>a),E2 = j^^r{r>b). So
^1 • ^2 = D;?^) 1^. ('^ > *). and hence /Ej • E2 dr = - C;^) q^ /~ ^47rr2dr =
Problem 2.35




  (b) y(o) =
               -C^''^--lLi^o^)dr-i:iO)dr-J^^{^^)dr-f^iO)dr = ^^{l + ^-l)
  (c) r^TTo] (the charge "drains off"); V{0) = - f^{0)dr - !^{^^^)dr - f^{0)dr = U- (| - ^)
  obk m2.36


  (a)
                                     1 9a + ?6
               4x0^'


  (b) *'out - ~. 0 r, where r = vector fron


  (c) ^o ~ 1 'T^a> ■'^6 ~ 7 2^6' where Fo (rt) is the vector from center of cavity a [b).
                                  where Fo
               1 cu / a M/i CO / 6 I

  (d)[z^
  (e) ffji changes (but not Ga or o-ft); Eoutside changes (but not Ea or Eft); force on qa and qb still zero.
Problem 2.37
  Between the plates, E = 0; outside the plates E = a/ta = Q/eoA. So

                                      p_£^p2_£o_Q^.
                                            2      e2^2 - 2eoA2 ■

Problem 2.38

  Inside, E = 0; outside, E = j^J^^f; so

  F, = lf,da = j{^m^^§,)coseRHmeded<f>
        i-A^f^-i:''^^^^osede = ^^{^f {'jsinH);/' = ^^{^f 32nR-^eo'
34                                                                          CHAPTER 2. ELECTROSTATICS


Problem 2.39
     Say the charge on the inner cylinder is Q, for a length L. The field is given by Gauss's law:
     /E • da = J5 • 27rs • L — -j^Qenc = j-Q ^ E = ^^^ ^ j s. Potential difference between the cylinders is

                        m-V(a) = -/'E.,iI = -5^^'l* = -                     2ntQL

As set up here, a is at the higher potential, so V = V'(a) - V{h) = ^^ ^ In (^).

     C = ^ = YJhJ' ^° capacitance per unit length is 27reo l"(i)'
Problem 2.40


(a) W — (force) x (distance) = (pressure) x (area) x (distance)


(b) W — (energy per unit volume) x (decrease in volume) = (eo'x) (-^^)- Same as (a), confirming that the
energy              lost          is       equal            to      the       work                done.                 ^^
Problem 2.41


     From Prob. 2.4, the field at height z above the center of a square loop (side a) is
                                                                                            i
                                                                                           'Ai///y//y///////////////.
                                          E=J: B ^^°^7,2 + si
                                            47reo J. si) ,
                                                                                            I ^"T          _^
Here X -¥ a^ (see figure), and we integrate over a from 0 to a:
                                                                                                '.iiiiii:""i"^ii^
                       1    r    ada       a^
                   E = 2az I . . Let u = —, so ada =
                      47reo Jo B + ^ ^ L2 , ^ 4
                                       V' ^ A )  -^ ^2


                      = 47reo Jo (u + %= = ^ '- tan- z ^ z j
                         -1-4.. r' z'^)/2u + z^ ttco (:/^±Z]
                      = ^tan-M -^ -tan ^1) ?;



                                        tan-^Vl + ^,-J
     a -> 00 (infinite plane): E — ^ [tan ^@0) — f ] = ^ (f - f) = ^- /
     z > a (point charge): Let f{x) = tan~^ VH-a; — f, and expand as a Taylor series:
Here /(O) = tan-^l) - f = f - f = 0; /'(x) = rR^|;^ = 2B^jy7TT^. ?0 /'(O) = i. so



Thus (since ^ = ^ ? 1), g <:. |^ (j^) = 3^^ = ^4r- /
Problem 2.42

                             ? ^ ( I d f 2^^ 1 ^ /5sin0cos01


                                                                   ^{A-Bsm(j)).

Problem 2.43

   Rrom Prob. 2.12, the field inside a uniformly charged sphere is: E = 4;f7"^r. So the force per unit volume
isf = pE = A^3) Da-t^ita)r = ^C;^) ""i ^"d the force in the z direction on dr is:

                           dF, = f,dT=j- D^) rcos^Cr^sin^drd^d^).
The total force on the "northern" hemisphere is:




                                    3 / Q y fR' l^sin^gr B7r) =                  3Q^
                                                                                64neoRP''

Problem 2.44



        Kenter47reo -da = / da = R-5{27tR^)R =2eo
               = / J '!■ 47reo     J 47reo
                                               —-

                                         sine dO,
  Vpole= 1^J-J^'^^''^[,2 == n^ + R:' 2J?2cos6l = 2J?2(l-cos0).
            y^^j ■ L. i da 27rR^ si
        _ 47reo J?v^ 70 ^/^ -cos0 ~ 2V2eo BvT^
           1 ai27rR'^) VI gingdg _ (xR

        ■^<'-°' "' .-. Fpole - Vcenter = g(^-'-
                /2eo'
Problem 2.45
  First let's determine the electric field inside and outside the sphere, using Gauss's law:


    eo$E = eo^Ttr'^E = Q
                                   = /.* = /(^)r= sin.*-d.<i* = 4.*|f3* = H'^, J'^ < ?|;
CHAPTER 2. ELECTROSTATICS


SoE^J^r^f{r<R); E=^f(r>iZ).
   Method I:




            'Hi^rii>^^i:>}-m^'^{-i):hm^-:


                 W = ^fpVdT (Eq. 2.43).




                      27rfc2 ( Ri ilf^ nk^R-r .
                       3eo 1 4 4 7 J 2 - 3eo V^V 7eo
Problem 2.46


            E = -W =
                               ,(^),...(:hil.^^^}.                        Ae-^'-(H-Ar)-

p = £o V- E = eoA {e-^^(l + Ar) V- (^) + ^ • V (e-^'-(l + Ar))}. But V- {^) = 47r(j3(r) (Eq. 1.99), and
e-^'-(H-ArM3(r) =<J3(r) (Eq. 1.88). Meanwhile,
   V (e-^'-(l + Ar)) = r|r (e-^'-(l + Ar)) = f {-Ae-^'-(l + Ar) + e-^^} = f(-AVe--
So ^ ■ V (e-^'-(l + Ar)) - -^e"-         p = eoA 47r<J3(r) A2

         Q= IpdT = toA Ia-k fd^ir) dT - A^ f^—47rr^dr = eoA Utt - A247r / re-^''dr j .
But /o°° re-^''dr = ^,soQ = Att^oA (l- ^^ = | zero. |
Problem 2.47


(a) Potential of +A is V^ = ~2^^'^ (^)' where s+ is distance from A+ (Prob. 2.22).
   Potential of —A is VL = +5^^" (^), where s_ is distance from A_.
(x,2/,^)
                27reo V?+/J
  Now s+ = y/iy -a)^ + z"^, and s_ - /(y + aJ +z^, so
                                                    jy + a)'
                                                    {y - aJ + z2

(b) Equipotentials are given by [^+°]5:]:^2 - e('*"^°^°/''^) =k^ constant. That is:
  y2 + 2ay + a^ + z^ = A;(y2 - 2ay + o?+ z^) =;> y2(^ _ j) ^ ^2(^ _ 1) ^ ^2(^ _ 1) _ 2ay{k + 1) = 0, or
  j/^ + 2^ 4- a2 _ 2^2/ [l^ j = 0. The equation for a circle, with center at (j/o, 0) and radius R, is
  (j/ - 2/0)' + Z2 = /?2, or y2 + Z2 + (^2 _ JJ2) _ 2yy^ = Q.
  Evidently the equipotentials are circles, with yo = a( |^ j and
   .2 _ ,,2 _ d2 _. d2 _ ,,2 _ ?2 _ ?2 /'Mi'^ - o^ — ?2 (fc^+2fc+l-*;^+2fc-l) _ 2 4*
  i? = ^^ ; or, in terms of Vq:




Problem 2.48


(a)V2y =:-f (Eq. 2.24), so


(b) qV = mv^

{c) dq - Ap dx ; ^ = ap^ = I Apv = 11 (constant). {Note: p, hence also /, is negative.)
38                                                                           CHAPTER 2. ELECTROSTATICS


                                                   cPV
                                   eoAy 2qV " dx^ pv~'/^ where /3
     {Note: I is negative, so /3 is positive; q is positive.)
(e) Multiply by F' - ^ :

                 ^'^ " ^^"'^'^ ^ Z"^'*^^' = /^/^"'^'^ ^ ^^'' = 2/3y'/2 + constant.
But F@) == V'{0) — 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and

                             V-2 ^ 4^^1/2 ^^ = 2y/^V'/* => V-'/UV = 2,/^dx;
                               /"y-i/4 ^ ^ 2v^ fdx ^ ^F^/" = 2y^x + constant.
But V{0) = 0, so this constant is also zero.


                     ^/^. ^Vix)=(IM xV r Vix) = '4/3 ^ / 81J^m N
                                                          S2elA-^qJ

F(.)=FoQ) (see graph). Interms of Vq (instead of /):
Without space-charge, V would increase linearly: V{x) — Vq (^).
                                   1 4 1                   4eoFo
                                                         9(d2xJ/3 •

                             /2^VV^Q) '
(f) V{d) ^ Fo - i^^y^'d^^' => Vo' = ^^,I';l' = '-I^Vo^:
   I = 1^^V'V2 ^ ;^y^3/2^ ^^^^^ _ 4eoA /2g
Problem 2.49



(a) E = 1 47reo I${^-iy -^/^dr.
(b) I Yes. I The field of a point charge at the origin is radial and symmetric, so V X E = 0, and hence this is also
true (by superposition) for any collection of charges.
Now /;^e ^/^dr = —^-^  /^~?—'^'" ^— exactly right to kill the last term. Therefore


                                         47reo I >" Ir J I 47reo r


              ■^•^=4^'?0n)-^'***# =




(e) Does the result in (d) hold for a nonspherical surface? Suppose we
make a "dent" in the sphere—pushing a patch (area B? sin 9
from radius R out to radius S (area S^ sin 9 d9 d0).


                                                                                       {R^ sin 9 d9d(f>)




            4A                 /^ •r=^sin0 ,drd9d(f)^ A^ 47reo
                            A^ 47reo                                                  Jr
                                                                                             ■'/^dr




                              47reo


So the change in p- JV dr exactly compensates for the change in ^E • da, and we get j-q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,
the total is j-Qenc- Charges outside do not contribute (in the argument above we found that C^" for this
volume ^E ■ da + p- JV dr = 0—and, again, the sum is not changed by distortions of the surface, as long as q
remains outside). So the new "Gauss's Law" holds for any charge configuration.

(f) In differential form, "Gauss's law" reads: V-E + -              or, putting it all in terms of E:


   V'E - Y2 / E • dl = —p. Since E = -W, this also yields "Poisson's equation": -V^F + --^V
CHAPTER 2. ELECTROSTATICS




Problem 2.50

   /9 = eo V- E = o^{ax) = |eoo| (constant everywhere).
   The same charge density would be compatible (as far as Gauss's law is concerned) with E = ayy, for
instance, or E =; (|)r, etc. The point is that Gauss's law (and VxE = 0) by themselves do not determine
the field—like any differential equations, they must be supplemented by appropriate boundary conditions.
Ordinarily, these are so "obvious" that we impose them almost subconsciously ("J5 must go to zero far from
the source charges")—or we appeal to symmetry to resolve the ambiguity ("the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge"). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question "What is the
electric field produced by a uniform charge density filling all of space?" is simply ill-posed: it does not give
us sufficient information to determine the answer. (Incidentally, it won't help to appeal to Coulomb's law
(E = jJ^ fp^dr)—the integral is hopelessly indefinite, in this case.)
Problem 2.51

   Compare Newton's law of universal gravitation to Coulomb's law:

                                             miTn2 __ 1 9192 J.
                                       t = —G-—5—^r t = 5-r.


> G and q -¥ m. The gravitational energy of a sphere (translating Prob. 2.32) is therefore Evidently j^



Now, G - 6.67 X 10-1^ N mVkg^, and for the sun M = 1.99 x 10^° kg, R = 6.96 x 10^ m, so the sun's
gravitational energy sW = 2.28 x 10*^ J. At the current rate, this energy would be dissipated in a time

                             '' P ''                     < lO^'* s = 11.87 X 10'^ years. I
Problem 2.52
  First ehrainate z, using the formula for the ellipsoid:


                      ^(a;,y) = ^ 47ra6 yc2(a;2/a4) + c'^{y^/b^) + 1 - (xVa2) - {y^/b"^)'
Now (for parts (a) and (b)) set c ->■ 0, "squashing" the ellipsoid down to an ellipse in the xy plane:


                                      ''^''' ^^ li^ab ^-{xlaY-{ylbY
(I multiplied by 2 to count both surfaces.)

   (a) For the circular disk, set a = 6 = iZ and let r = yjx^2nR^R2-:,^-
                                                          ^
                                                              + y^, . Q 1 
   (b) For the ribbon, let Qjb = A, and then take the limit b -> c ( )- ^ 1
   (c) Let b = c, r = ^/y"^ + z'^, making an ellipsoid of revolution:


                               a2+c2-l' ^'^^''- 4na(P^xya^ + ryc*'
The charge on a ring of width dx is

                         J = a2Trrds, where ds = ydx"^ + dr^ — dxy/l + (dr/dx)^.
                           dr <?x                     I       -4-2              -2
                                                = dxJl + ^ = dx-y/xy^^Try^. Thus
                                                                                     (Constant!)
             A(x) = dx 47rac2 ^x^ja^ + r2/c'* r s/^J^^H^ =
Chapter 3

Special Techniques

Problem 3.1
   The argument is exactly the same as in Sect. 3.1.4, except that since z < R, y/z^ + R^ — 2zR = {R — z),
instead of {z - R). Hence Vkve = -r~7ryi [i^ + R)-{R- z)]
                                     47reo 2zR                      If there is more than one charge 1 g 47reo R
inside the sphere, the average potential due to interior charges is47reo R and the average due to exterior
                                                                    —^— ^^|j^,
charges is Fcenter, so Fave = Vcenter + ^f^- ^
Problem 3.2
   A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is qV.
But we know that Laplace's equation allows no local minima for V. What looks like a minimum, in the figure,
must in fact be a saddle point, and the box "leaks" through the center of each face.
Problem 3.3
   Laplace's equation in spherical coordinates, for V dependent only on r, reads:
                                                                    dV     c
                                                 = c (constant) => —r- = -^ =>
                                                               '   dr    r^                r



Example: potential of a uniformly charged sphere,

   In cylindrical coordinates: sdsVdV J ? dy1 dV0 c ds ds F ^ cln s + k.
                          o Id/ = ds  s—r- = J ^ 1 s
                               V     --7-
Example: potential of a long wire.
Problem 3.4

   Same as proof of second uniqueness theorem, up to the equation /^ V3E3 • da = -f^{E3)^dT. But on
each surface, either V3 = 0 (if V is specified on the surface), or else Esj^ = 0 (if ^ = -E± is specified). So
JyiEs)^ = 0, and hence E2 = Ej. qed
Problem 3.5
   Putting U = T = V3 into Green's identity:
f [V3VVs + Ws • Wa] dT= i Vg VVs • da. But V^Vs = VV, - VVz =
So / E^dr = — f V2E3 • da, and the rest is the same as before.
Problem 3.6
  Place image charges +2q a.t z —d and —q&tz — -3d. Total force on --q is


                g [ -2g 2g _-£_■ ' 47reocP 
              ' 47reo [BdJ ^ DdJ FdJ                                             47reo V72(i2y ■


  (a) FVom Fig. 3.13: i = -y/r^ + a2 - 2ra cos 0; V = Vr^ + &2 _ 2r& cos 0. Therefore:
                    g'
                                                    (Eq. 3.15), while b = — (Eq. 3.16).


                              (f)/'-' + ^-2^f cosfl y(f)' + iZ2-2racos0


                                                      - 2ra cos 0 y/R^ + (ra/R)^-2rao
  Clearly, when r = iJ, V -^ 0.
  (b) a = -eof^ (Eq. 2.49). In this case, |^ = I7 at the point r = R. Therefore,

   (T(e) = -eo D^) {-^('•^ + "^ - 2mcos0)-3/2B^ _ 2acos0)
            + i (ij2 + (ro/iZJ - 2racos0)"^^' (^2r - 2a cos0^ 11
         = —^S.-{R''+a''-2Racose)-^^R-acose) + {R^ + a''-2Racose)~^^'' ( ^)}
        = ^(i?2 + a^ - 2Racose)-^l'^ r - acosd - ^ + acos^l
                   -(ij2_a2)(^2_j.^2_2ijacos0;

induced = fada= -^{R^ - a') [(R^ + a' - 2Racos9)-^l''R'' smOd,

              2a   (a2 - ij2) ViZ2 + a2 + 2iZa V-R^ + a2 - 2iZaJ
              But a > J? (else g would be inside), so /j?2 + a2 - 2jRa = a-R.

              ^y -?'' [(^ - (?^] - ^ '<° - ^' -'°+?"=s'-^^'
              I 9fi _ ?, I
CHAPTER 3. SPECIAL TECHNIQUES

   (c) The force on q, due to the sphere, is the same as the force of the image charge q', to wit:
                          1 qq' _ 1 f R 2 1 _ 1 q'^Ra
                        47reo (o - b)^ 47reo             (a - i?V?)' 47reo (a^ - R-^)-
To bring q in from infinity to o, then, we do work

                                                                                        q'R
                     4neoJ (a2-iZ2J" 4^eo [ 2 E^ - i?2)                        47reo 2(a2 - 7^2)"

Problem 3.8
    Place a second image charge, q", at the center of the sphere;
    this will not alter the fact that the sphere is an eqmpotential,
                                                                   1 g".
    Aireo R ' but merely increase that potential from zero to Vo
    q" — 47reoVoi? at center of sphere.
   For a neutral sphere, q' + q" = 0.
                                   1


                                  AntQ^ o? ' {a-by ^J_9g^ (_47reo V^ "^ " (a-6J J
                                                {_ "^ ~ -by) 47r6o
                         F   =


                                   qq' b{2a - b) _ qj-Rq/a) {R^/a){2a - R^/a)
                                  47reoa2(a-6J ~ 47reo a^ia-R'^laf

                                         q^ f rV {2a''- R^)
                                        4neo a) (a2 - R-^y '
(Drop the minus sign, because the problem asks for the force of attraction.)
Problem 3.9


(a) Image problem: A above, -A below. Potential was found in Prob. 2.47:
                                              2A , , , , A
                                  n?..) = 5^1n(.-K) = 3^1n(.iAl)                                     {y,z)

                                              -In 47reo[y^ ++ {z-d)^j
                                                        ly^ jz + dy]                      ^ /s-
{h)a--      dn'      dn      dz

                              ^<i-A I y^ + {z + d)^<^)~ +2 {z-d)^ '] 1^^,
                                47reo
                                      2 l/^^X2^(^ + y^ l/ ^2(z-d)|
                                                                  Ad
                                 2A f d -d 
                               47rU2 + d2 y2 + ^J = 7r(j/2 + d2)-
   Check: Total charge induced on a strip of width / parallel to the y axis:

              qnd
                                                                           _ IXd FTT / Try
                             7t J y^ + cP TT [d d. ~~~V [2 ~ V 2I
                        -XI. Therefore Ajnd = -A, as it should t
Problem 3.10
    The image configuration is as shown.
                                                                                                               9.    ?■      .9

     V{x,y) -- 1 i 1 , 1
                    47reo ( v^(xaJ- +aJiy-B/- 6J+ +z2^2^{x - aJ+ a)^(y+ {y 6Jb)^ ^2 z^J ]
                       ^/ix +
                                        + 6J ^(^j; + + + + +                                                   9-     -     •-?



