€ Contrast adjustment method by using the image's 
histogram. 
€ Useful for images with backgrounds and foregrounds 
that are both bright or both dark. 
€ It can be used for viewing the bone structure in x-ray 
images, and photographs that are over or under-exposed 
in order to get better detail . 
€€ Advantage=> If the histogram equalization function 
is known, then the original histogram can be 
recovered. 
€€ Disadvantage=>It may increase the contrast of 
background noise, while decreasing the usable 
signal.
€ Rather than saying that equalization flattens a 
histogram, it is more accurate to say that it 
linearizes the cumulative frequency distribution. 
€ Histogram equalization redistributes pixel 
intensities according to the origin ratio of pixel 
distribution to make the number of pixel 
redistribute into each allowed discrete intensity 
levels. 
€ Histogram equalization doesn’t force the 
distribution “flat” which means the number of 
pixel in each intensity levels distributed equally 
or closely.
Row(M)=8 
Column(N)=8 
MxN= 64 
Total number of pixel in this image is 64. 
P(r)= no of pixel in each intensity value/ Total no of pixel 
P(52)=1/64
60 
70 
No of Pixel 
40 
50 
20 
30 
No of Pixel 
0 
10 
0 
52 
58 
60 
62 
64 
66 
68 
70 
72 
75 
77 
79 
85 
88 
94 
106 
113 
126 
154
Value No of 
pixel P(r) 
52 1 1/64 
55 3 4/64 
Value cdf cdf, 
scaled 
71 39 154/64 
Value cdf cdf, 
scaled 
106 58 231/64 
109 59 235/64 
58 6 6/64 
59 9 9/64 
60 10 10/64 
72 40 158/64 
73 42 166/64 
75 43 170/64 
76 44 174/64 
113 60 239/64 
122 61 243/64 
126 62 247/64 
61 14 53/64 
62 15 57/64 
63 17 65/64 
64 9 3/77 45 178/64 
78 46 182/64 
79 48 190/64 
144 63 251/64 
19 73/64 
65 22 85/64 
66 24 93/64 
67 25 97/64 
83 49 194/64 
85 51 202/64 
87 52 206/64 
88 53 210/64 
68 30 117/64 
69 33 130/64 
70 37 146/64 
90 54 215/64 
94 55 219/64 
104 57 227/64 
154 64 255/64
1.2 
Equalized Value 
0.8 
1 
0.4 
0.6 
Equalized Value 
0 
0.2 
52 
58 
60 
62 
64 
66 
68 
70 
72 
75 
77 
79 
85 
88 
94 
106 
113 
126 
154
Histogram Equalization(Image Processing Presentation)
Histogram Equalization(Image Processing Presentation)

Histogram Equalization(Image Processing Presentation)

  • 2.
    € Contrast adjustmentmethod by using the image's histogram. € Useful for images with backgrounds and foregrounds that are both bright or both dark. € It can be used for viewing the bone structure in x-ray images, and photographs that are over or under-exposed in order to get better detail . €€ Advantage=> If the histogram equalization function is known, then the original histogram can be recovered. €€ Disadvantage=>It may increase the contrast of background noise, while decreasing the usable signal.
  • 3.
    € Rather thansaying that equalization flattens a histogram, it is more accurate to say that it linearizes the cumulative frequency distribution. € Histogram equalization redistributes pixel intensities according to the origin ratio of pixel distribution to make the number of pixel redistribute into each allowed discrete intensity levels. € Histogram equalization doesn’t force the distribution “flat” which means the number of pixel in each intensity levels distributed equally or closely.
  • 5.
    Row(M)=8 Column(N)=8 MxN=64 Total number of pixel in this image is 64. P(r)= no of pixel in each intensity value/ Total no of pixel P(52)=1/64
  • 7.
    60 70 Noof Pixel 40 50 20 30 No of Pixel 0 10 0 52 58 60 62 64 66 68 70 72 75 77 79 85 88 94 106 113 126 154
  • 8.
    Value No of pixel P(r) 52 1 1/64 55 3 4/64 Value cdf cdf, scaled 71 39 154/64 Value cdf cdf, scaled 106 58 231/64 109 59 235/64 58 6 6/64 59 9 9/64 60 10 10/64 72 40 158/64 73 42 166/64 75 43 170/64 76 44 174/64 113 60 239/64 122 61 243/64 126 62 247/64 61 14 53/64 62 15 57/64 63 17 65/64 64 9 3/77 45 178/64 78 46 182/64 79 48 190/64 144 63 251/64 19 73/64 65 22 85/64 66 24 93/64 67 25 97/64 83 49 194/64 85 51 202/64 87 52 206/64 88 53 210/64 68 30 117/64 69 33 130/64 70 37 146/64 90 54 215/64 94 55 219/64 104 57 227/64 154 64 255/64
  • 9.
    1.2 Equalized Value 0.8 1 0.4 0.6 Equalized Value 0 0.2 52 58 60 62 64 66 68 70 72 75 77 79 85 88 94 106 113 126 154