      For this to work, I Q must be and integer divisor of 180°. Thus 180°, '                           , 45°, etc., are OK, but no
    others. It works for 45°, say, with the charges as shown.
       (Note the strategy: to make the x axis an equipotential (F — 0),                                         f B) y 4?°
       you place the image charge A) in the reflection point. To make the
       45° line an equipotential, you place charge B) at the image point.
                                                                                                          -.
                                                                                                                    /^ '•+ ^
       But that screws up the x axis, so you must now insert image C) to                                  +*. V •-(!)
      balance B). Moreover, to make the 45° line V — ^ you also need D),
      to balance A). But now, to restore the x axis to F = 0 you need E)                                        E C) ^
      to balance D), and so on.

      The reason this doesn't work for arbitrary angles is that you are
      eventually forced to pla.ce an image charge within the original region of
      interest, and that's not allowed—all images must go outside the
      region, or you're no longer dealing with the same problem at all.)


    Problem 3.11

       Prom Prob. 2.47 (with j/o -                                jx + ay+y^' , where a^ - yg"^ - Er ^
                                                      47reo "' L(^~ ^y +2/^.


               ■ ocschB7reoVo/A) =(dividing) ^^= R  A /,
                  "'''''!:}''''fiS =i]^ J? J ^ 4 cosh f^)                                                        -'id/RY

m Problem 3.12


                   oo                                  2                        ?
      Vix,y) = Y^C?e-"'^='/''sininny/a) (Eq. 3.30), where <^n - - / Vb(y)sm{mry/a)dy (Eq. 3.34).

     I this case Voiy) = _y^^ forf o/2< <^Z2/< <a/2 J1 Therefore,
               uvj/; -j^
                         ( +^'' ?                a


       n 2, (T. / / ^J ? • / / N^ 1 2^0/ cos{mry/a)r^^ , cos(n7r2//a) I" 1 C? = -Vo< sm{niTy/a)dy - / sm{mry a)dy } =--< / .[ + ^,[ >
                 ^{-cos(^).cos@, + c?,??-cos(f)} = ^{l + (-ir-2co?(f)}.
CHAPTER 3. SPECIAL TECHNIQUES

The term in curly brackets is:
            n = l          l-l-2cosGr/2) = 0,
            n = 2
            n = Z          -, _■, _<y (f> /n'_ 0 } etc. (Zero if n is odd or divisible by 4, otherwise 4.)
                           1 + 1-2 cosB7r) = 0,

                  r - f SFo/nTT, n = 2,6,10,14,etc. (in general, 4j + 2, for j = 0,1,2,...),
                    " ~" 1 0, otherwise.


              v(x,y) = ^ y ^~"'^^^°^i"("^y/°) 8Fo ^ e-(''^+^)'^'''/°sin[Dj2)+ 2)ny/a]
                                                                     Dj +

Problem 3.13


               V{x,y) = ^ ^ ^e-""^/''sin(n7ry/a) (Eq. 3.36); ^ =-eo|^ (Eq. 2.4!

   ^B/) ~^° a^ l~^n^ ""''/"sin(n7r2//a)I = -cq "^Z^-l-—)e ""''/"sin(n7ry/a)
                             y^ sin(n7rj//a).

Or, using the closed form 3.37:

   ,w , 2Fo^ _i / sinGry/a)  2Fo 1 / -sinGrj//a)  tt ^, , ,| V{x,y) = tan M . ' ' ' ] ^ a =- q .in2f^?/?^ . ^2/ , [ -coshGra:/o)
               _ 2eoFo sinGrj//o) coshGra;/o) I
                       a sin2Gry/a) + sinh2Gra;/a) l^^^ a2eoK) 1
                                                           sm{7ry/a)'

Summation of series Eq. 3.36


                               Vix,y) = —I, where / = ^ -e-?"^/''sin(n7ry/a).
Now sinio = Im (e**"), s

where Z = g-'^C^-^^')/". Now
where Re*^ - 7^. Therefore

  / = Im-inR + i9) = ^e. But f^^ =^ , ^= , ■ ^ , ^
            1 + e-'^^/" (e^'^^^/" - e-'-'^y/") - e-^^^/" _ 1 + 2ze-'^'/''sinGr^/Q) - e-^^^/°
                       |l_e-'r(:t-tJ/)/a|2 ~ 11 _ e-,r(x-tj,)/a|2
                                   2e~'^^''"sinGr2//o) _ 2sinGr2//a) _ sm{ny/a)
                                                            rx/a _ g-TTx/o sinhGrx/a)'


                   /=i.an-r-'°<r?/f'; , and F(a;, y) _i
                          _i / smGry/o  , Lr, X 2K), =
                       tan . ■ , : 
                                                                               f sin{iTy a) 
                                                                           tan . -V  , .

Problem 3.14

   (a) -7-^ + ——- = 0, with boundary conditions
       OX-' oy^

                                                (i) F(a:,0) = 0,
                                                (ii) V{x,a)=Q,
                                                (iii) F@,y) = 0,
                                                (iv) FF,y) = Fo(y). J ;j-
As in Ex. 3.4, separation of variables yields

                                V{x, y) = (Ae*^ + 5e-*^) (C sin ky + D cos A;y).
Here (i)::^ D = 0, (iii)=i' B = -A, (ii)=^ fca is an integer multiple of tt:

                V{x,y) = AC (e"'^^/" - 6-""="/") sin(n7ry/a) = B^C) sinh(n7ra;/a) sin(n7ry/a).
But BAC) is a constant, and the most general linear combination of separable solutions consistent with (i),
(ii).                           (iii)                         is
                                    V{x,y) — ^C?sinh(n7ra;/a)sin(n7rj//a).

It remains to determine the coefficients C? so as to fit boundary condition (iv):


   ^C?sinh(n7r6/o)sin(n7r2//a) — Va{y). Fourier's tricky C?sinh(n7r6/a) = - Vo{y)sm{nny/a)dy.
                                                                                       0



Therefore


                                   Cn = —r-TT—TT-T / Vo{y)sm{mry/a)dy.
5      CHAPTERS.                            SPECIAL                                      TECHNIQUES


   ,. , ^ 2 rr f ■ , I j 2Fo f 0, if n is even, 1
        asmh{nnb/a) J asmh{nnb/a) { j^, if n is odd. J


                                                            sinh(n7ra;/a) sm{nny/a)
                              n?,?) = ^^ E      = 1,3,5,.
                                                                 nsinh(n7r6/a) '


Problem 3.15
   Same format as Ex. 3.5, only the boundary conditions are:


                                         [) V = 0 when a; = 0, "j li) V = 0 when x = a,
                                         iii) V = 0 when y                =   0,
                                          ) F — 0 when y                  =   a,
                                         v) F = 0 when z                  =   0,
                                         vi) V = Vo when 2                =   a.

This time we want sinusoidal functions in x and y, exponential in z:

     Xix) = ^sin(fca;) + 5cos(A;a;), Y{y) = Csin{ly) + Dcos{ly), Z{z) = Ee"^^"^^ + Ge-^/*'+^^
(i)^ B = 0; (ii)=> k = nn/a; (iii)^ D = 0; (iv)^ / = mn/a] (v)=^ E + G = 0. Therefore

                                      Z{z) = 2Esmhi7ry/n^+m^z/a).

Putting this all together, and combining the constants, we have:


                   V{x,y,z) = V^ "S"^ C?,m sin(n7ra;/a) sin(m7rj//a) sinhGrvn^ +m'^z/a).
                               n=l m=l



It remains to evaluate the constants C?,m. by imposing boundary condition (vi):

                        Vo = ^2^2 r^?."'sinhGrvV+m^) sin(n7ra;/a)sm{mny/a).
According to Eqs. 3.50 and 3.51:

            , V /'2^ } } f ^' if n or m is even, "j
 Cn,m sinh (ny/ri^ + m^ 1 = I - ) Vq / sin{n7rx/a) sm{m7ry/a) dx dy = < 16Vb -r u i, jj f
                             ^      '^          0           0        ^         TT^nm'         ^      ■   J



           F(x,j/,2) = —TT- V-> 1sm(n7ra;/a)sm(m7rj//a) i——. ?
                 , 16Fo V- >      w / ^ w / ,sinhGrVn2+m22/                                   ■■M.
                         ^2 ?=i^5 . ,?=f^5_... ""^ / y V ?/ y sinh (ttVu^ + m^]
^ , ^ lrf^/9 ,3 Id^ 2? Id^ ., .2




                       = li [(^' - 1) (^^' -!)]=! f2x Ex2 _ 1) + (^2 _ 1) 10^]
                                                                 5 3 3
                       = iEx3-x + 5x3-5x)-J(l0x3-6x)- -X-* - -X.  2    2


We need to show that P3(cos0) satisfies

                                 Id/. ?dP -1A + 1)P, with / = 3,
where P3(cos0) = ^cosO E cos^ 0 -

      — - - ^ 1 0 E cos2 0 - 3) + cos 0A0 cos ${- sin 0)] = -1 sin $ E cos^ 0-3+10 cos^ 6)
      d^
       de   r- sin
               2

            = --sin0Ecos20-l).


    fsin0-^J = -~[sin2 0Ecos2 0-l)] =-^ [2sin0cos0 Ecos2 0-l) + sin2 0(-lOcos0sin0)]
                    = -3sin0cos0[5cos20-l-5sin20] .

            1 d ( . ?dP
          sine d9       e^j = -3cos0[5cos2-l-5(l-cos2 0)] = -3cos0(lOcos2 0-6)
                                = -3-4-icos0Ecos20-3) =-/(/ + l)P3. qed

          |Pi(x)P3(x)dx = |(x)^ Ex3 -3x) ^^ ^ 1 (x'-x')'_^ = i(l- 1 + 1 - 1) = 0. V
Problem 3.17 '^
  (a) Inside: F(r,0) = JZ ^jr'Pj(cos0) (Eq. 3.66) where


                            Ai = ^^^|j^ /"v'o@)P,(cos0) sin0d0 (Eq. 3.69).
In this case Vb@) = Vb comes outside the integral, so


                                     . _ B/ + l)Fo /Pj(cos0)sin
50          CHAPTERS.                                 SPECIAL              TECHNIQUES

But Po(cos0) = 1, so the integral can be written



                        0
                         /Poicos9)Piicose)sin^d^ = I 2' Jf J f q } ^^^- ^•^^)-
Therefore
                                                       r 0, if / ^ 01
                                               ^~ Vo, if / = 0 / •
Plugging this into the general form:

                                         y (r, e) = Ao r°Po(cos 6) = [^
The potential is constant throughout the sphere.

      Outside: Vir,0) = ^ ~Pi{cose) (Eq. 3.72), where


                     Bi = ^^^-^R'+^ fvo{e)Piicose)smede (Eq. 3.73).
                                                  0



                               B1 + 1)
                                  2




Therefore Vir,e) = Vo- (i.e. equals Vb at r = R, then falls off like -).
                         (i.e. equals
      (b)

                                         Yl Ajr'P, (cos e), for r < P (Eq. 3.78)
                                         j=o



                            F(r,0) = ^-^P,(cos0), forr>P (Eq. 3.79)
                                         1=0 '"
where
                                               Bi = p2i+i^j (Eq. 3.81)
and



                      ^' = -^r—^izi Icro{S)Pi{cose)smedd (Eq. 3.84)
                                          0




                                                      ' R<Jo
                                                                for r




                                       V{t e) = PVqI >.|        forr
Note: in terms of the total charge Q = AnR'^ao,


                                    v{r,e) =




                   Fo@) = A;cosC0) = k [4cos^e-Zcose]=k[aPs(cos0) + /3Pi(cos0)].
(I know that any 3'''^ order polynomial can be expressed as a linear combination of the first four Legendre
polynomials; in this case, since the polynomial is odd, I only need Pj and P3.)

             4cos^e-Zcose = a - Ecos^0 - 3cos0) +/!3cos0 = -^cos^0+ f/3 - -a) cos0,
                                                         3 8
                                   -3 = /3-^a = '2'5 ' 125 _
                                                       "
Therefore



Now

                                      Y^ Air'Pi (cos e), iorr<R (Eq. 3.66)
                                      1=0
                        vir,e) =
                                      ^^P,(cos0), forr>P (Eq. 3.71)

             Ai = ^^^^^ fvo{e)Pi{cose)smede (Eq. 3.69)
                             0




                 = ^^^J^ I 1 ^ / ^^ ^^°^ ^^^' ^^°^ 0)smedS-Z I Pi (cos 0)P (cos 0) sin 0 d0 I
                     k {21 +1) f 2 o_A_x 1 ^ 1 fR^ -^^ 1

                     ' -3fc/5-R, if/==3l1 J, ^^ otherwise).
                       8A;/5P^ if /           zero


            V{r,e) = -||rPi(cos0) + ^r'p,{co^e) -- 8(^)'p3(cos0)-3(^)Pi(cos0)

       8 (■^)^ ^ [5cos3 0 - 3COS0] _ 3 f^Vj cosflj ^ F(r,0) = ^^ cosfl |4 (^)^ [Scos^ 0 - 3] - 3!
52        CHAPTERS.                            SPECIAL                    TECHNIQUES

(for r < R). Meanwhile, Bi = AiR^^+^ (Eq. 3.81—this follows from the continuity of V at R). Therefore

                              ^' = -3fciiv5, if; = l/ (==ero otherwise).


      V(r,e) = -^lpi(cos0) + §^lp3(cos0) = ■ij)'               8 - P3(cos0)-3 - Pi(cos0)




                            Vir,e) = I (^)'cos0 L (^y [5cos2 0-3] -3!
(for r>R). Finally, using Eq. 3.83:


           a{e) = eo X^BZ + l)A,iZ'-iPj(cos0) = eo [3AiPi + TylsiJ^Ps]

                                                                  [-9Pi(cos0) + 56P3(cos0)]


                      ^ [-9COS0 + y Ecos^ 0 - 3COS0)] = ^ cos0[-9 + 28 • Scos^ 0-28-3]
                         - cos 61 [140 cos^ 61-93].

Problem 3.19


   Use Eq. 3.83: a{e) = eo ^BZ+l)^jiJ'~^P(cos 61). But Eq. 3.69 says: Ai = ?^^ f Voie)Pi{cos0) sin0A9.
                            1=0                                            0
Putting them together:



                aie) = -^Yli2l + lfCiPiicose), with Ci = fvoie)Pi{cose)sinede. qed
                           1=0                           0


Problem 3.20
    Set y = 0 on the equatorial plane, far from the sphere. Then the potential is the same as Ex. 3.8 plus the
potential of a uniformly charged spherical shell:


                                  Vii   ,e) = -Eo(r-^)cose+-^^.
                                                r^ J 47reo r
(a) V{r,e) = f;-|Lp,(cos0) (r > R), so F(r,0) = Y^-^m) = £ 4t = |- [V^^TW - r] .
                1=0                      1=0                    1=0                 °

Since r > iZ in this region, s/r'^ + i?2 = rx/l + (i?/rJ = r [iH- ^{R/rf - ^{R/rf + .. .1, so
                     'r'+i 2eo''[ 2r2 8 r" ^

Comparing like powers of r, I see that Bo = -;—, Bi =0, B2 = -7^—,.... Therefore
                                              4eo        loeo

                                         [                      !
                                  aR""
                                                                •
                     V{r e)   =

                                  460
                                         I   -S-*X)S0) + ...
                                         [                                    (for r>R).
                              =


                                  4eor
                                         -
                                             -Kf)^ -,....],
                                                     Ccos2 0-


  (b) Vir,e) -"^AyPiicose) (r < R). In the northern hemispere, 0 < 0 < 7r/2,
               j=o




                                  F(r,0) = f;^,r' = ^ [A/^^^TR^-rl .

Since r < i? in this region, /r^ + R^ = Ry/T+JrJW = J? [1 + {rlRf - ^{t/RY + ...]. Therefore


Comparing like powers: Aq = -—R, Ai = --—, A2 = -—=;,... , so
                              2eo        2eo     2eoii



   V{r,e) = ^[iZ-rPi(cos0) + ^P2(cos0)+ ...],                          (for r < R, northern hemisphere).

            oP [ 260 I
  In the southern hemisphere we'll have to go for 0 = tt, using Pj(—1) = (-!)'•


                              y(r,^) =f:(-l)%r' = ^ [./^^TW-r] .
54        CHAPTERS.                           SPECIAL                      TECHNIQUES


(I put an overbar on Ai to distinguish it from the northern Ai). The only difference is the sign of 'Ai:
'Ai = +(o-/2eo), lo = Ao, A^ = A-i. So:


    vir,e)
             ^ 2^[^ + '--Pi(cos0) + ^r2P2(cos0) + ...],                    (for r < R, southern hemisphere).

             = gh(^)-^-i(sr(^-^^-)-4
Problem 3.22



                                         Y^Air'Piicosd), (r < R) (Eq. 3.78),
                            Vir,0) =

                                       Yl -^-Pi(cos0), (r > R) (Eq. 3.7{ I. 1=0
where Bi = AjiZ^'+i (Eq. 3.81) and



              Ai = -^^^^zT f(^oiO)Pi{cose)sinede (Eq. 3.84)
                                 0




                  = p|_i o"o < Piicose)smede- Pi{cos0) sined9 (let a; = cos0)

                            — nPiix)dx-JPiix)dx.
                       2eoR^-



Now Pi{—x) = (-l)'Pj(a;), since Pi{x) is even, for even /, and odd, for odd /. Therefore

                                0              0                1



                                j Pi{x)dx = jPi{-x)d{-x) = {-!)' j Pi{x)dx,

                                                                                  if / is even



               ^' = 2iS^t^-(-i)']/'''^^^'^H T^l^d^)^^^ if                         f I is odd
So Ao = A2 = Ai = Ae = 0, and all we need are Ai, A3, and ^5.

                   r        r            x2p                        1

                  0                0                    "



                  /P3(.,.. = i/p.-3.,.= iD-3f^)[.lg-2)=-l.
                  0                 0




                   / P5 (x) dx = ^f F3x5 - 70x3 ^ 15^) ^^ ^ 1 /g3^ _ 70^ + l5^^ I
                                                ,2 2 27 16'
I- Therefore

                             -'^=SG)=-^-=5^D)'-^--3?(^)-
                          ^-^^G)=--^^B)^--^1i^)--


                         g [f.(cos.) -  {Ly P3(cos.) + 1 {Ly p,^(eos.) + . .] , (. < i ), ig Ufcos^) -  (f) VsCcos^) + 1 (f) VsCcos^) + . .1 , (r > P).
    Look for solutions of the form V{s,(p) = 5(s)$(</i):

                                                      1$A /^s^^ Ic^ -
                                                       s ds  ds J s^ (i02
    Multiply by s^ and divide by V = 5$:


                                                        5 ds V''dsJ'*'$d
    Since the first term involves s only, and the second cp only, ea is a constant:
                                               the second (p only, each

                                     d f dS ^ 1 d^$ ^
                                     d;(^d7J=^- ¥d0^ = ^- -^*^^
56        CHAPTERS.                                SPECIAL                           TECHNIQUES

Now 6*2 must be negative (else we get exponentials for $, which do not return to their original value—as
geometrically they must— when 0 is increased by 27r).


                              C2 - -k^. Then —-^ - -k'^i =^ $ = Acosk(j) +Bsinkcp.

Moreover, since #(</> + 2n) = $(</>), k must be an integer: fc = 0,1,2,3,... (negative integers are just repeats,
but A: = 0 must be included, since $ = A (a constant) is OK).
   s-r I s-T- 1 = k^S can be solved by 5 = s**, provided n is chosen right:
     as  as J


                         s-r- (sns"~^)as (s") = n^ss"'~^ = ri^s" — k^S ^n — ±k.
                          as
                                      = ns-r-

Evidently the general solution is S{s) — Cs^ + Ds~^, unless A: = 0, in which case we have only one solution
to a second-order equation—namely, S — constant. So we must treat k = 0 separately. One solution is a
constant—but what's the other? Go back to the differential equation for 5, and put in fc = 0:




So the second solution in this case is In s. [How about $? That too reduces to a single solution, ^ = A,'m the
case k = 0. What's the second solution here? Well, putting k = 0 into the $ equation:

                                  -—T -0^ -rr - constant - B ^ ^ - BA + A.
                                   d(j)^ acp

But a term of the form B(f> is unacceptable, since it does not return to its initial value when 0 is augmented
by 27r.] Conclusion: The general solution with cylindrical symmetry is


              V{s, (j)) = oo + 60 In s + ^ [s* (oft cos kcj) + bk sin k(j)) + s * (cfc cos k(j) + dk sin A;^)].

Yes: the potential of a line charge goes like In s, which is included.
Problem 3.24
   Picking F = 0 on the yz plane, with Eq in the x direction, we have (Eq. 3.74):

                   (i) ^^ = 0,                   when s = R,
                   (ii) V -> -Eqx = s cos (j>, for s'3> R.
   Evidently a^ = bo — bk — dk — Q, and ak—Ck—G except for A; — 1:

                                              y{s,4>) = (oi? + —)COS(f).
(i)=> ci = -oii?^; (ii)->- ai — -Eq. Therefore


                 V{s,<j>) =                                       V{s,,f>)^-Eos
                                                                                     0'']            COS(j).
R-"
                             ar = - o-^ =-eo-Eo f-^ - 1 ] cos0| = [ 2eoE'o cos0
    Problem 3.25

       Inside: F(s, 0) = Qq + y^s* (at cosfc0 + 6fc sin A;0). (In this region Ins and s~* are no good—they blow
                                   k=l

    up at s = 0.)

        Outside: V{s, 0) = Oq + ^ -j^ (cft cos fc0 + dk sin fc0). (Here In s and s'' are no good at s -> oo).

                                                                            (Eq. 2.3
                                           a = -eo ' ' ds ^
    Thus

                    a sin 50 = —eo Yj i — ^, (cfc cos fc0 + d^ sin fc0) — kR^ ' (ofc cos fc0 + bk sin fc0) >

    Evidently Ofc = Cft = 0; 6fc = dfc = 0 except A; = 5; a = 5eo ( 'Ee^s + ^*h 1 Also, V is continuous at s = iJ:
                               1




                                            V(s,0) _ gsin50 f 1 i^Vs^ for s < R, _
                                                       lOeo
                                                              s^/J?'*, ioTS>R. '
     Problem 3.26
       Monopole term:

                                       Q= I pdT=zkR I -2(J?-2r)sin0 r"^sin6drded(f>.
K But the r integral is
                                    R


                                   [{R - 2r) dr = {Rr - r^) ^ = R^-R'^=0. So Q = 0.
                                   0




                              IrcosOpdr-kR Mrcos^) —{R-2r)smer'^sm6drded>
 i' But the 6 integral is

                                            Lm^ecosede='^ =i(o-o) = o.
                                           0


     So the dipole contribution is likewise zero,
                                       wise zero.
        Quadrupole term:


                    /r^ (^cos'^e-^^pdT=^kR f fr''[Z CDs'" e-1) f ^ (i? - 2r) sin ^l r^sin^drd
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el
In to el

More Related Content

What's hot

Properties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFsProperties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFs
Ahmad Gomaa
 
Complex function
Complex functionComplex function
Complex function
Dr. Nirav Vyas
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Gabriel Peyré
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Rai University
 
Graph functions
Graph functionsGraph functions
Graph functions
Shakila Safri
 
12 quadric surfaces
12 quadric surfaces12 quadric surfaces
12 quadric surfaces
math267
 
2.2. interactive computer graphics
2.2. interactive computer graphics2.2. interactive computer graphics
2.2. interactive computer graphics
Ratnadeepsinh Jadeja
 
M. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesM. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theories
SEENET-MTP
 
Power series
Power seriesPower series
Power series
Dr. Nirav Vyas
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
Gabriel Peyré
 
April 3, 2014
April 3, 2014April 3, 2014
April 3, 2014
khyps13
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems Regularization
Gabriel Peyré
 
Vector calculus
Vector calculusVector calculus
Vector calculus
raghu ram
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
Kamel Attar
 
Open GL 04 linealgos
Open GL 04 linealgosOpen GL 04 linealgos
Open GL 04 linealgos
Roziq Bahtiar
 
Math cbse samplepaper
Math cbse samplepaperMath cbse samplepaper
April 9, 2015
April 9, 2015April 9, 2015
April 9, 2015
khyps13
 
Optimal Finite Difference Grids
Optimal Finite Difference GridsOptimal Finite Difference Grids
Optimal Finite Difference Grids
Alex (Oleksiy) Varfolomiyev
 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue print
nitishguptamaps
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
VishalVishwakarma59
 

What's hot (20)

Properties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFsProperties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFs
 
Complex function
Complex functionComplex function
Complex function
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
 
Graph functions
Graph functionsGraph functions
Graph functions
 
12 quadric surfaces
12 quadric surfaces12 quadric surfaces
12 quadric surfaces
 
2.2. interactive computer graphics
2.2. interactive computer graphics2.2. interactive computer graphics
2.2. interactive computer graphics
 
M. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theoriesM. Dimitrijević, Noncommutative models of gauge and gravity theories
M. Dimitrijević, Noncommutative models of gauge and gravity theories
 
Power series
Power seriesPower series
Power series
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
April 3, 2014
April 3, 2014April 3, 2014
April 3, 2014
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems Regularization
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Open GL 04 linealgos
Open GL 04 linealgosOpen GL 04 linealgos
Open GL 04 linealgos
 
Math cbse samplepaper
Math cbse samplepaperMath cbse samplepaper
Math cbse samplepaper
 
April 9, 2015
April 9, 2015April 9, 2015
April 9, 2015
 
Optimal Finite Difference Grids
Optimal Finite Difference GridsOptimal Finite Difference Grids
Optimal Finite Difference Grids
 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue print
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 

Similar to In to el

VECTOR ANALYSIS- 2
VECTOR ANALYSIS- 2VECTOR ANALYSIS- 2
VECTOR ANALYSIS- 2
shahzadebaujiti
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
indu thakur
 
Sect3 7
Sect3 7Sect3 7
Sect3 7
inKFUPM
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
Sohar Carr
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
indu psthakur
 
allsheets.pdfnnmmmmmmlklppppppplklkkkkkkkj
allsheets.pdfnnmmmmmmlklppppppplklkkkkkkkjallsheets.pdfnnmmmmmmlklppppppplklkkkkkkkj
allsheets.pdfnnmmmmmmlklppppppplklkkkkkkkj
brendonsithole6
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
geraldsiew
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
inKFUPM
 
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxxy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
ericbrooks84875
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
APEX INSTITUTE
 
Scalars and vectors
Scalars and vectorsScalars and vectors
Scalars and vectors
WAYNE FERNANDES
 
Chapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTORChapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTOR
FIKRI RABIATUL ADAWIAH
 
งานนำเสนอ12
งานนำเสนอ12งานนำเสนอ12
งานนำเสนอ12
krookay2012
 
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
SRSstatusking
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
itutor
 
Maths04
Maths04Maths04
Maths04
sansharmajs
 
Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02
MasfuahFuah
 
Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
Matthew McKenzie
 

Similar to In to el (20)

VECTOR ANALYSIS- 2
VECTOR ANALYSIS- 2VECTOR ANALYSIS- 2
VECTOR ANALYSIS- 2
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 
Sect3 7
Sect3 7Sect3 7
Sect3 7
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
allsheets.pdfnnmmmmmmlklppppppplklkkkkkkkj
allsheets.pdfnnmmmmmmlklppppppplklkkkkkkkjallsheets.pdfnnmmmmmmlklppppppplklkkkkkkkj
allsheets.pdfnnmmmmmmlklppppppplklkkkkkkkj
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
 
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docxxy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
xy2.5 3.0 3.5-1.0 6 7 81.0 0 1 23.0 -6 -5 .docx
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 
Scalars and vectors
Scalars and vectorsScalars and vectors
Scalars and vectors
 
Chapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTORChapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTOR
 
งานนำเสนอ12
งานนำเสนอ12งานนำเสนอ12
งานนำเสนอ12
 
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
Maths04
Maths04Maths04
Maths04
 
Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02Pptpersamaankuadrat 150205080445-conversion-gate02
Pptpersamaankuadrat 150205080445-conversion-gate02
 
Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
 

Recently uploaded

按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
ei8c4cba
 
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
terpt4iu
 
一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理
一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理
一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理
bttak
 
按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理
按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理
按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理
terpt4iu
 
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
nvoyobt
 
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
uwoso
 
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
yizxn4sx
 
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
6oo02s6l
 
一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理
一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理
一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理
bttak
 
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
yizxn4sx
 
欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】
欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】
欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】
hanniaarias53
 
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
terpt4iu
 
"IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER"
"IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER""IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER"
"IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER"
Emmanuel Onwumere
 
一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理
一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理
一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理
bttak
 
Building a Raspberry Pi Robot with Dot NET 8, Blazor and SignalR
Building a Raspberry Pi Robot with Dot NET 8, Blazor and SignalRBuilding a Raspberry Pi Robot with Dot NET 8, Blazor and SignalR
Building a Raspberry Pi Robot with Dot NET 8, Blazor and SignalR
Peter Gallagher
 
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
lopezkatherina914
 
按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理
按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理
按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理
yizxn4sx
 
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
snfdnzl7
 

Recently uploaded (18)

按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
 
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
 
一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理
一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理
一比一原版圣托马斯大学毕业证(UST毕业证书)学历如何办理
 
按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理
按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理
按照学校原版(KCL文凭证书)伦敦国王学院毕业证快速办理
 
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
 
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
 
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
 
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
 
一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理
一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理
一比一原版不列颠哥伦比亚大学毕业证(UBC毕业证书)学历如何办理
 
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
 
欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】
欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】
欧洲杯赌钱-欧洲杯赌钱冠军-欧洲杯赌钱冠军赔率|【​网址​🎉ac10.net🎉​】
 
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
 
"IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER"
"IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER""IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER"
"IOS 18 CONTROL CENTRE REVAMP STREAMLINED IPHONE SHUTDOWN MADE EASIER"
 
一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理
一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理
一比一原版西三一大学毕业证(TWU毕业证书)学历如何办理
 
Building a Raspberry Pi Robot with Dot NET 8, Blazor and SignalR
Building a Raspberry Pi Robot with Dot NET 8, Blazor and SignalRBuilding a Raspberry Pi Robot with Dot NET 8, Blazor and SignalR
Building a Raspberry Pi Robot with Dot NET 8, Blazor and SignalR
 
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
 
按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理
按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理
按照学校原版(Greenwich文凭证书)格林威治大学毕业证快速办理
 
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
 

In to el

  • 1.
  • 2. TABLE OF CONTENTS Chapter 1 Vector Analysis 1 Chapter 2 Electrostatics 22 Chapter 3 Special Techniques 42 Chapter 4 Electrostatic Fields in Matter 73 Chapter 5 Magnetostatics 89 Chapter 6 Magnetostatic Fields in Matter 113 Chapter 7 Electrodynamics 125 Chapter 8 Conservation Laws 146 Chapter 9 Electromagnetic Waves 157 Chapter 10 Potentials and Fields 179 Chapter 11 Radiation 195 Chapter 12 Electrodynamics and Relativity 219
  • 3. Chapter 1 Vector Analysis (a) Prom the diagram, |B + C| cos^s = |B| cos^i + |C| cos02. Multiply by |A|, |A||B + C| cos 03 = |A||B| cos 01 + |A||C| cos 02- So: A-(B + C) = A-B + A-C. (Dot product is distributive.) Similarly: |B + C| sin 63 = |B| sin 61 + |C| sin62. Muhtply by |A| n. |A||B + C| sin03 n = |A||B| sin0i n + |A||C| sin02 n. If n is the unit vector pointing out of the page, it follows that Ax(B + C) = (AxB) + (AxC). (Cross product is distributive.) (b) For the general case, see G. E. Hay's Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and Section 8 (cross product). The triple cross-product is not in general associative. For example, suppose A = B and C is perpendicular to A, as in the diagram. Then (BxC) points out-of-the-page, and Ax(BxC) points down, and has magnitude ABC. But (AxB) = 0, so (AxB)xC = 0 ,1^ Ax(BxC). Problem 1.3 A = +lx+ly-lz;A = /3;B = lx+ly + lz;5 = x/3. / , B A-B = +1 + 1-1 = l = .45cos0 = /3/3cos0 ^cos0 = i. |0 = cos-i(|) (w 70.5288"! Li X _J 1/ Problem 1.4 The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example, we might pick the base (A) and the left side (B): A = -lx + 2y + 0z;B = -lx + 0y + 3z.
  • 4. CHAPTER 1. VECTOR ANALYSIS X y z AxB= -1 2 0 =6x + 3y + 2z. I -1 0 3 I This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its ^ - AXB |AxBi = VSe + 9 + 4 = 7. |x+|y+|z Problem 1.5 I X y z I Ax(BxC)= Ao; Ay ^ I iByC,-B,Cy) (B.C^-B^C,) (B^Cy-ByC^) I = x[Ay{B.Cy - ByC.) " A,{B,C^ - B^C,)] + y() + z() (I'll just check the x-component; the others go the same way.) = ±{AyB^Cy - AyByC^ " A.B^C^ + A.B^C,) + y() + z(). B(A-C) - C(A-B) = [BMxC^ + AyCy + yl^C^) - C^{Aa,B^ + A3,5j, + A,B,)] x + () y + () z = x(AygxCy + A.B^C, - AyByC^ - A.B^C^) + y() + z(). They agree. Problem 1.6 Ax(BxC)+Bx(CxA)+Cx(AxB)=B(A.C)-C(A-B) + C(A-B)-A(C.B)+A(B-C)-B(C.A)=0. So: Ax(BxC) - (AxB)xC = -Bx(CxA) = A(B.C) - C(A.B). If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or one is zero), or else B-C = B-A — 0, in which case B is perpendicular to A and C (including the case B = 0). Conclusion: Ax(BxC) = (AxB)xC <=4' either A is parallel to C, or B is perpendicular to A and C. I Problem 1.7 >t=Dx + 6y + 8z)-Bx + 8y + 7z) = [2x-2y+ z| -i = V4 + 4+l = [3] Problem 1.8 (a) AyBy + AzBz = {cos(f>Ay +sm(j)Az){cos(f>By + sm(j)Bz) + {-smcpAy + cos(f>Ai){-sin(f>By +cos05j) = cos^ (pAyBy + sin (f> cos (f>{AyBz + A^By) + sin^ (pA^B^ + sin^ 4>'^yBy - sin (f>cos (f>{AyB^ + A^By) + cos^ (f)AzBz = (cos^ (f) + sin^ (f>)AyBy + (sin^ (j) + cos^ (j))AzBz = AyBy + AzBz- / (b) (Z.J + (Ay)^ + (Az)^ - ^UAA = ^U {T.]^iRijA,) (SLii?,fcAfc) = S,,A (S,iJ,,iJ,,) A,Ak. This equals Al + AI + A provided '. T.UKR^'c-^ 0 •/ ]^k] Moreover, if R is to preserve lengths for all vectors A) then this condition is not only sufficient but also necessary. For suppose A = A,0,0). Then S^,*; (Sj RijRrk) AjAk — Sj RiiRii, and this must equal 1 (since we wantZj,+Zj,+34j = 1). Likewise, Sf^iiZt2-Ri2 = S^=i-Rj3-Rt3 = 1- To check the case j 7^ k, choose A = A,1,0). Then we want 2 = Sj,^ (Ej RtjRik) AjAk = Sj R,iRii + Sj Rz2Ri2 + S, RtiRt2 + Sj RtzRii- But we already know that the first two sums are both 1; the third and fourth are equal, so Sj RtiRi2 = Sj R12R11 = 0, and so on for other unequal combinations of j", k. / In matrix notation: RR = 1, where R is the transpose of R.
  • 5. Looking down the axis: dk A 120° rotation carries the z axis into the y (= z) axis, y into x (= y), and x into z (= x). So Ax — Az, 0 0 1 i?= ( 1 0 0 0 1 0 Problem 1.10 (a) I No changeTj (A^ = Ax,^y — Ay, A^ = A^) (b) IA —>■ -A7^ in the sense {Ax = —A^, Ay = -Aj,, ^^ : -A.) (c) (AxB) —> (-A)x(-B) = (AxB). That is, if C = AxB, | C —^ C |. No minus sign, in contrast to behavior of an "ordinary" vector, as given by (b). If A and B are pseudovectors, then (AxB) —> (A) x (B) = (AxB). So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector and a pseudovector, one changes sign, the other doesn't, and therefore the cross-product is itself a vector. Angular momentum (L = rxp) and torque (N = rxF) are pseudovectors. (d) A-(BxC) —> (-A)-((-B)x(-C)) = -A.(BxC). So, if o = A.(BxC), then | o —? -^ a changes sign under inversion of coordinates. Problem 1.11 (a)V/ = = 2xx + 3y^y + 4z^ z F)V/ = = 2a;y= z'^x + Sx^y'^z'^y-i Ax'^y^z^ z (c)V/ = = e*si n 2/ In z X -f- e^ cos y Inzy-l-e^ smy{l/z)z Problem 1.12 (a) V/i = W[{2y - 6x - 18) x + Ba; - 8y + 28) y]. V/i = 0 at summit, so 22y = 66=^y^3=^2x-2A + 2& = 0^^^x = ~2. Top is 13 miles north, 2 miles west, of SouthHadleyJ (b) Putting in a; = -2, y = 3: h = 10(-12 - 12 - 36 -I- 36 -t- 84 -t-12) = | 720 ft. | (c) Putting in a; = 1, y = 1: Vfe = 10[B - 6 - 18) x + B - 8 -f- 28) y] = 10(-22x 4- 22y) =: 220(- x -f- y). |V/i| = 220v^ Pb 1311 ft/mile]; direction: | northwest. |
  • 6. 4 CHAPTER 1. VECTOR ANALYSIS Problem 1.13 * - (a; - x') X + B/ - 2/') y + B - z') z; -> = y/{x - x')^ + {y - y'f + {z - z'f. (a)V@-^[(a;-a:r + (y-yr + (-^-^')']x+|^()y + ^()i = 2(x-x')x + 2(y-2/')y + 2(z-z'U = 2*. (b) V(i) = U{x- x'f + {y- y'? + {z - z'?]-h x + f^{)-h y + ^()-^ g = _i()-|2(x-x')x-|()-i2(y-y')y-|()-^2(z-z'J - -()-i[(x - x')i + B/ - y')y + (^ - ^')z] = -dA^)* = -(lA^)^ (c) ^(*") -n^"->f =n^"-nH2*.) =^^"-''i., so|v(^")^n^"^ Problem 1.14 y = +2/ cos 0 + z sin </>; multiply by sin </>: j/sin 0 = +j/ sin </> cos </> + z sin^ 0. z — —y sin 0 + z cos 0; multiply by cos 0: ?cos 0 = — y sin 0 cos (f)-- z cos^ 0. Add: 27sin0 + 2COS0 = z(sin^ 0 + cos^ 0) = z. Likewise, 27cos0 - ?sin0 = y. So || = cos 0; ll = - sin 0; |= = sin 0; |= = cos 0. Therefore M^ = i^ii"'ii^"'"^'^f^"'^'"t^^{^^oV/transformsa.avector. qed Problem 1.15 (o)V-v? = ^(a^') + |?Ca;^') + ^(-2a:2) - 2a; + 0 - 2a; -0. F)V.V6 = ^(^^2/) + iBy^) + l -Cxz)=y + 2a; + 3a;. (c)V-Vc = £B/') + li-^^y + z' + U^yz) = 0 + Ba;) + By) -2(x + y)- Problem 1.16 V-V = f^{^) + l{^) + l,{^) = A [3:(a;2 + y2 + ^2)-|] +|. [j,(^2 + ^2 + ^2)-|] +^ [^(^2 + ^2 + ^2)-|J = ()-§ + x(-3/2)()-t2x + ()-§ + y(-3/2)()-i22/ + ()-§ + z(-3/2)()-l22 - 3r-3 - 3r-5(x2 + y^ + ^2) ^ 3^-3 _ 3^-3 ^ q. This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from the origin. How, then, can V-v = 0? The answer is that V'V = 0 everywhere except at the origin, but at the origin our calculation is no good, since r = 0, and the expression for v blows up. In fact, V-v is infinite at that one point, and zero elsewhere, as we shall see in Sect. 1.5. Problem 1.17 Vy — COS (j)Vy + sm.(j)Vz;vz = — sin (f>Vy + cos 0 v^. ^ - ^ COS0 + % sin0 = (^f| + I^H) COS0+ (^1 + ^H) sin0. Use result in Prob. 1.14: = (^ COS0+ ^ sin0) COS0+ (^ COS0+ ^ sin0) sin0. ^ = -^ sin0+ %- COS0 = - (^i + ^i) sin0+ (^i| + ^i) cos0 - - (-^ sin0+ ^ COS0) sin0+ (-^ sin0+ ^ cos0) cos0. So ^ + ^ ^ 1^ cos2 0 + ^ sin0cos0 + ^ sin0cos0 + %■ sin^ 0 + ^ sin^ 0 - |^ sin0cos0
  • 7. -^ sm0cos0 + ^ ^ (cos^0 + sin^0) + ^ (sm^0 + cos^0) = ^ + ^. / X y z 0 a (a) Vxv? = i a? = x@ - 6x2) + y@ + 2z) + z{3z^ - 0) = -6xzyi + 2zy+ 32"^ z. X^ 3xz' -2a;z X z y 0 a 1? 51 = x@ - 2y) + y@ - 82) + z@ - a;) = |-2yx-3zy - a:z. | a;2/ 2yz 3a;z (c) Vxv, = = xB2 - 22) + y@ - 0) + zBy - 2y) = [o7] {2xy + ^2) 2yz Problem 1.19 V = y X + X y; on V = yz X + xz y + xy z; or V = {3x^z - 2^) x + 3 y + (a;^ - Zxz^) z; or V = (sin a;) (cosh J/) x - (cosa;)(sinhj/) y; etc. Problem 1.20 (i)V(/,) = Mx+M5. + M2=(/|.+,|£Mc+(/|| + ,g)y+(/if+,il)z = f{^^+lly+^^)+9{U^+%y+U^)=fi'^9) + 9{'^f). qed (iv) V.(AxB) = £ [AyB, - A,By) + §-^ {A,B, - A,B,) + ^ {A.By - AyB.) =^Ay'-t + B.'-t-A.'-t-By'-t + A.^ + Bj-^~A.'-t-B.'-^ ^A^'-t + By'-t-^y'-t-B.'-t -B.[^-'-t)-^By{^-^-t)^B.[^-^-^)-A.[^-^-§f) -^.(l^-l^)-^^(^-^)=B-(VxA)-A.(VxB). qec (V) Vx (/A) = (^ - 5IIM) 5t + (^IM^ - ?i|M) y + BiM^ - ^^ = /(VxA)-Ax(V/). qed Problem 1.21 (a)(A.V)B=(A.^ + ^,^ + ^.^)x+(^.^ + A,^ + A.^)y [(f.V)fL = ^(x£+,4; + zf)-
  • 8. 6 CHAPTER 1. VECTOR ANALYSIS Same goes for the other components. Hence: (f-V) f = 0 . (c) (v?.V) V6 =(x^^+ 3xz^^ - 2xz^) [xy x + 2y2y + 3a;2 z) = x^ B/ X + 0 y + 32 z) + 3x2^ (a; x + 22 y + 0 z) - 2x2 @ x + 2?/ y + 3a; z) = (x^y + 3x22^) X + Fx2^ - 4xy2) y + Cx^2 - 6x^2) z = I x2 B/ + 322) ^ ^ 2x2 C2^ - 22/) y - 3x^22 I Problem 1.22 ~ ~~~~ (ii) [V(A.B)], = £(A.5. + AyBy + A,B.) = S^B. + A,^ + ^By + Ay^ + M.B, + a,^ [Ax{VxB)l^AyiVxB),-A.iVxB)y::.Ay{?t-^)-M^-^) [Bx(VxA)L = B,(^-^)-B.(^-^) [iA.y7)Bl = {A.£ + Ay^ + A.^^)B. = A.^ + Ay^ + A.^ [(B.V)A], = B,S^ + By^ + B,^ So[Ax(VxB)+Bx(VxA) + (A-V)B + (B-V)A]^ = Ay^ oxAy^ ay A,^ oz A,^ox By^ - y oy" ^ oz H" B,^ y - y - ^ + ^ + y ox By^ ^^^ * ox = [V(A-B)]jj (same for y and 2) (vi) [Vx(AxB)], = ^{AxB),--§-^{AxB)y = ^{A^By-AyB^)--l^{A,B^-A^B,) - aj, ^y + ^X gy Sf^X Ay gy g^ H^ ^ Z -Q^ + Q^ ^J 4" ^X "gj^ [(B-V)A - (A.V)B + A(V.B) - B(V.A)]x = B.^ + By^-^ + B.^-A.^-Ay^^-A.S^ + A4^-t + '-^ + '-t)-Bx{^ + '-^ + '-t) + M-^)+M-t)+B4^) = [Vx(AxB)]j, (same for y and 2) Problem 1.23 v(//ff) = -LUl9)^ + -§-y{fl9)y + Ufl9)i ^ ^fJT/ltx+^iM^y + ^ii^z V-(A/ff) = ^(A./5) + |;(A,/ff) + ^(A./5) - 1 L ?M^ 4- Ma. 4. M^^i ^( A ^4-/4 ^4-/4 ^"^1 - aV-A-A-Vg , - 5^ [5^^ ax + aj, + a^ ; V^^a?+^2'aj,+^^a^;J - ^ P ^- ^^^
  • 9. IMvlg) Problem 1.24 y z (a) AxB = 2y Zz := xFxz) + y{9zy) + i{-2x^ - 6y^) -2x 0 V.(AxB) = ^i6xz) + ^i9zy) + ^(-2x2 - 6y^) =6z + 9z + 0 = 15z VxA = X [^(Zz) - ^By)) + y {^{x) - £Cz)) + z (£By) - ^(x)) = 0; B-(VxA) = 0 VXB = X A^@) - ^(-2x)) + y {^{Zy) ~ ^@)) + z (^(-2x) - ^{3y)) = -5z; A.(VxB) -- V-(AxB) ^ B.(Vx A) - A.(VxB) = 0 - (-15z) = 15^. / (b) A-B = 3a;y - 4a;y = -xy ; V(A.B) = V{-xy) = x£(-a;y) + y|^(-xy) = -xy Ax(VxB) = X 2y Zz = x(-10y)+yEa;); Bx(VxA) = 0 0 0-5 (A.V)B = (a;^ + 2y^ + Zz^) Cy x - 2a;y) = xFy) + y(-2a;) (B.V)A = C2/^ - 2a;|;) (a; X + 2y y + Zz z) = xCy) + y(-4a;) Ax(VxB) + Bx(VxA) + (A.V)B + (B-V)A = -10yx + 5a;y+ 6yx-2a;y+ 3yx-4a;y = -yx-xy = V-(A-B). / (c) Vx(AxB) - X (|^(-2x2 - 62/2) - ^(9^2/)) + y (^Fa;z) - ^(-2x2 - 6y2)) + z (£{9zy) - |^ Fxz)) = x(-12y - 9y) + yFx + 4x) + z@) = -21yx + lOxy V-A = ^(x) + ^By) + ^Cz) = 1 + 2 + 3 - 6; V-B = ^Cy) + ^{-2x) - 0 (B-V)A - (A.V)B + A(V.B) - B(V-A) = 3y x - 4x y - 6y x + 2x y - 18y x + 12x y = -21y x = Vx(AxB)./ Problem 1.25 (a) ^ = 2; ^ = ^ = 0 =!> I V2r? = 2.1 -3r6 = (c) 0 = 25T, ; 0^ = -ler, ; ^ = -9T, ^ S/^T, = 0. | id) ^^2;^ = ^=0 ^ W^v^=2 li^ = ^=0;|^-6x => V
  • 10. CHAPTER 1. VECTOR ANALYSIS Problem 1.26 ■(V XV) -ai[-gf--gf) + si{^-^) + g^[-a^--S^) - (& - fe) + (fe - fe) + (& - fe) = 0' by equality of cross-derivatives. PromProb. 1.18: Vxvt =-2yx - 3zy - xz ^ V.(VXV6) = ^(-2y) + ^(-82) + ^(-a;) = 0. / Problem 1.27 =========================^^ ====__ Vx(Vi)- _ ,->/ a't a't , ,%( a't a^i . a^ a''t e^t^ = 0, by equality of cross-derivatives. In Prob. 1.11(b), V/ - 2xy'^z^ x + Zx'^y'^z^ y + 4x^^323 z, so I X y z ■ Vx(V/)= ^ ^ ^ I 2xy^z'* 3a;^y3;j;4 4a;2j^3^ = xC • 4x^y^z3 _ 4 . 3a;2y2^3) ^ ^^D . 2xy^z^ - 2 • 4a;y3^3) + ^B . 3a:y2;^4 - 3 • 2xy^z'^) = 0. / Problem 1.28 (a) @,0,0)—> A,0,0). a;:0-^l,y = z = 0;dl = da;x;v-dl = x2da;;/v-dl = /o'a;2da. = (a.3/3)|i^l/3 A,0,0) —> A,1,0). x= l,j/ :0-> l,z = 0;cfl = dj/y;v-dl = 2j/2d2/ = 0;/v-dl = 0. A,1,0) —^ A, l,l).x = y = 1, z: 0 -> 1; dl = d^ z; v • dl = y^ ^z = dz; / v • dl = /(J dz = z|J = 1. Total: / V • dl = A/3) + 0 + 1 = |4/3.| (b) @,0,0) —> @,0,1). a; = 2/= 0,2:0->l;dl = d2z; vdl = 2/2 dz = 0;/v dl = 0. @,0,1) —)• @,1,1). a; = 0,y : 0-> 1,2 = l;dl = dyy;v-dl = 2y2dy = 2j/dy;/ vdl =/o 2j/dy = j/2|i ^ 1 @,1,1) —)• A,1,1). X : 0 -> 1, y = z = 1; dl = da;x; v • dl = a;^ da;; / v • dl = /? a;^ da; = (a;3/3)|J = 1/3. Total: / V • dl = 0 -)-1 + A/3) = 14/3. | (c) X = y = z : 0 -> 1; da; = dy = dz; V • dl = a;2 da; + 2yz dy + y^dz = j? dx + 2a;^ da; -)- a;^ da; = 4a;^ da;; / V • dl = /o' 4a;2 da; = Da;3/3)|S - [l/s] (d)/vdl=D/3)-D/3) = [0l| ____^__ Problem 1.29 x,y : 0 -> l,z = 0;da - dxdyz;v ■ da = y(z^ - Z)dxdy = -Zydxdy;Jv ■ da = -Zj^dx^^ydy = -3(a;|o)Dlo) = -3B)B) = 112. | In Ex. 1.7 we got 20, for the same boundary line (the square in the a;y- plane), so the answer is |no: | the surface integral does not depend only on the boundary line. The total flux for the cube is 20 + 12 = |32. | Problem 1.30 jTdr = J z^ dxdy dz. You can do the integrals in any order—here it is simplest to save z for last: l''[l{h)'"h The sloping surface isa; + y + z=l,so the x integral is /q ^ ^ da; = 1 - y - z. For a given z, y ranges from 0 to 1 - z, so the y integral is J^'-'^ {l-y-z)dy = [il-z)y- (y 72)]!^'^ = il-z)^-[{l- zf/l] = A - 2) V2 =
  • 11. A/2) - z + (zV2). Finally, the z integral is ll zW - ^ + 4) dz = /o'D - z^ + 4) dz = (^ - ^ + '^) = -e- Problem 1.31 + T6 = W^ T(b) = 1 + 4 + 2-7; T(a) = 0. => | T(b) - T(a) ^tTJ VT = Ba; + 4y)x + Da; + 2z^)y + {6yz^)z; VT-dl = Ba; + 4y)da; + Da; + 2x^)dy + {6yz'^)dz (a) Segment 1: x : 0-^1, y = z = dy = dz = 0. ^VT-dl = /^ Ba;) dx = x'^l = 1. Segment 2: !/: 0 -> 1, a; = 1, 2 = 0, da; = dz = O./VT-dl = /q D)dy = 4y|J = 4. jl^T-di = 7. / Segment 3: z:0-^l, a; = y = l, dar = dy = O./VT-dl = J^{Qz'^)dz = 2z3|J = 2. (b) Segment 1; 0-^1, a; = y = da; = dy = 0. /VT-dl = /? @) dz = 0. Segment 3; 00 -^ 1, ya;= = 0,1, dy1, dz = =0.dz/VT-dl = Jl{2x + 4) da; = 2y|J = 2. J^ VT-dl = 7. / Segment 2: -> 1, 2 = 2 = = da; = O./VT-dl = Jq B)dy (a;2+4a;)|; = l + 4 = 5. (c) a;: 0 ->■ 1, y = x, z = x^, dy = dxdz = 2xdx. VT-dl = {2x + 4x)dx + Da; + 2a;^)da; + Fa;a;'*Ja; da; = A0a; + 14a;?)dx. f^ VT-dl = /o A0a; + 14a;?')da; = (Sa;^ + 2x'^)l = 5 + 2 = 7./ Problem 1.32 V-v = y + 2z + 3a; Ji'V'v)dT = /(y + 2z + Zx) dxdydz = J J {/q (y + 2z + 3a;) dx}dydz ^[iy + 2z)x[y2+ +lx']l+ =6)y]l = +4 2z)+6+ =6)/{/oBj/16+ 4z + 6)dy}dz M- {4z 2{y + 2Dz = 8z + = f^iSz + 16)dz = D^2 + 16z) lo = 16 + 32 = [IsTI Numbering the surfaces as in Fig. 1.29: (i) da = dy dz X, a; = 2. v-da = 2y dy dz. /v-da = //2y dy dz = 2y^ |o — ^• (ii) da = —dydz%x = 0. v-da = 0. Jv-d& = 0. (iii) dsL — dxdzy,y = 2. v-da =:Azdx dz. JvdsL = JjAz dx dz = 16. (iv) da = -da;dzy,y = 0. v-da = 0./v-da = 0. (v) da = dx dy z, z = 2. v-da = 6a; da; dy. /v-da = 24. (vi) da = —da; dy z, 2; = 0. v-da = 0. /v-da = 0. ^ /v-da = 8 + 16 + 24 = 48 / Problem 1.33 Vxv = x@-2y) + y@ - 32) + z@ - a;) = -2yit-3zy - xz. da = dy dz x, if we agree that the path integral shall run counterclockwise. So (Vxv)-da = -2ydydz.
  • 12. CHAPTER 1. VECTOR ANALYSIS /(Vxv)-da = j{j^-'i-2y)dy}dz ^y^l-' = -{2-zr = -J^i4-4z + z^)dz = -[4z-2z' + i)l Meanwhile, vdl = (a;j/)da; + {2yz)dy + {Zzx)dz. There are three segments. {l)x = z = Q; da; = dz = 0. y : 0 -^ 2. /vdl = 0. B) a; = 0; z = 2-y dx = 0, dz = -dy, y : 2 -^ 0. vdl = 2yzdy. /vdl = /° 2y{2 - y)dy = - J^i4y - 2y')dy = - {2y^ - y^) |J = - (8 - | • 8) = -|. C) a; = 2/ = 0; da; = dy = 0; 2:2-^0. v-dl = 0. /v-dl = 0. So /v-dl = -|. / Problem 1.34 By Corollary 1, /(Vxv)'da should equal |. Vxv = {4z^ - 2x)± + 2zz. (i) da = dyd2x, a; = 1; y,2 : 0 -^ 1. (Vxv).da = {4z^ - 2)dydz; /(Vxv).da = /^ D^2 _ 2)dz (ii) da = -dxdyz, z = 0; x,y:0^1. (Vxv).da = 0; /(Vxv)-da = 0. (ill) da = da;d2y, y = 1; x,z:0^1. (Vxv)-da = 0; /(Vxv)-da = 0. (iv) da = -dxdzy, y = 0; a;,z : 0 -^ 1. (Vxv).da = 0; /(Vxv)-da = 0. (v) da = da;dyz, z = 1; a;,y : 0-^ 1. (Vxv)-da = 2dxdy; /(Vxv)-da = 2. =i>/(Vxv)-da=-| + 2=|. / Problem 1.35 (a) Use the product rule Vx(/A) = /(VxA) -Ax (V/) : /"/(VxA).da=^5 ^5x (V/)] • da = / /A-dl+ /"[A x (V/)] • da. qed. 75 /" Vx(/A)-da+ /"[A ./P ^5 (I used Stokes' theorem in the last step.) (b) Use the product rule V-(A x B) = B • (VxA) - A ■ (VxB) : /"B-(VxA)dr= /" V.(AxB)dr+ /" A(VxB)dr= /(AxB)da+ / A-(VxB)dr. qed. (I used the divergence theorem in the last step.)
  • 13. Problem 1.36 r = i/a;2 +y^+ z"^; 9 = cos'^ P=tan-i(f), Problem 1.37 There are many ways to do this one—probably the most illuminating way is to work it out by trigonometry from Fig. 1.36. The most systematic approach is to study the expression: r = x^ + yy + zz = rsmOcos<^x + TsinOsm(f)y + rcosOz. If I only vary r slightly, then dr = ^(r)dr is a short vector pointing in the direction of increase in r. To make it a unit vector, I must divide by its length. Thus: 1^ = sin0cos0x + sin0sin0y + cos0z; |^| = sin^ 0cos^ 0 + sin^ 0sin^ ^ + cos^ 0 = 1. If = r cos ^ cos 0X + r cos 0 sin 0y - >" sin 0 z; 11| | = r^ cos^ 6 cos^ <j!> + r^ cos^ 9 sin^ (p + r"^ sm^ 9 = sin^z; dit) flsin^x + rsin^cos^y; |0| = + r-' sin"" 6 cos'' (p - r^ sin"" ( f — sin 9 cos ^ X + sin 0 sin 0y + COS0Z. e = cos 9 COS (f)jt + cos 9sm(f)y - sin 9 z. 0 = — sin^x + cos0y. Check: f-f = sin^ ^(cos^ 0 + sin^ 0) + cos=^ 9 = sin^ 9 + cos^ 9 = 1, / 9-^=:-cos9sm(f)cos<l> + cos9sm(f)cos(f) = 0, / etc. sin9r = sin^ 0cos0x + sin^ 9sm(j>y + sin9cos9z. cos90 = cos^ 9cos(j)x. + cos^6sin0y — sin^cos9z. Add these: A) sinfif + cos^e ^+cos0x + sin^y; B) 4> - -sm(f)Tt + cos<py. Multiply A) by cos0, B) by sin0, and subtract: h=- sinfl COS^f + COS0 COS 00 - sin 0 0.1 Multiply A) by sin0, B) by cos0,, and add: and add: |j == sinS sin 0 f + COS 9 sin 0 0 + cos (j) 0.1 cos^f = sin0cos0cos0x + sin0cos0sin0y+ cos2( sin ^ 0 = sin 9 cos 0 cos 0 x + sin 9 cos ^ sin 0 y - sin^ ( Subtract these:
  • 14. CHAPTER 1. VECTOR ANALYSIS Problem 1.38 (a) V-v, = ^i:{r^r^) - ^4^^ = 4r /(V-v,)dr = f{4r)ir^sin0drded,f>) ^ {4) J^r^dr J^ sin0d0 Jl^dcj, = D) (^) B)B7r) =^¥ /vi-da - /(r2f).(r2 sin^d^d^f) = r" /J" sin0d0f^' d<j) = 4nR'^ / (iVote; at surface of sphere r = /2.) (b) V.V2-J.|:(r2 4,)=:0 =^ /(V.V2)dr = 0 /v2-da = /(^f) (r2sin6ld6l#f) = JsinOdOd^) = [i^ They rfon'i agree! The point is that this divergence is zero except at the origin, where it blows up, so our calculation of /(V-V2) is incorrect. The right answer is 4ir. Problem 1.39 V-v = 4,|,(r2rcos0) + ;:^^(sin0rsin0) + ^^(rsin0cos0) — ^ 3r^ cos 9 + ^gl^g r 2 sin 0 cos 0 + j^^ r sin 0{— sin 0) = 3cos0 + 2cos^ — sin0 = 5cos0 — sin0 J{V-v)dT = /E cos 0 - sin 0) r^ sin 0 dr d0 d(f> = f^ r^ dr j} U^""E cos 0 - sin 0) d^l dB sin 0 M'27rEcos0) = (f )A07r)//sine cos 0,d0 -^-^1^ = 1 Two surfaces—one the hemisphere: da = i?^ sin 0 d0 d0 f; r =^ R; 0 : 0 ->■ 27r, 0 : 0 -> |. Jv-da = J{rcos0)R^ sin0d0d(t) - R^ // sin0cos0d0 J^" d<j) = R^ (|) {2-k) = ttR^. other the flat bottom: da = (dr)(r sin 0d0)(+0) = rdrd(j>e (here 0 = f). r : 0 -^ J?, 0 : 0 -> 27r. /v.da = /(r sin 0)(r drd0) = J^ r"" dr J^"' d(f, = 2n^. Total: Jv-da. = ttR^ + ^nR^ = ^nR^ / Problem 1.40 Vt = (cos0+ sin0cos0)f + (-sin0 + cos0cos0H+ -:AT-(-si)if0sin0)^ W'H = V-{Vt) = ^ (r2(cos0 + sin0cos0) + ^Jj^ (sin0(-sin0+ cos0cos0) + ^ri^ {-sin(j) — -^ 2r(cos0 + sin6cos0) + ^ l^ (-2sin0cos0 + cos^ 0cos0 - sin^ 0cos0) - ^:^t^ cos0 = 7^^ [2 sin 0COS 0 + 2 sin^ 0 cos 0 - 2 sin 0Cos 0 + cos^ 0 cos 0 - sin^ 0 cos 0 - cos 0] = j^ [(sin^ 0 + cos^ 0) cos 0 - cos 0] = 0. ^ [Vh = 01 Check: rcos0 = z, rsin0cos(f> — x ^ in Cartesian coordinates t = x + z. Obviously, Laplacian is ze: Gradient Theorem: f^ Vt-di = f (b) - f (a) Segment i; 0 = f, 0 = 0, r : 0 -> 2. dl = drf; Vt-dl = (cos0 + sin0cos0)dr = @ + I)dr = dr. fVt-d[ = f^dr = 2. Segment g; 0 = f, r = 2, 0 : 0 -> f. dl = rsin0d00 = 2d0^. Vf-dl = (-sin0)Bd0) = -2sin0d0. /Vf-dl = - f^ 2sin<pdcp = 2cos0|| = -2.
  • 15. Segment 3: r = 2, 0 = f; 0 : f -^ 0. dl = rdee = 2d0e; Vf-dl= (-sm0 + cos0cos0)Bd0) = -2smed9. JVt-dl^-J°2smedd^ 2cos0|l =2. Tota/; /^'' Vf-dl = 2-2 + 2 = [2]. Meanwhile, f (b) - f (a) = [2A + 0)] - [0( )] = 2. / Problem 1.41 Prom Fig. 1.42, s = COS0X +sin</iy; 0 = — sin</ix + cos</iy; z = z Multiply first by cos 0, second by sin <p, and subtract: s cos 0 — ^ sin 0 = cos^ 0 x + cos 0 sin 0 y + sin^ 0 x — sin 0 cos 0 y = x(sin^ 0 + cos^ 0) = x. So X = cos 0 s — sin 0 0. Multiply first by sin 0, second by cos 0, and add: s sin 0 + 0 cos 0 = sin 0 cos 0 x + sin^ 0 y - sin 0 cos 0 x + cos^ 0 y = y(sin^ 0 + cos^ 0) = y• So y = sin0§ + cos00. |z = z. | Problem 1.42 (a) V-v = i^(ssB + sin2 0))+i^(ssin0cos0) + ^Cz) = i 2sB + sin^ 0) + 7 s(cos2 0 - sin^ 0) + 3 = 4 + 2 sin^ 0 + cos^ 0 - sin^ 0 + 3 = 4 + sin^ 0 + cos^ 0 + 3 = [sT] (b) /(V-v)dr = /(8)sds d<pdz = 8 f^ s ds J^ d<j) f^ dz = 8B) (f) E) = 140n. Meanwhile, the surface integral has five parts: top: z = 5, da — sdsdcj) z; v-da = 3z s ds d0 = 15s ds d0. /v-da = 15 /^ s ds f^' d(f) = 157r. bottom: z = 0, da = —sdsdcpz; v-da = —Zzsds-dcj) = 0. /v-da = 0. back: 0 = f, da = ds dz 0; V'da = s sin 0 cos (j)dsdz = 0. J v-da = 0. left: 0 = 0, da = —ds dz 0; v-da = —s sin 0 cos (pdsdz = 0. fv'da = 0. front: s = 2, da = sd(j>dz s; v-da = sB + sin^ 0)s d0dz = 4B + sin^ 0)d0dz. Jvda = 4/o? B + sin2 0)d0/o dz = D)Gr + f )E) = 257r. So /vda = 157r + 257r = AOtt. / (c) Vxv = (i^Cz)-^(ssin0cos0))s+(^(sB + sin2 0))-^Cz)H + J {mi^^sin0cos0) - ^ (sB + sin20))) z = ^Bssin0cos0 - s2sin0cos0) = [qT] Problem 1.43 (a) 3C2) _ 2C) _ 1 ^ 27 - 6 - 1 = [2071 (b)cos7r = m (c) I zero. I (d) ln(-2 + 3) = In 1 = [^eroT] Problem 1.44 (a) f_^{2x + 3)|<J(a:) dx = |@ + 3) = [I] (b) By Eq. 1.94, 5A - a;) = 5(x - 1), so 1 + 3 + 2 = [gT]
  • 16. CHAPTER 1. VECTOR ANALYSIS (d)|l(ifa>6), 0(ifa<6O| Problem 1.45 (a) JZo /(^) [^^<^(^)] d^ = xnx)dix)C^ - jr^ £ ixfix)) 5{x) dx. The first term is zero, since 5{x) = 0 at ±oo; ^ {x f{x)) -x^ +^f = x§^ + f. So the integral is - /^ {x% + /) 5{x) dx ^ 0 - /(O) = -/(O) = - fZo fi^)^i^) dx. So, x£S{x) = -Six), qed (b) !Zo m^dx = fix)eix)'^^ - fZ, fj{x)dx = /(CO) - /o°° £dx = /(oo) - (/(oo) - /(O)) - m - /.Too /(^)'^(a:) da:. So £ = <5(x). qed Problem 1.46 (a) p{r)^q5^{r-r'). Check: /p(r)dr = q f5^{r - r') dr = q. / (c) Evidently p{r) = AS{r — R). To determine the constant A, we require Q^JpdT = jASir - iZL7rr2 dr = A47riZ2. So A = 4^. p{r) = ^5{r - R). Problem 1.47 (a) a^ + a-a + a"^ - |3a^.| (b)/(r-bJ^53(r)dr = ^62 = ^D2+32) = g] (c) c^ = 25 + 9 + 4 = 38 > 36 = 6^, so c is outside V, so the integral is (d) (e - Bx + 2y + 2z))^ = (Ix + Oy + (-1) z)^ = 1 + 1 = 2 < A.5J ^ 2.25, so e is ins and hence the integral is e-(d - e) = C,2, l)-(-2,0,2) = -6 + 0 + 2 = [T] Problem 1.48 ~~ First method: use Eq. 1.99 to write J = / e"'' D7r5^(r)) dr = 47re"° = |47r.| Second method: integrating by parts (use Eq. 1.59). J ^ - / 4 • "^(^"'■) dr+ ie-"-—- da. But V (e-"-) = (§^e~'') f = - V 5 = / -^e~''A7rr^ dr + / e"""-^ • r^sinfld^d^f = 47r / e~''dr + e~^ / sin 47r (-e-'-) |~ + 4ne-^ = Att (-6"°° + e"") - 47r./ (Here R = -0.) Problem 1.49 (a) V-Fi = £{0) + ^@) + ^ (x^) = [o]; V-F^ = ^ + ^ + ^ = 1+ 1 + 1 =[z] X y z X y z -y^(x^)=E23= ^x^^ = ^ .a. A a a a Sx 8y dz dx di m = 0 0 0 a;2 x y z
  • 17. IF2 is a gradient; Fi is a curl [ rt/2 = ^ (a;^ + 2/^ + 2^H would do (F2 = VU2). For Ai, we want (^ - ^) = (^ - ^) - 0; ^-^=x^. Ay = ^, A^ = A, :^ 0 would do it. Ai = |x^ y (Fi — Vx Ai). (But these are not unique.) (b) V.F3 = ^(yz) + ^{xz) + f^ixy) = 0; VXF3 z x{x-x) + y {y-y) + z{z-z) = 0 yz xz xy So F3 can be written as the gradient of a scalar (F3 = VC/3) and as the curl of a vector (F3 = VXA3). In fact, Uz — xyz does the job. For the vector potential, we have dy dz = yz, which suggests A^ - y'^z + f{x,z) Ay = -yz'^ + g{x,y) = xz, suggesting Ax = z'^x + h{x,y); Az = -zx^ + Jiy,z) = xy, so Ay = x^y+ k{y,z); Ax =-xy'^+l{x,y) Putting this all together: A3 = j {x [z^ - J/^) x + y (a;^ — z^)y + z (y^ — a;^) z} (again, not unique). Problem 1,50 (d) =i' (a): VxF = Vx(-VC/) = 0 (Eq. 1.44 - curl of gradient is always zero). (a) ^ (c): fF-d[ = /(VxF) • da -: 0 (Eq. 1.57-Stokes' theorem). (c)^(b):/^>.dl-/^V-'^l = /a>-^ + /bV.dl=i^F.dl = 0,so / F.dl= / Fdl. ■/a / Ja II (b) ^ (c): same as (c) ^ (b), only in reverse; (c) =^ (a): same as (a)^ (c). Problem 1.51 (d) ^ (a); V-F = V'(VxW) = 0 (Eq 1.46—divergence of curl is always zero). (a) ^ (c); §F -da- /(V-F) dr = 0 (Eq. 1.56—divergence theorem). (c) ^ (b): /^ F • da - /r^ F • da - f F • da = 0, so /Fda= f I Ji Jii {Note: sign change because for ^ F • da, da is outward, whereas for surface II it is inward.) (b) ^ (c): same as (c) ^ (b), in reverse; (c)^ (a): same as (a)^ (c) . Problem 1.52 In Prob. 1.15 we found that V-Vg = 0; in Prob. 1.18 we found that Vxvc = 0. So Vc can be written as the gradient of a scalar; Vo can be written as the curl of a vector. E (a) To find t: A) ^=^y'^t^y^x + f{y,z) B) IL={2xy + z^) C) t - 2yz
  • 18. CHAPTER 1. VECTOR ANALYSIS Prom A) & C) we get % =2yz =^ f = yz^ + g{y) =^ t = y^x + yz^ + g{y), so ^ = 2xy + 2^ + || = 2xy + z^ (from B)) =*■ || = 0. We may as well pick 5 = 0; then | f = xy^ + yz^. (b)TofindW: ^ - ^ = a^^l ^"^ : Zz'^x; Pick ly^ = 0; then dx = -3xz2 =>W, = -^x^z^ + f{y, z) dWy = -2xz^Wy==-x'^z + g{y,z). dx = i^ + ^' - if = ^' ^ S - if = 0- May as well pick / = g = 0. Check: VxW = = X (x2) + y Cx22) + 2 (_2xz)./ 0 -x^z -^xh You can add any gradient (V*) to W without changing its curl, so this answer is far from unique. Some other solutions: W = xz^x — x^zy; W = [2xyz + xz^) X + x'^y z; W = xyz X - ^x^z y + ^x^ [y - 32^) g. Probelm 1.53 W = l|.(r2r2cos0) + -l^^(sin0r2cos.^) = -^-|-(-r2cos0sm^) = -x^r^ cos0 H r-^ cos0r^ cos 6 + —r-T f-r^ cosfl cos0) = . [4 sin 0 + cos 0 - cos 0] = 4r cos 9. l{V-)dT = I {4r cose)r^sinedr ded<f> = 4 I r^ dr I cose sine de I d^ Surface consists of four parts: A) Curved: dsL = R^ sineded<pT; r = R. v ■ da = (J?^cose) (i?^; 7r/2 7r/2 ^ f vd& = R'' f cose sine de f d(i> = R''U (|)=r![|-.
  • 19. B) Left: da = -rdrdd^; 0 = 0. v • da = (r^ cos^sin^) {rdrdB) = 0. /v • da = 0. C) Back: da = rdrde^; cj) = 7r/2. v • da = (-r^ cos 9 sin 0) (r dr dB) = -r^ cos 0 dr d9 /"vda= Ir^dr f cos9de = -(^R^^{+l) = -^R*. 0 0 D) Bottom: da = r sin dr d(jN; 9 = i^j^. v • da = [r^ cos 0) (r dr d(f)). R 7r/2 / V • da = r^dr / cos^d^ = -i?''. 0 0 rota/; f V • da = 7riZV4 + 0 - ii?" + iij4 ^ 2l|l. / Problem 1.54 =======================================^ =__ ■ X y z I £ ^ ^ =z(fe-a). So /(Vxv)-da=F-aOr/22. ay bx 0 I vdl= (ayx + 6a;y) • (tfccx+ dyy+ dzz) = aydx + bxdy; x^ + y"^ = R"^ =i' 2xdx + 2ydy = 0, so dy = —{x/y) dx. So v • dl = aydx + bx{-x/y) dx = ^ [ay"^ — bx^) dx. For the "upper" semicircle, y = y/R"^ — x^, so v • dl = ° vna- a " ^^- |v.dl = |£^lz(i±M :|aiZ2sin-i(£)-(a + 6)[-|v^ a/^^ • a;-* + -r- sm ■(I) = ^R-'ia - b) sn-xlR) ^ = Ra - b) (sin-i(-l) - sin-H+l)) = Ra - b) (-| - |) = IwR-'ib-a). And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) so §ydl = 7rR^{b-a). / Problem 1.55 =========::==.=^...==.=..::===== = = {I) x = z = 0; dx = dz = 0; y : 0 -^ 1. v ■ dl - {y + 3x) dy = y dy. 1 1 J vdl= I ydy = -. 0 0 B) X = 0; 2 = 2 - 2y; dz = -2dy; j/ : 1 -> 0. v • dl = (y + 3a;) dy + 6dz = ydy - 12dy = (y - 12) dy. 0 |v.dl = y(y-12)dy = -Q-12)=-i + 12. C) X = y = 0; da; = dy = 0; z : 2 -^ 0. v • dl = 6dz; 0 fvdl= f6dz=-l2.
  • 20. CHAPTER 1. VECTOR ANALYSIS Total: ,fv-dl= ^-| + 12-12 = [or| Meanwhile, Stokes' thereom says /v • dl = /(Vxv) • da. Here da = dydz it, so all we need is (Vxv)^ = ^{6) - ^{y + 3x) = 0. Therefore /(Vxv) • da = 0. / Problem 1.56 Start at the origin. A) 0=1, 0 = 0; r:0->l. v • dl = (rcos^0) (dr) = 0. /v-dl = 0. B) r=l, e = ^; (f>-.0-^71/2. v • dl = Cr)(rsin0d0) = 3d0. /v • dl = 3 / d0 = ^. 0 C) (f> — f; rsinO — y = 1, so r = ^^, dr = ^^^cosOdO, 0 : | -> j. / 9 ?N ,, ^ , ? ?^/ ,^x cos^0 / cosO , , cos0! v-dl = (rcos^0)(dr -(rcos^sin^ (rd^ =^-Z- T^]dtheta -, ^ '^ ' ^ sm0 V sin^^y sin^ /cos^g cosg _ cosg /cos^g + sin'^gN cosg Vsin^^ sin^y ~ sin0 I, sin^0 / ~ sin^0 Therefore f rn- 7 ^°^^ r/ft- ^ r^"- ^ ^-1_i-l /"' y sin^fl'"^" 2sin2 0L/2 .(l/2) 2-(l)-^ 2-2" D) 61 = f, 0 = f; r : v^ -^ 0. v • dl = (r cos^ 9) (dr) = ^rdr. r 1 r ir'^f 1 1 Stokes' theorem says this should equal /(Vxv) • da + - [|-(-rr cos0sin0) - ^ (rcos^^)] 4> - Scoter-60. A) Back face: da ^-r dr d9 4); (Vxv)-da-iO. /(Vxv)-da = 0. B) Bottom: da - -rsinOdrdcp6; (Vxv) -da — 6rsm0drd<l). 0 = |, so (Vxv) • da = 6rd n/2 j{Vxv)-da^ j Qrdr j d<j,A. Q---^ ^'^ ' = ?.!.___ 2 2 ■
  • 21. Problem 1.57 V •dl = ydz. A) Left side: z = a-x; dz = -dx; y = 0. Therefore / v • dl = 0. B) Bottom: dz = 0. Therefore / v • dl = 0. {3) Back: z = a-^y; dz = -l/2dy; y:2a^0. fvdl=fy{-^dy) = -^^° = ^ =^ Meanwhile, Vxv = x, so /(Vxv) • da is the projection of this surface on the xy plane = - a-2a — c?. / Problem 1.58 ~~~~~ ~~~~ """ V.v = 41- ('•''•' si" ^) + ^ 4 (si" ^ 4r2 cos Q) + ^ ~ (r^ tan 0) = 4r^ sin e + -^4r^ (cos" 9 - sin^ 9)^-^ (sin^ 0 + cos^ 9 - sin^ 0) , cos2 0 smp Av-v) dr ^ f Dr^) (r' sin ^ dr d0 d<j>) = / r3 dr f cos^ 9dd fd<P= {R') B7r) [^ + ^11 0 0 0 Surface consists of two parts: A) The ice cream: r - R; (p :0 ^ 2n; 9 :0 ^ n/6; da = R'^ sin 9 d9 d(f> f; v-da = (J?^ sin 0) (J?^ sin 0 d0 d0) == /ZSin^ 61 d0d0. /" v-da = /?"/' sin2 9 dJd j d<i> 0 [^9 - ^° = 27:/?" (^^ " | sin 60°^ " ^ ('^ ~ ^"T ) 0 = {R"^) {2n) sin 2^] ^ ^ ^ B) Tfte cone: 0 = f; 0 : 0 -^ 27r; r : 0 -^ J?; da = rsin0d0dr0 = ^rdrd^S; v • da = x/Sr^ drd^ /"v • da = v/3 /r^dr /d0 = ^/3 ~ • 27r = ^Tri?". 0 0 Therefore / v • da = ^^ (f - ^^ + ^/3) = 2^ B7r + 3n/3) . / Problem 1.59 (a) Corollary 2 says f (VT) -dl = 0. Stokes' theorem says f (VT) -dl = /[V x (VT)] -da. So /[V x (VT)] -da = 0, and since this is true for any surface, the integrand must vanish: Vx(VT) = 0, confirming Eq. 1.44.
  • 22. 20 CHAPTER 1. VECTOR ANALYSIS (b) Corollary 2 says/(Vxv)-da = 0. Divergence theorem says/(Vxv)-da = / V'(Vxv)dr. So/V'(Vxv)dr = 0, and since this is true for any volume, the integrand must vanish: V(VXv) =0, confirming Eq. 1.46. Problem 1.60 (a) Divergence theorem: /v • da = /(V-v) dr. Let v = cT, where c is a constant vector. Using product rule #5 in front cover: V-v = V-(cT) = r(V-c) + c • (VT). But c is constant so V-c = 0. Therefore we have: /c • (VT) dr — jTc- da. Since c is constant, take it outside the integrals: c • / VTdr = c • /Tda. But c is any constant vector—in particular, it could be be x, or y, or z—so each component of the integral on left equals corresponding component on the right, and hence qed (b) Let V ^ (v X c) in divergence theorem. Then / V'(v x c)dr = /(v x c) • da. Product rule #6 ^ V-(v X c) = c • (Vxv) - V • (Vxc) = c • (Vxv). (Note: Vxc = 0, since c is constant.) Meanwhile vector identity A) says da • (v x c) = c • (da x v) = —c • (v x da). Thus /c • (Vxv) dr = — /c • (v x da). Take c outside, and again let c be x, y, z then: / (Vxv) dr - - V xda. (c) Let V = TVC/ in divergence theorem: / V-(TVf/) dr - J TVU-da. Product rule #E) => V-(TVC/) = TV-(Vf/) + (Vf/) • (VT) = TV2[/ + (VC/) • (VT). Therefore I {TV^U + (VC/) • (VT)) dr = [(TVU) ■ da. qed (d) Rewrite (c) with T <^ U : J {UW^T + (VT) • (VC/)) dr = J{UVT)-dai. Subtract this from (c), noting that the (VC/) ■ (VT) terms cancel: I {TV^U - UV^T) dr = [{TVU - UVT) ■ da. qed (e) Stoke's theorem: /(Vxv) • da = /v ■ dl. Let v = cT. By Product Rule #G): Vx(cT) = T(Vxc) - c X (VT) = -c X (VT) (since c is constant). Therefore, - /(c x (VT)) ■ da = /To • dl. Use vector indentity #1 to rewrite the first terra (c x (VT)) • da = c • (VT x da). So - / c • (VT x da) = /c • Tdl. Pull c outside, and let c ->■ x, y, and z to prove: / VTxda = -ATdl. qed Problem 1.61 (a) da = R^ sin 9dJ9dij)T. Let the surface be the northern hemisphere. The x and y components clearly integrate to zero, and the z component of r is cos 6, so a= f R^smecoseded(f>z = 2nR'^z r singcosgdg = 2nR^ z^^^"^^ = nR^ z.] (b) Let T = 1 in Prob. 1.60(a). Then VT = 0, so /da = 0. qed. (c) This follows from (b). For suppose aj 7^ a2; then if you put them together to make a closed surface, / da = ai - a2 7^ 0. (d) For one such triangle, da = |(r x dl) (since r x dl is the area of the parallelogram, and the direction is perpendicular to the surface), so for the entire conical surface, a = | /r x dl.
  • 23. (e) Let T = c • r, and use product rule #4: VT = V(c • r) = c x (Vxr) + (c • V)r. But Vxr = 0, and (c-V)r= {cx-§i + ^?^ +Ci^)(a;x + ?/y = zz) - CxX + Cyy + c^z = c. So Prob. 1.60(e) says /Tdl= i{c-T)d = - f{VT)xd&=- /cxda = -cx /da = -c X a = a X c. Problem 1.62 For a sphere of radius R: /vda = f {^t)-{R^ sine d9d<i>t)=Rf sine d0d<j) = A7rR. ] (R I So divergence fdrUf sineded<j>) = A-kR. f theorem checks. Evidently there is no delta function at the origin. ^^ ('•"'^ = hi ('•''•") = hWr ('•"^'^ = ;^(" + 2)r"+> =|(n + 2)r"-^| (except for n — —2, for which we already know (Eq. 1.99) that the divergence is 47r5^(r)). B) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives | zero. | To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using Prob. 1.60(b): If Vx(r"f) = 0, then /(Vxv)dr = 0 = -§v x da. But v = r"f and da = I?sinedJ9dij)T sie both in the f directions, so v x da = 0. /
  • 24. Chapter 2 Electrostatics Problem 2.1 (a) I Zero. | (b) 47reo T where r is the distance from center to each numeral. F points toward the missing q. lanation: by superposition, this is equivalent to (a), with an extra -g at 6 o'clock—since the force of all twelve is zero, the net folrce is that of —q only, (c) I Zero. I (d) 147reo pointing toward the missing q. Same reason as (b). Note, however, that if you explained (b) a qQ r^ a cancellation in pairs of opposite charges A o'clock against 7 o'clock; 2 against 8, etc.), with one unpaired q doing the job, then you'll need a different explanation for (d). Problem 2.2 (a) "Horizontal" components cancel. Net vertical field is: Ez = '^r^'§^ cos9. y 2qz -(r 4-0 (,2+AJ^ When z ? d you're so far away it just looks like a single charge 2q; the field should reduce to E = j^^ff z. And it does (just set d —> 0 in the formula). (b) This time the "vertical" components cancel, leaving E=4i^2^sin0x,or E = 47reo Prom far away, {z ? d), the field goes like E w ^^Fj^fr z, which, as we shall see, is the field of a dipole. (If we set d —> 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge from far away, the net charge is zero, so E -> 0.)
  • 25. ^ +x^; cos9 = |) )se; (-^2 dq = Xdx [{-'*7A^)^^{7^)i For z^ L you expect it to look like a point charge q — XL: E - -^z. It checks, for with 2 ? L the x term -^ 0, and the z term -¥ 4^^772- Problem 2.4 From Ex. 2.1, with L -^ | and z -> yz^ + (|) (distance from center of edge to P), field of one edge h 1 Ao El- 47reo ^22 + ^^^2 + 0^ + 3^' There are 4 sides, and we want vertical components only, so multiply by 4cos0 = 4 , ' 4Aaz E= z 1 (-^ + f) 47reo "Horizontal" components cancel, leaving: E = ^^ {/^ cos^} z. Here, -i^ = r^ + z^, cos0 = | (both constants), while Jdl = 2irr. So 1 AB7rr)z ' 4^ (^2 + ^2K/2 Problem 2.6 Break it into rings of radius r, and thickness dr, and use Prob. 2.5 to express the field of each ring. Total charge of a ring is a ■ 27rr • dr = X- 2nr, so A = adr is the "line charge" of each ring. 1 {adrJnrz _ ^ ^ [^ r ,
  • 26. CHAPTER 2. ELECTROSTATICS For i? > 2 the second term -^ 0, so Epiane = 4^'^''^^'' For z ?/2, ^^gl^ - i A + f )~'^'? i A - If^), so [ and £; = ji^^^ =i^§s, where Q - TriZV. / Problem 2.7 E is clearly in the z direction. Prom the diagram, dq — ada — aR^ sin $ -i2^i?2+z2-2iZzc( = J_ f crR^ sin 2/2z cos 61K/2 ^ ~ 47r£o y (i?2 + Jd(f> = 27r. B-i?cosg)sing 0^u = +l 1 = COS 9 du = - sin 22 -2iJz cos 61K/2 47reo - 2Rzu)y- r^du. Integral can be done by partial fractions—or look it up. 1 zu-R 47r£o Vi?2 + z2 _ 2Rzu. 47reo z^ (jz-R) i-z +- R J' 1 27rJZV {z-R z R) ] For z > iZ (outside the sphere), -E^ = 5^ For z < /2 (inside), E^ = 0, so |E = 0. | Problem 2.8 According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge were concentrated at the center, while all exterior shells contribute nothing. Therefore: E(r) = 47reo -f, where Qmt is the total charge interior to the point. Outside the sphere, all the charge is interior, so E = - 47reor Inside the sphere, only that fraction of the total which is interior to the point counts: " |7riZ3^ " R^ Q, so E = 47reoiZ3^r2 47reo R^ Problem 2.9 (a) p ^ eo V- E =: eo;nr^ (r^ • kr^) = eo^k{5r^) = | Sepfcr^ [
  • 27. (b) By Gauss's law: Qenc = co/E • da = eo{kR^)i4nR'^) = |47reofci?^| By direct integration: Qenc = fpdr = J^{5 okr^)i4nr'^dr) = 20n ok J^r'^dr = AneokR^V Problem 2.10 Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface of this larger cube gets the same flux as every other one, so: / E • da = — / E • da. The latter is ^-q, by Gauss's law. Therefore / ■ 24eo' /;;;;ZIZ:;X^ Gaussian surface: Inside: / E • da = Eiinr"^) = ^Qenc = 0 =i? | E ^ 0. L ( ( "F7 ) " Gaussian surface: Outside: E{A7rr^) = ^(aiTtR^) ^ E = ^ f. J >- (As in Prob. 2.7.) Problem 2.12 - Gaussian surface /E-da = E ■ 47tr^ ^ ^Qenc = = i|7rrV So u ^=i-o^'- ^ ^ Problem 2.13 Since (Jtot =3"' ^'p^^=ik ;^f (as in Prob. 2.8). Gaussian surface t / ^ (] [) Y J E = -^s (same as Ex. 2.1). 2neos 7" Problem 2.14 Gaussian surface /E • da = S • Anr"^ = j^Qenc = 7^ Jp^t = 7^ K^^)(^^ ^^"^'^^'^ E = -±-nkrH 47reo
  • 28. CHAPTER 2. ELECTROSTATICS Problem 2.15 (i) Qenc = 0, SO I E = 0. I (ii) §E-da = E{A7tr^) = ^Qenc = j^fpdT = j^J^f^sin6dfd9dphi = ^Jldf=^{r-a): '-ii:-^y (iii) £D7rr2) = ^J^df=^ib- a), so Problem 2.16 •(^m - Gaussian surface §E-da = E-2ns-l = j^Qeuc = j^P^s'^h - Gaussian surface ,., Q Fi §E.dsi = E-2ns-l= ^Oenc = ^iOTra^/; Q Yyy Gaussian surface (iii) r—^ Problem 2.17 On the xz plane E — Qhy symmetry. Set up a Gaussian "pillbox" with one face in this plane and the other at y. Gaussian pillbox / E • da = g • ^ = ^Qenc = T^Ayp; (for y < d).
  • 29. <?enc = iiAdp =^ E = —dy (for y > d). Problem 2.18 Rrom Prob. 2.12, the field inside the positive sphere is E+ = 3f-r+, where r+ is the vector from the positive center to the point in question. Likewise, the field of the negative sphere is — g^-r-. So the total field is VxE = Vx / -^pdr = / Vx [ -T I pdr (since p depends on r', not r) 47reo J i^ 47reo 7 [ * / J = 0 (since Vx ( ^ j =0, from Prob. 1.62). Problem 2.20 A) VxEi = = k [x@ - 2y) + y@ - Zz) + z@ - a;)] ^ 0, xy 2yz Zzx 0 El is an impossible electrostatic field. B) VxEz = fc = k [x{2z - 2z) + y@ - 0) + zBy - 2y)] = 2xy + z^ 2yz so E2 is a possible electrostatic field. Let's go by the indicated path: E • dl = (y2 dx + {2xy + z^)dy + 2yzdz)k •(a;o.yo,2o) Step I: y = z = 0;dy = dz = O.E-dl. = ky^^ = 0. Step II: X = xo, y : 0 -^ yo, z = 0. dx = dz — 0. E-dl = k{2xy + z'^)dy = 2kxoy dy. JjjE'dl = 2kxoJ^°ydy^kxoyl X" Step III: X = xo, y = yo, z : 0 -> zq; dx = dy = 0.
  • 30. CHAPTER 2. ELECTROSTATICS E . dl = 2kyzdz = 2kyQzdz. Jjjj E . dl = 2yok J^° zdz = kyoz^. V{xo,yo,zo) = - 7 E . dl = -k{xoyl + yoz^), or v{x,y,z) ^ -kixy"^ + yz'^). Check: -■VV=k[-^{xy''+yz')it+-^{xy''+yz^)$+-^{xy'+yz'')i]=kly'S.+Bxy+z'')y+2yzZ]=B / Problem 2.21 nr) = -X;E.dl. {Outside thethe sphere {r i?)R)::'E^-^^i^r. Inside sphere (r > < E = ^—-^rr. Q 1 So for r > iZ: F(r) = -/; (jJ^^) df = j5^9 (i) [ 47r£o r' and for r < R: F(r) = - J^ (^^^) dr - f^, {^-^r) df=^^[^--^ {^ When r>R,VV=-^^{i:)T= —^^r, so E = -VF = j^^rf. / When r<R,VV = j^^j: {s-^)f= j^ A J-w) ? - -J^S^?; ^o ^ = "W ^ ^^^rf./ Problem 2.22 E = 45fj-^s (Prob. 2.13). In this case we cannot set the reference point at oo, since the charge i extends to oo. Let's set it at s = a. Then V I Ja V47r,Eo s J 4^^^ Va/ (In this form it is clear why a = oo would be no good—likewise the other "natural" point, o = 0.) VV = - j^2A4 (In (f)) s = -7;^2Ais = -E. / Problem 2.23 V{0) = -/^E . dl = -XL(^^)dr-/;(^^)dr - f^{0)dr = { -^(ln(f)+a(i-i)) Hl-f-ln(f)-l + f}=|^<^)- Problem 2.24 Using Eq. 2.22 and the fields from Prob. 2.16: FF)-F@) = -/o'E.dl = -/;E.dl-/?*E.dl=-2f^/;sds-|f^/?*ids =-F)C-tS'-i'=-^(^^""c) Problem 2.25 (a) V-^+df
  • 31. i^)y=^j-LM^ = W ^ = 4^/o''5? = 4i^2^^ (V^^^"^)ir - ^ (n/^^ In each case, by symmetry |^ = ^ = 0. (agrees with Prob. 2.2a). 47rfo y/z^+L^ (agrees with Ex. 2.1). WE = -4{l7H^2.-l}z with Prob. 2.6). If the right-hand charge in (a) is -q, then v = o], which, naively, suggests E = - VV = 0, in contradiction with the answer to Prob. 2.2b. The point is that we only know V on the z axis, and from this we cannot hope to compute -Sx = -f^ or J5j, = — ^. That was OK in part (a), because we knew from symmetry that Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insufficient to determine E. Problem 2.26 2iTa 1 , /T-,, ah - I V ,.- -r ■<■' - V ^■<^'- -r -r= iiiv^ V/l2 + -^2 - V^/W + 2? - V2/1) = _^ [ft+-^lnB/H-272/1-^2/1)-ft-y=lnB/i-V2/i)] - —^= ~ [lnB/H-V2/i) - lnB/i-V2/1)] 0 V2-V2; 4eo ^ 2 J - ln(l + V2). .'. F(a) - F(b) = - In(l + V2)] .
  • 32. CHAPTER 2. ELECTROSTATICS Problem 2.27 Cut the cylinder into slabs, as shown in the figure, and use result of Prob. 2.25c, with z -¥ x and a -> pdx: J (ViZ2 + x2 - x) dx 2f^i [xVE"" +x^ + K' ln(x + ^R^ + x2) --^Ji; -L/2 i%|(-+*)/?='+(-+*)='-(-t)/?=+(-t [•+^+/?=+(-+^ri -4 ='+fl=ln L^-*+/?=+(^-^rJ {Note: -{z+ f)' + (z - f)' = -z^ - zL - ^ + ^2 _ ;jL + ^ ^ _2zL.) U+| + ^2+(;,+ |J ,_L+^^2+(,_|Jj J 1 1 L-^R^.[z.l)^R^.(z-iy Problem 2.28 Orient axes so P is on 2; axis. _ ^ pg f Here p is constant, dr = r^ sin 9 drd ^^i^J* { ^ = Vz'^+T'^-2rzcos9. ^^■dro I Vz^+J-lrzcole 'Jo '^'f> = 27r. lo v.^+r^'-Lcose'^^^^z (Vr2 + z2 _ 2rzcos0) 1^ = 5^ (Vr^ + z^ + 2rz - Vr^ + 22 _ 2rz) '•-^'^^^ |r z) I 2/r ,ifr>z. J
  • 33. Butp= ^, so V{z) = ^jly [r^ _ 4) = 5-2.^ C- ^) V{r] SttcoR V ^V Problem 2.29 V^y = 4;^V2/(f )dr = ji^ //9(r')(V2|)dr (since p is a function of r', not r) = ^fpin-^^SHr - r')] dr = -^p(r). / ___=^___ Problem 2.30. (a) Ex. 2.4: Eabove = af^n; Ebeiow = "if^" (n always pointing up); Eabove - Ebeiow = ^n- / Ex. 2.5: At each surface, J5 = 0 one side and E = f- other side, so AE — f^. / Prob. 2.11: Eout = ^f = ^f; Esn = 0; so AE = ^f. / (b) ■ L"'- j^ Outside: /E • da = E{27rs)l - j^Qenc = ^B7ri?)/ ^ E = ^f i = ^i (at surface). = 0, so E = 0. .-. AE = -2^8. / (c) Fout = S = ^ (at surface); T^? = ^^ ; so Kut = Kn- / ^ = -& = -^ (at surface); ^ = 0 ; so ^ - ^ = -^. / Problem 2.31 .-. ^4=9^- 47reoa (b) W^i = 0, W^2 = 5^^ {^); W,^^^ (;fe-^);^4 = (see(a)).
  • 34. CHAPTER 2. ELECTROSTATICS Problem 2,32 (a) ly = I JpVdT. Prom Prob. 2.21 (or Prob. 2.28): V = ^ (^R"^ - ^^ = ^^^ (z- ^^ -IpJ-J-T '^-^-=^4-mr&i^< 2^47reo2J?yo 5eo 5eo fTrii^ 47reo VS-R; (b) ly = f jE^dr. Outside {r > R) E = ^^^r ; Inside {r < R) E = ^^-^rr. 1 Q 47reo 2 I V t-/ U ^^ 5 / |o J 47reo 2 R 5R) 47reo 5 iZ'' 47reo 2 (c) W — ^ { jij VE • da + JyE'^dr}, where V is large enough to enclose all the charge, but otherwise arbitrary. Let's use a sphere of radius a> R. Here V = 4^^- 4n 1 eof q' K , 4nq^ -m ' 2 D7reoJ o '^ D7reoJ 5iZ "^ (Anco)^ - J_^/I 4. J_ _ 1 + i = J_^g! ' 47reo 2la5J? a R) 47reo 5 i? As o -> 00, the contribution from the surface integral f^^^fs) goes to zero, while the volume integral (i^^fsdl - 1)) picks up the slack. Problem 2.33 dW = dqV = dq{ J -, {q = charge on sphere of radius r). 47reo/ r {q = total charge on sphere). r^dr. dq = Anrdrp^j;^qdr^- 1 (qr'l(Zq , _ 1 Zq, W=J-^-^rr^dr=-^^^^^(^'-]/ 47reo R^ Jo 47reo -R^ 5 4neo5 RJ'
  • 35. Problem 2.34 (a.)W = f J E'^ dr. E = ^^ (o < r < 6), zero elsewhere. rb 1 Sttco :i-i) (b) W, ■■ ^4.^^2 = 8^^, ^^ = j^^rir>a),E2 = j^^r{r>b). So ^1 • ^2 = D;?^) 1^. ('^ > *). and hence /Ej • E2 dr = - C;^) q^ /~ ^47rr2dr = Problem 2.35 (b) y(o) = -C^''^--lLi^o^)dr-i:iO)dr-J^^{^^)dr-f^iO)dr = ^^{l + ^-l) (c) r^TTo] (the charge "drains off"); V{0) = - f^{0)dr - !^{^^^)dr - f^{0)dr = U- (| - ^) obk m2.36 (a) 1 9a + ?6 4x0^' (b) *'out - ~. 0 r, where r = vector fron (c) ^o ~ 1 'T^a> ■'^6 ~ 7 2^6' where Fo (rt) is the vector from center of cavity a [b). where Fo 1 cu / a M/i CO / 6 I (d)[z^ (e) ffji changes (but not Ga or o-ft); Eoutside changes (but not Ea or Eft); force on qa and qb still zero. Problem 2.37 Between the plates, E = 0; outside the plates E = a/ta = Q/eoA. So p_£^p2_£o_Q^. 2 e2^2 - 2eoA2 ■ Problem 2.38 Inside, E = 0; outside, E = j^J^^f; so F, = lf,da = j{^m^^§,)coseRHmeded<f> i-A^f^-i:''^^^^osede = ^^{^f {'jsinH);/' = ^^{^f 32nR-^eo'
  • 36. 34 CHAPTER 2. ELECTROSTATICS Problem 2.39 Say the charge on the inner cylinder is Q, for a length L. The field is given by Gauss's law: /E • da = J5 • 27rs • L — -j^Qenc = j-Q ^ E = ^^^ ^ j s. Potential difference between the cylinders is m-V(a) = -/'E.,iI = -5^^'l* = - 2ntQL As set up here, a is at the higher potential, so V = V'(a) - V{h) = ^^ ^ In (^). C = ^ = YJhJ' ^° capacitance per unit length is 27reo l"(i)' Problem 2.40 (a) W — (force) x (distance) = (pressure) x (area) x (distance) (b) W — (energy per unit volume) x (decrease in volume) = (eo'x) (-^^)- Same as (a), confirming that the energy lost is equal to the work done. ^^ Problem 2.41 From Prob. 2.4, the field at height z above the center of a square loop (side a) is i 'Ai///y//y///////////////. E=J: B ^^°^7,2 + si 47reo J. si) , I ^"T _^ Here X -¥ a^ (see figure), and we integrate over a from 0 to a: '.iiiiii:""i"^ii^ 1 r ada a^ E = 2az I . . Let u = —, so ada = 47reo Jo B + ^ ^ L2 , ^ 4 V' ^ A ) -^ ^2 = 47reo Jo (u + %= = ^ '- tan- z ^ z j -1-4.. r' z'^)/2u + z^ ttco (:/^±Z] = ^tan-M -^ -tan ^1) ?; tan-^Vl + ^,-J a -> 00 (infinite plane): E — ^ [tan ^@0) — f ] = ^ (f - f) = ^- / z > a (point charge): Let f{x) = tan~^ VH-a; — f, and expand as a Taylor series:
  • 37. Here /(O) = tan-^l) - f = f - f = 0; /'(x) = rR^|;^ = 2B^jy7TT^. ?0 /'(O) = i. so Thus (since ^ = ^ ? 1), g <:. |^ (j^) = 3^^ = ^4r- / Problem 2.42 ? ^ ( I d f 2^^ 1 ^ /5sin0cos01 ^{A-Bsm(j)). Problem 2.43 Rrom Prob. 2.12, the field inside a uniformly charged sphere is: E = 4;f7"^r. So the force per unit volume isf = pE = A^3) Da-t^ita)r = ^C;^) ""i ^"d the force in the z direction on dr is: dF, = f,dT=j- D^) rcos^Cr^sin^drd^d^). The total force on the "northern" hemisphere is: 3 / Q y fR' l^sin^gr B7r) = 3Q^ 64neoRP'' Problem 2.44 Kenter47reo -da = / da = R-5{27tR^)R =2eo = / J '!■ 47reo J 47reo —- sine dO, Vpole= 1^J-J^'^^''^[,2 == n^ + R:' 2J?2cos6l = 2J?2(l-cos0). y^^j ■ L. i da 27rR^ si _ 47reo J?v^ 70 ^/^ -cos0 ~ 2V2eo BvT^ 1 ai27rR'^) VI gingdg _ (xR ■^<'-°' "' .-. Fpole - Vcenter = g(^-'- /2eo' Problem 2.45 First let's determine the electric field inside and outside the sphere, using Gauss's law: eo$E = eo^Ttr'^E = Q = /.* = /(^)r= sin.*-d.<i* = 4.*|f3* = H'^, J'^ < ?|;
  • 38. CHAPTER 2. ELECTROSTATICS SoE^J^r^f{r<R); E=^f(r>iZ). Method I: 'Hi^rii>^^i:>}-m^'^{-i):hm^-: W = ^fpVdT (Eq. 2.43). 27rfc2 ( Ri ilf^ nk^R-r . 3eo 1 4 4 7 J 2 - 3eo V^V 7eo Problem 2.46 E = -W = ,(^),...(:hil.^^^}. Ae-^'-(H-Ar)- p = £o V- E = eoA {e-^^(l + Ar) V- (^) + ^ • V (e-^'-(l + Ar))}. But V- {^) = 47r(j3(r) (Eq. 1.99), and e-^'-(H-ArM3(r) =<J3(r) (Eq. 1.88). Meanwhile, V (e-^'-(l + Ar)) = r|r (e-^'-(l + Ar)) = f {-Ae-^'-(l + Ar) + e-^^} = f(-AVe-- So ^ ■ V (e-^'-(l + Ar)) - -^e"- p = eoA 47r<J3(r) A2 Q= IpdT = toA Ia-k fd^ir) dT - A^ f^—47rr^dr = eoA Utt - A247r / re-^''dr j . But /o°° re-^''dr = ^,soQ = Att^oA (l- ^^ = | zero. | Problem 2.47 (a) Potential of +A is V^ = ~2^^'^ (^)' where s+ is distance from A+ (Prob. 2.22). Potential of —A is VL = +5^^" (^), where s_ is distance from A_.
  • 39. (x,2/,^) 27reo V?+/J Now s+ = y/iy -a)^ + z"^, and s_ - /(y + aJ +z^, so jy + a)' {y - aJ + z2 (b) Equipotentials are given by [^+°]5:]:^2 - e('*"^°^°/''^) =k^ constant. That is: y2 + 2ay + a^ + z^ = A;(y2 - 2ay + o?+ z^) =;> y2(^ _ j) ^ ^2(^ _ 1) ^ ^2(^ _ 1) _ 2ay{k + 1) = 0, or j/^ + 2^ 4- a2 _ 2^2/ [l^ j = 0. The equation for a circle, with center at (j/o, 0) and radius R, is (j/ - 2/0)' + Z2 = /?2, or y2 + Z2 + (^2 _ JJ2) _ 2yy^ = Q. Evidently the equipotentials are circles, with yo = a( |^ j and .2 _ ,,2 _ d2 _. d2 _ ,,2 _ ?2 _ ?2 /'Mi'^ - o^ — ?2 (fc^+2fc+l-*;^+2fc-l) _ 2 4* i? = ^^ ; or, in terms of Vq: Problem 2.48 (a)V2y =:-f (Eq. 2.24), so (b) qV = mv^ {c) dq - Ap dx ; ^ = ap^ = I Apv = 11 (constant). {Note: p, hence also /, is negative.)
  • 40. 38 CHAPTER 2. ELECTROSTATICS cPV eoAy 2qV " dx^ pv~'/^ where /3 {Note: I is negative, so /3 is positive; q is positive.) (e) Multiply by F' - ^ : ^'^ " ^^"'^'^ ^ Z"^'*^^' = /^/^"'^'^ ^ ^^'' = 2/3y'/2 + constant. But F@) == V'{0) — 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and V-2 ^ 4^^1/2 ^^ = 2y/^V'/* => V-'/UV = 2,/^dx; /"y-i/4 ^ ^ 2v^ fdx ^ ^F^/" = 2y^x + constant. But V{0) = 0, so this constant is also zero. ^/^. ^Vix)=(IM xV r Vix) = '4/3 ^ / 81J^m N S2elA-^qJ F(.)=FoQ) (see graph). Interms of Vq (instead of /): Without space-charge, V would increase linearly: V{x) — Vq (^). 1 4 1 4eoFo 9(d2xJ/3 • /2^VV^Q) ' (f) V{d) ^ Fo - i^^y^'d^^' => Vo' = ^^,I';l' = '-I^Vo^: I = 1^^V'V2 ^ ;^y^3/2^ ^^^^^ _ 4eoA /2g Problem 2.49 (a) E = 1 47reo I${^-iy -^/^dr. (b) I Yes. I The field of a point charge at the origin is radial and symmetric, so V X E = 0, and hence this is also true (by superposition) for any collection of charges.
  • 41. Now /;^e ^/^dr = —^-^ /^~?—'^'" ^— exactly right to kill the last term. Therefore 47reo I >" Ir J I 47reo r ■^•^=4^'?0n)-^'***# = (e) Does the result in (d) hold for a nonspherical surface? Suppose we make a "dent" in the sphere—pushing a patch (area B? sin 9 from radius R out to radius S (area S^ sin 9 d9 d0). {R^ sin 9 d9d(f>) 4A /^ •r=^sin0 ,drd9d(f)^ A^ 47reo A^ 47reo Jr ■'/^dr 47reo So the change in p- JV dr exactly compensates for the change in ^E • da, and we get j-q for the total using the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside, the total is j-Qenc- Charges outside do not contribute (in the argument above we found that C^" for this volume ^E ■ da + p- JV dr = 0—and, again, the sum is not changed by distortions of the surface, as long as q remains outside). So the new "Gauss's Law" holds for any charge configuration. (f) In differential form, "Gauss's law" reads: V-E + - or, putting it all in terms of E: V'E - Y2 / E • dl = —p. Since E = -W, this also yields "Poisson's equation": -V^F + --^V
  • 42. CHAPTER 2. ELECTROSTATICS Problem 2.50 /9 = eo V- E = o^{ax) = |eoo| (constant everywhere). The same charge density would be compatible (as far as Gauss's law is concerned) with E = ayy, for instance, or E =; (|)r, etc. The point is that Gauss's law (and VxE = 0) by themselves do not determine the field—like any differential equations, they must be supplemented by appropriate boundary conditions. Ordinarily, these are so "obvious" that we impose them almost subconsciously ("J5 must go to zero far from the source charges")—or we appeal to symmetry to resolve the ambiguity ("the field must be the same—in magnitude—on both sides of an infinite plane of surface charge"). But in this case there are no natural boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question "What is the electric field produced by a uniform charge density filling all of space?" is simply ill-posed: it does not give us sufficient information to determine the answer. (Incidentally, it won't help to appeal to Coulomb's law (E = jJ^ fp^dr)—the integral is hopelessly indefinite, in this case.) Problem 2.51 Compare Newton's law of universal gravitation to Coulomb's law: miTn2 __ 1 9192 J. t = —G-—5—^r t = 5-r. > G and q -¥ m. The gravitational energy of a sphere (translating Prob. 2.32) is therefore Evidently j^ Now, G - 6.67 X 10-1^ N mVkg^, and for the sun M = 1.99 x 10^° kg, R = 6.96 x 10^ m, so the sun's gravitational energy sW = 2.28 x 10*^ J. At the current rate, this energy would be dissipated in a time '' P '' < lO^'* s = 11.87 X 10'^ years. I
  • 43. Problem 2.52 First ehrainate z, using the formula for the ellipsoid: ^(a;,y) = ^ 47ra6 yc2(a;2/a4) + c'^{y^/b^) + 1 - (xVa2) - {y^/b"^)' Now (for parts (a) and (b)) set c ->■ 0, "squashing" the ellipsoid down to an ellipse in the xy plane: ''^''' ^^ li^ab ^-{xlaY-{ylbY (I multiplied by 2 to count both surfaces.) (a) For the circular disk, set a = 6 = iZ and let r = yjx^2nR^R2-:,^- ^ + y^, . Q 1 (b) For the ribbon, let Qjb = A, and then take the limit b -> c ( )- ^ 1 (c) Let b = c, r = ^/y"^ + z'^, making an ellipsoid of revolution: a2+c2-l' ^'^^''- 4na(P^xya^ + ryc*' The charge on a ring of width dx is J = a2Trrds, where ds = ydx"^ + dr^ — dxy/l + (dr/dx)^. dr <?x I -4-2 -2 = dxJl + ^ = dx-y/xy^^Try^. Thus (Constant!) A(x) = dx 47rac2 ^x^ja^ + r2/c'* r s/^J^^H^ =
  • 44. Chapter 3 Special Techniques Problem 3.1 The argument is exactly the same as in Sect. 3.1.4, except that since z < R, y/z^ + R^ — 2zR = {R — z), instead of {z - R). Hence Vkve = -r~7ryi [i^ + R)-{R- z)] 47reo 2zR If there is more than one charge 1 g 47reo R inside the sphere, the average potential due to interior charges is47reo R and the average due to exterior —^— ^^|j^, charges is Fcenter, so Fave = Vcenter + ^f^- ^ Problem 3.2 A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is qV. But we know that Laplace's equation allows no local minima for V. What looks like a minimum, in the figure, must in fact be a saddle point, and the box "leaks" through the center of each face. Problem 3.3 Laplace's equation in spherical coordinates, for V dependent only on r, reads: dV c = c (constant) => —r- = -^ => ' dr r^ r Example: potential of a uniformly charged sphere, In cylindrical coordinates: sdsVdV J ? dy1 dV0 c ds ds F ^ cln s + k. o Id/ = ds s—r- = J ^ 1 s V --7- Example: potential of a long wire. Problem 3.4 Same as proof of second uniqueness theorem, up to the equation /^ V3E3 • da = -f^{E3)^dT. But on each surface, either V3 = 0 (if V is specified on the surface), or else Esj^ = 0 (if ^ = -E± is specified). So JyiEs)^ = 0, and hence E2 = Ej. qed Problem 3.5 Putting U = T = V3 into Green's identity: f [V3VVs + Ws • Wa] dT= i Vg VVs • da. But V^Vs = VV, - VVz = So / E^dr = — f V2E3 • da, and the rest is the same as before.
  • 45. Problem 3.6 Place image charges +2q a.t z —d and —q&tz — -3d. Total force on --q is g [ -2g 2g _-£_■ ' 47reocP ' 47reo [BdJ ^ DdJ FdJ 47reo V72(i2y ■ (a) FVom Fig. 3.13: i = -y/r^ + a2 - 2ra cos 0; V = Vr^ + &2 _ 2r& cos 0. Therefore: g' (Eq. 3.15), while b = — (Eq. 3.16). (f)/'-' + ^-2^f cosfl y(f)' + iZ2-2racos0 - 2ra cos 0 y/R^ + (ra/R)^-2rao Clearly, when r = iJ, V -^ 0. (b) a = -eof^ (Eq. 2.49). In this case, |^ = I7 at the point r = R. Therefore, (T(e) = -eo D^) {-^('•^ + "^ - 2mcos0)-3/2B^ _ 2acos0) + i (ij2 + (ro/iZJ - 2racos0)"^^' (^2r - 2a cos0^ 11 = —^S.-{R''+a''-2Racose)-^^R-acose) + {R^ + a''-2Racose)~^^'' ( ^)} = ^(i?2 + a^ - 2Racose)-^l'^ r - acosd - ^ + acos^l -(ij2_a2)(^2_j.^2_2ijacos0; induced = fada= -^{R^ - a') [(R^ + a' - 2Racos9)-^l''R'' smOd, 2a (a2 - ij2) ViZ2 + a2 + 2iZa V-R^ + a2 - 2iZaJ But a > J? (else g would be inside), so /j?2 + a2 - 2jRa = a-R. ^y -?'' [(^ - (?^] - ^ '<° - ^' -'°+?"=s'-^^' I 9fi _ ?, I
  • 46. CHAPTER 3. SPECIAL TECHNIQUES (c) The force on q, due to the sphere, is the same as the force of the image charge q', to wit: 1 qq' _ 1 f R 2 1 _ 1 q'^Ra 47reo (o - b)^ 47reo (a - i?V?)' 47reo (a^ - R-^)- To bring q in from infinity to o, then, we do work q'R 4neoJ (a2-iZ2J" 4^eo [ 2 E^ - i?2) 47reo 2(a2 - 7^2)" Problem 3.8 Place a second image charge, q", at the center of the sphere; this will not alter the fact that the sphere is an eqmpotential, 1 g". Aireo R ' but merely increase that potential from zero to Vo q" — 47reoVoi? at center of sphere. For a neutral sphere, q' + q" = 0. 1 AntQ^ o? ' {a-by ^J_9g^ (_47reo V^ "^ " (a-6J J {_ "^ ~ -by) 47r6o F = qq' b{2a - b) _ qj-Rq/a) {R^/a){2a - R^/a) 47reoa2(a-6J ~ 47reo a^ia-R'^laf q^ f rV {2a''- R^) 4neo a) (a2 - R-^y ' (Drop the minus sign, because the problem asks for the force of attraction.) Problem 3.9 (a) Image problem: A above, -A below. Potential was found in Prob. 2.47: 2A , , , , A n?..) = 5^1n(.-K) = 3^1n(.iAl) {y,z) -In 47reo[y^ ++ {z-d)^j ly^ jz + dy] ^ /s- {h)a-- dn' dn dz ^<i-A I y^ + {z + d)^<^)~ +2 {z-d)^ '] 1^^, 47reo 2 l/^^X2^(^ + y^ l/ ^2(z-d)| Ad 2A f d -d 47rU2 + d2 y2 + ^J = 7r(j/2 + d2)- Check: Total charge induced on a strip of width / parallel to the y axis: qnd _ IXd FTT / Try 7t J y^ + cP TT [d d. ~~~V [2 ~ V 2I -XI. Therefore Ajnd = -A, as it should t
  • 47. Problem 3.10 The image configuration is as shown. 9. ?■ .9 V{x,y) -- 1 i 1 , 1 47reo ( v^(xaJ- +aJiy-B/- 6J+ +z2^2^{x - aJ+ a)^(y+ {y 6Jb)^ ^2 z^J ] ^/ix + + 6J ^(^j; + + + + + 9- - •-? For this to work, I Q must be and integer divisor of 180°. Thus 180°, ' , 45°, etc., are OK, but no others. It works for 45°, say, with the charges as shown. (Note the strategy: to make the x axis an equipotential (F — 0), f B) y 4?° you place the image charge A) in the reflection point. To make the 45° line an equipotential, you place charge B) at the image point. -. /^ '•+ ^ But that screws up the x axis, so you must now insert image C) to +*. V •-(!) balance B). Moreover, to make the 45° line V — ^ you also need D), to balance A). But now, to restore the x axis to F = 0 you need E) E C) ^ to balance D), and so on. The reason this doesn't work for arbitrary angles is that you are eventually forced to pla.ce an image charge within the original region of interest, and that's not allowed—all images must go outside the region, or you're no longer dealing with the same problem at all.) Problem 3.11 Prom Prob. 2.47 (with j/o - jx + ay+y^' , where a^ - yg"^ - Er ^ 47reo "' L(^~ ^y +2/^. ■ ocschB7reoVo/A) =(dividing) ^^= R A /, "'''''!:}''''fiS =i]^ J? J ^ 4 cosh f^) -'id/RY m Problem 3.12 oo 2 ? Vix,y) = Y^C?e-"'^='/''sininny/a) (Eq. 3.30), where <^n - - / Vb(y)sm{mry/a)dy (Eq. 3.34). I this case Voiy) = _y^^ forf o/2< <^Z2/< <a/2 J1 Therefore, uvj/; -j^ ( +^'' ? a n 2, (T. / / ^J ? • / / N^ 1 2^0/ cos{mry/a)r^^ , cos(n7r2//a) I" 1 C? = -Vo< sm{niTy/a)dy - / sm{mry a)dy } =--< / .[ + ^,[ > ^{-cos(^).cos@, + c?,??-cos(f)} = ^{l + (-ir-2co?(f)}.
  • 48. CHAPTER 3. SPECIAL TECHNIQUES The term in curly brackets is: n = l l-l-2cosGr/2) = 0, n = 2 n = Z -, _■, _<y (f> /n'_ 0 } etc. (Zero if n is odd or divisible by 4, otherwise 4.) 1 + 1-2 cosB7r) = 0, r - f SFo/nTT, n = 2,6,10,14,etc. (in general, 4j + 2, for j = 0,1,2,...), " ~" 1 0, otherwise. v(x,y) = ^ y ^~"'^^^°^i"("^y/°) 8Fo ^ e-(''^+^)'^'''/°sin[Dj2)+ 2)ny/a] Dj + Problem 3.13 V{x,y) = ^ ^ ^e-""^/''sin(n7ry/a) (Eq. 3.36); ^ =-eo|^ (Eq. 2.4! ^B/) ~^° a^ l~^n^ ""''/"sin(n7r2//a)I = -cq "^Z^-l-—)e ""''/"sin(n7ry/a) y^ sin(n7rj//a). Or, using the closed form 3.37: ,w , 2Fo^ _i / sinGry/a) 2Fo 1 / -sinGrj//a) tt ^, , ,| V{x,y) = tan M . ' ' ' ] ^ a =- q .in2f^?/?^ . ^2/ , [ -coshGra:/o) _ 2eoFo sinGrj//o) coshGra;/o) I a sin2Gry/a) + sinh2Gra;/a) l^^^ a2eoK) 1 sm{7ry/a)' Summation of series Eq. 3.36 Vix,y) = —I, where / = ^ -e-?"^/''sin(n7ry/a). Now sinio = Im (e**"), s where Z = g-'^C^-^^')/". Now
  • 49. where Re*^ - 7^. Therefore / = Im-inR + i9) = ^e. But f^^ =^ , ^= , ■ ^ , ^ 1 + e-'^^/" (e^'^^^/" - e-'-'^y/") - e-^^^/" _ 1 + 2ze-'^'/''sinGr^/Q) - e-^^^/° |l_e-'r(:t-tJ/)/a|2 ~ 11 _ e-,r(x-tj,)/a|2 2e~'^^''"sinGr2//o) _ 2sinGr2//a) _ sm{ny/a) rx/a _ g-TTx/o sinhGrx/a)' /=i.an-r-'°<r?/f'; , and F(a;, y) _i _i / smGry/o , Lr, X 2K), = tan . ■ , : f sin{iTy a) tan . -V , . Problem 3.14 (a) -7-^ + ——- = 0, with boundary conditions OX-' oy^ (i) F(a:,0) = 0, (ii) V{x,a)=Q, (iii) F@,y) = 0, (iv) FF,y) = Fo(y). J ;j- As in Ex. 3.4, separation of variables yields V{x, y) = (Ae*^ + 5e-*^) (C sin ky + D cos A;y). Here (i)::^ D = 0, (iii)=i' B = -A, (ii)=^ fca is an integer multiple of tt: V{x,y) = AC (e"'^^/" - 6-""="/") sin(n7ry/a) = B^C) sinh(n7ra;/a) sin(n7ry/a). But BAC) is a constant, and the most general linear combination of separable solutions consistent with (i), (ii). (iii) is V{x,y) — ^C?sinh(n7ra;/a)sin(n7rj//a). It remains to determine the coefficients C? so as to fit boundary condition (iv): ^C?sinh(n7r6/o)sin(n7r2//a) — Va{y). Fourier's tricky C?sinh(n7r6/a) = - Vo{y)sm{nny/a)dy. 0 Therefore Cn = —r-TT—TT-T / Vo{y)sm{mry/a)dy.
  • 50. 5 CHAPTERS. SPECIAL TECHNIQUES ,. , ^ 2 rr f ■ , I j 2Fo f 0, if n is even, 1 asmh{nnb/a) J asmh{nnb/a) { j^, if n is odd. J sinh(n7ra;/a) sm{nny/a) n?,?) = ^^ E = 1,3,5,. nsinh(n7r6/a) ' Problem 3.15 Same format as Ex. 3.5, only the boundary conditions are: [) V = 0 when a; = 0, "j li) V = 0 when x = a, iii) V = 0 when y = 0, ) F — 0 when y = a, v) F = 0 when z = 0, vi) V = Vo when 2 = a. This time we want sinusoidal functions in x and y, exponential in z: Xix) = ^sin(fca;) + 5cos(A;a;), Y{y) = Csin{ly) + Dcos{ly), Z{z) = Ee"^^"^^ + Ge-^/*'+^^ (i)^ B = 0; (ii)=> k = nn/a; (iii)^ D = 0; (iv)^ / = mn/a] (v)=^ E + G = 0. Therefore Z{z) = 2Esmhi7ry/n^+m^z/a). Putting this all together, and combining the constants, we have: V{x,y,z) = V^ "S"^ C?,m sin(n7ra;/a) sin(m7rj//a) sinhGrvn^ +m'^z/a). n=l m=l It remains to evaluate the constants C?,m. by imposing boundary condition (vi): Vo = ^2^2 r^?."'sinhGrvV+m^) sin(n7ra;/a)sm{mny/a). According to Eqs. 3.50 and 3.51: , V /'2^ } } f ^' if n or m is even, "j Cn,m sinh (ny/ri^ + m^ 1 = I - ) Vq / sin{n7rx/a) sm{m7ry/a) dx dy = < 16Vb -r u i, jj f ^ '^ 0 0 ^ TT^nm' ^ ■ J F(x,j/,2) = —TT- V-> 1sm(n7ra;/a)sm(m7rj//a) i——. ? , 16Fo V- > w / ^ w / ,sinhGrVn2+m22/ ■■M. ^2 ?=i^5 . ,?=f^5_... ""^ / y V ?/ y sinh (ttVu^ + m^]
  • 51. ^ , ^ lrf^/9 ,3 Id^ 2? Id^ ., .2 = li [(^' - 1) (^^' -!)]=! f2x Ex2 _ 1) + (^2 _ 1) 10^] 5 3 3 = iEx3-x + 5x3-5x)-J(l0x3-6x)- -X-* - -X. 2 2 We need to show that P3(cos0) satisfies Id/. ?dP -1A + 1)P, with / = 3, where P3(cos0) = ^cosO E cos^ 0 - — - - ^ 1 0 E cos2 0 - 3) + cos 0A0 cos ${- sin 0)] = -1 sin $ E cos^ 0-3+10 cos^ 6) d^ de r- sin 2 = --sin0Ecos20-l). fsin0-^J = -~[sin2 0Ecos2 0-l)] =-^ [2sin0cos0 Ecos2 0-l) + sin2 0(-lOcos0sin0)] = -3sin0cos0[5cos20-l-5sin20] . 1 d ( . ?dP sine d9 e^j = -3cos0[5cos2-l-5(l-cos2 0)] = -3cos0(lOcos2 0-6) = -3-4-icos0Ecos20-3) =-/(/ + l)P3. qed |Pi(x)P3(x)dx = |(x)^ Ex3 -3x) ^^ ^ 1 (x'-x')'_^ = i(l- 1 + 1 - 1) = 0. V Problem 3.17 '^ (a) Inside: F(r,0) = JZ ^jr'Pj(cos0) (Eq. 3.66) where Ai = ^^^|j^ /"v'o@)P,(cos0) sin0d0 (Eq. 3.69). In this case Vb@) = Vb comes outside the integral, so . _ B/ + l)Fo /Pj(cos0)sin
  • 52. 50 CHAPTERS. SPECIAL TECHNIQUES But Po(cos0) = 1, so the integral can be written 0 /Poicos9)Piicose)sin^d^ = I 2' Jf J f q } ^^^- ^•^^)- Therefore r 0, if / ^ 01 ^~ Vo, if / = 0 / • Plugging this into the general form: y (r, e) = Ao r°Po(cos 6) = [^ The potential is constant throughout the sphere. Outside: Vir,0) = ^ ~Pi{cose) (Eq. 3.72), where Bi = ^^^-^R'+^ fvo{e)Piicose)smede (Eq. 3.73). 0 B1 + 1) 2 Therefore Vir,e) = Vo- (i.e. equals Vb at r = R, then falls off like -). (i.e. equals (b) Yl Ajr'P, (cos e), for r < P (Eq. 3.78) j=o F(r,0) = ^-^P,(cos0), forr>P (Eq. 3.79) 1=0 '" where Bi = p2i+i^j (Eq. 3.81) and ^' = -^r—^izi Icro{S)Pi{cose)smedd (Eq. 3.84) 0 ' R<Jo for r V{t e) = PVqI >.| forr
  • 53. Note: in terms of the total charge Q = AnR'^ao, v{r,e) = Fo@) = A;cosC0) = k [4cos^e-Zcose]=k[aPs(cos0) + /3Pi(cos0)]. (I know that any 3'''^ order polynomial can be expressed as a linear combination of the first four Legendre polynomials; in this case, since the polynomial is odd, I only need Pj and P3.) 4cos^e-Zcose = a - Ecos^0 - 3cos0) +/!3cos0 = -^cos^0+ f/3 - -a) cos0, 3 8 -3 = /3-^a = '2'5 ' 125 _ " Therefore Now Y^ Air'Pi (cos e), iorr<R (Eq. 3.66) 1=0 vir,e) = ^^P,(cos0), forr>P (Eq. 3.71) Ai = ^^^^^ fvo{e)Pi{cose)smede (Eq. 3.69) 0 = ^^^J^ I 1 ^ / ^^ ^^°^ ^^^' ^^°^ 0)smedS-Z I Pi (cos 0)P (cos 0) sin 0 d0 I k {21 +1) f 2 o_A_x 1 ^ 1 fR^ -^^ 1 ' -3fc/5-R, if/==3l1 J, ^^ otherwise). 8A;/5P^ if / zero V{r,e) = -||rPi(cos0) + ^r'p,{co^e) -- 8(^)'p3(cos0)-3(^)Pi(cos0) 8 (■^)^ ^ [5cos3 0 - 3COS0] _ 3 f^Vj cosflj ^ F(r,0) = ^^ cosfl |4 (^)^ [Scos^ 0 - 3] - 3!
  • 54. 52 CHAPTERS. SPECIAL TECHNIQUES (for r < R). Meanwhile, Bi = AiR^^+^ (Eq. 3.81—this follows from the continuity of V at R). Therefore ^' = -3fciiv5, if; = l/ (==ero otherwise). V(r,e) = -^lpi(cos0) + §^lp3(cos0) = ■ij)' 8 - P3(cos0)-3 - Pi(cos0) Vir,e) = I (^)'cos0 L (^y [5cos2 0-3] -3! (for r>R). Finally, using Eq. 3.83: a{e) = eo X^BZ + l)A,iZ'-iPj(cos0) = eo [3AiPi + TylsiJ^Ps] [-9Pi(cos0) + 56P3(cos0)] ^ [-9COS0 + y Ecos^ 0 - 3COS0)] = ^ cos0[-9 + 28 • Scos^ 0-28-3] - cos 61 [140 cos^ 61-93]. Problem 3.19 Use Eq. 3.83: a{e) = eo ^BZ+l)^jiJ'~^P(cos 61). But Eq. 3.69 says: Ai = ?^^ f Voie)Pi{cos0) sin0A9. 1=0 0 Putting them together: aie) = -^Yli2l + lfCiPiicose), with Ci = fvoie)Pi{cose)sinede. qed 1=0 0 Problem 3.20 Set y = 0 on the equatorial plane, far from the sphere. Then the potential is the same as Ex. 3.8 plus the potential of a uniformly charged spherical shell: Vii ,e) = -Eo(r-^)cose+-^^. r^ J 47reo r
  • 55. (a) V{r,e) = f;-|Lp,(cos0) (r > R), so F(r,0) = Y^-^m) = £ 4t = |- [V^^TW - r] . 1=0 1=0 1=0 ° Since r > iZ in this region, s/r'^ + i?2 = rx/l + (i?/rJ = r [iH- ^{R/rf - ^{R/rf + .. .1, so 'r'+i 2eo''[ 2r2 8 r" ^ Comparing like powers of r, I see that Bo = -;—, Bi =0, B2 = -7^—,.... Therefore 4eo loeo [ ! aR"" • V{r e) = 460 I -S-*X)S0) + ... [ (for r>R). = 4eor - -Kf)^ -,....], Ccos2 0- (b) Vir,e) -"^AyPiicose) (r < R). In the northern hemispere, 0 < 0 < 7r/2, j=o F(r,0) = f;^,r' = ^ [A/^^^TR^-rl . Since r < i? in this region, /r^ + R^ = Ry/T+JrJW = J? [1 + {rlRf - ^{t/RY + ...]. Therefore Comparing like powers: Aq = -—R, Ai = --—, A2 = -—=;,... , so 2eo 2eo 2eoii V{r,e) = ^[iZ-rPi(cos0) + ^P2(cos0)+ ...], (for r < R, northern hemisphere). oP [ 260 I In the southern hemisphere we'll have to go for 0 = tt, using Pj(—1) = (-!)'• y(r,^) =f:(-l)%r' = ^ [./^^TW-r] .
  • 56. 54 CHAPTERS. SPECIAL TECHNIQUES (I put an overbar on Ai to distinguish it from the northern Ai). The only difference is the sign of 'Ai: 'Ai = +(o-/2eo), lo = Ao, A^ = A-i. So: vir,e) ^ 2^[^ + '--Pi(cos0) + ^r2P2(cos0) + ...], (for r < R, southern hemisphere). = gh(^)-^-i(sr(^-^^-)-4 Problem 3.22 Y^Air'Piicosd), (r < R) (Eq. 3.78), Vir,0) = Yl -^-Pi(cos0), (r > R) (Eq. 3.7{ I. 1=0 where Bi = AjiZ^'+i (Eq. 3.81) and Ai = -^^^^zT f(^oiO)Pi{cose)sinede (Eq. 3.84) 0 = p|_i o"o < Piicose)smede- Pi{cos0) sined9 (let a; = cos0) — nPiix)dx-JPiix)dx. 2eoR^- Now Pi{—x) = (-l)'Pj(a;), since Pi{x) is even, for even /, and odd, for odd /. Therefore 0 0 1 j Pi{x)dx = jPi{-x)d{-x) = {-!)' j Pi{x)dx, if / is even ^' = 2iS^t^-(-i)']/'''^^^'^H T^l^d^)^^^ if f I is odd
  • 57. So Ao = A2 = Ai = Ae = 0, and all we need are Ai, A3, and ^5. r r x2p 1 0 0 " /P3(.,.. = i/p.-3.,.= iD-3f^)[.lg-2)=-l. 0 0 / P5 (x) dx = ^f F3x5 - 70x3 ^ 15^) ^^ ^ 1 /g3^ _ 70^ + l5^^ I ,2 2 27 16' I- Therefore -'^=SG)=-^-=5^D)'-^--3?(^)- ^-^^G)=--^^B)^--^1i^)-- g [f.(cos.) - {Ly P3(cos.) + 1 {Ly p,^(eos.) + . .] , (. < i ), ig Ufcos^) - (f) VsCcos^) + 1 (f) VsCcos^) + . .1 , (r > P). Look for solutions of the form V{s,(p) = 5(s)$(</i): 1$A /^s^^ Ic^ - s ds ds J s^ (i02 Multiply by s^ and divide by V = 5$: 5 ds V''dsJ'*'$d Since the first term involves s only, and the second cp only, ea is a constant: the second (p only, each d f dS ^ 1 d^$ ^ d;(^d7J=^- ¥d0^ = ^- -^*^^
  • 58. 56 CHAPTERS. SPECIAL TECHNIQUES Now 6*2 must be negative (else we get exponentials for $, which do not return to their original value—as geometrically they must— when 0 is increased by 27r). C2 - -k^. Then —-^ - -k'^i =^ $ = Acosk(j) +Bsinkcp. Moreover, since #(</> + 2n) = $(</>), k must be an integer: fc = 0,1,2,3,... (negative integers are just repeats, but A: = 0 must be included, since $ = A (a constant) is OK). s-r I s-T- 1 = k^S can be solved by 5 = s**, provided n is chosen right: as as J s-r- (sns"~^)as (s") = n^ss"'~^ = ri^s" — k^S ^n — ±k. as = ns-r- Evidently the general solution is S{s) — Cs^ + Ds~^, unless A: = 0, in which case we have only one solution to a second-order equation—namely, S — constant. So we must treat k = 0 separately. One solution is a constant—but what's the other? Go back to the differential equation for 5, and put in fc = 0: So the second solution in this case is In s. [How about $? That too reduces to a single solution, ^ = A,'m the case k = 0. What's the second solution here? Well, putting k = 0 into the $ equation: -—T -0^ -rr - constant - B ^ ^ - BA + A. d(j)^ acp But a term of the form B(f> is unacceptable, since it does not return to its initial value when 0 is augmented by 27r.] Conclusion: The general solution with cylindrical symmetry is V{s, (j)) = oo + 60 In s + ^ [s* (oft cos kcj) + bk sin k(j)) + s * (cfc cos k(j) + dk sin A;^)]. Yes: the potential of a line charge goes like In s, which is included. Problem 3.24 Picking F = 0 on the yz plane, with Eq in the x direction, we have (Eq. 3.74): (i) ^^ = 0, when s = R, (ii) V -> -Eqx = s cos (j>, for s'3> R. Evidently a^ = bo — bk — dk — Q, and ak—Ck—G except for A; — 1: y{s,4>) = (oi? + —)COS(f). (i)=> ci = -oii?^; (ii)->- ai — -Eq. Therefore V{s,<j>) = V{s,,f>)^-Eos 0''] COS(j).
  • 59. R-" ar = - o-^ =-eo-Eo f-^ - 1 ] cos0| = [ 2eoE'o cos0 Problem 3.25 Inside: F(s, 0) = Qq + y^s* (at cosfc0 + 6fc sin A;0). (In this region Ins and s~* are no good—they blow k=l up at s = 0.) Outside: V{s, 0) = Oq + ^ -j^ (cft cos fc0 + dk sin fc0). (Here In s and s'' are no good at s -> oo). (Eq. 2.3 a = -eo ' ' ds ^ Thus a sin 50 = —eo Yj i — ^, (cfc cos fc0 + d^ sin fc0) — kR^ ' (ofc cos fc0 + bk sin fc0) > Evidently Ofc = Cft = 0; 6fc = dfc = 0 except A; = 5; a = 5eo ( 'Ee^s + ^*h 1 Also, V is continuous at s = iJ: 1 V(s,0) _ gsin50 f 1 i^Vs^ for s < R, _ lOeo s^/J?'*, ioTS>R. ' Problem 3.26 Monopole term: Q= I pdT=zkR I -2(J?-2r)sin0 r"^sin6drded(f>. K But the r integral is R [{R - 2r) dr = {Rr - r^) ^ = R^-R'^=0. So Q = 0. 0 IrcosOpdr-kR Mrcos^) —{R-2r)smer'^sm6drded> i' But the 6 integral is Lm^ecosede='^ =i(o-o) = o. 0 So the dipole contribution is likewise zero, wise zero. Quadrupole term: /r^ (^cos'^e-^^pdT=^kR f fr''[Z CDs'" e-1) f ^ (i? - 2r) sin ^l r^sin^drd