SlideShare a Scribd company logo
Getting Started with Knowledge Graphs
Smart Data Conference
January 30, 2017, San Francisco Bay
Peter Haase
2
Peter Haase
• Interest and experience in
ontologies, semantic
technologies and Linked Data
• PhD in KR and semantic
technologies
• 15 years in academic research
and software development
• Contributor to OWL 2
standard
metaphacts Company Facts
• Founded in Q4 2014
• Headquartered in Walldorf,
Germany
• Currently ~10 people
• Platform for knowledge graph
interaction & application
development
About the Speaker
3
Introduction: What are Knowledge Graphs?
Examples and Applications
• Wikidata
• Cultural Heritage
• Industrial Applications
Standards and Principles
metaphactory Knowledge Graph Platform
Hands-on Exercises
Agenda
Introduction
What are Knowledge Graphs?
5
The Rise of Knowledge Graphs
6
• We need a structured and formal representation of
knowledge
• We are surrounded by entities, which are connected by
relations
• Graphs are a natural way to represent entities and their
relationships
• Graphs can be managed efficiently
Why (Knowledge) Graphs?
7
A (very small) Knowledge Graph
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/example-graph.jpg
8
• Semantic descriptions of entities and their relationships
• Uses a knowledge representation formalism
(Focus here: RDF, RDF-Schema, OWL)
• Entities: real world objects (things, places, people) and
abstract concepts (genres, religions, professions)
• Relationships: graph-based data model where
relationships are first-class
• Semantic descriptions: types and properties with a well-
defined meaning (e.g. through an ontology)
• Possibly axiomatic knowledge (e.g. rules) to support
automated reasoning
What are Knowledge Graphs?
9
Knowledge Graphs Enabling Intelligent Applications
Knowledge Graph
Algorithms
Applications
Data Transformation, Integration
Natural Language Processing
Data Sources
• Inferencing
• Machine Learning
• Entity Recognition
• Disambiguation
• Text Understanding
• Recommendations
• Semantic Search
• Question Answering
• Knowledge Sharing
• Knowledge Management
• Analytics
• Entities
• Relationships
• Semantic Descriptions
• Dashboards
Examples and Applications
11
Google Knowledge Graph
12
Entity Search and Summarizations
Google Knowledge Graph
13
Discovering Related Entities
Google Knowledge Graph
14
Google Knowledge Graph
Factual Answers
15
Knowledge Graph Search API
https://developers.google.com/knowledge-graph/
16
LinkedIn Economic Graph
16
Examples and Applications
Wikidata
18
Open Knowledge Graphs
19
Wikipedia page A query against Wikipedia
Query the Knowledge of Wikipedia like a Database
19
20
• Collecting structured data. Unlike the
Wikipedias, which produce encyclopedic
articles, Wikidata collects data, in a
structured form.
• Collaborative. The data in Wikidata is
entered and maintained by Wikidata editors,
who decide on the rules of content creation
and management in Wikidata supporting the
notion of verifiability.
• Free. The data in Wikidata is published
under the Creative Commons
• Large.
• 25 million entities
• 130 million statements
• 130 million labels
• 350 languages
• >1500 million triples
Wikidata
22
• Build your applications using Wikidata
• Free corpus of structured knowledge
• Easily accessible and standards-based
• See http://query.wikidata.org/
• Contextualize your enterprise data
• Wikidata provides stable identifiers into the open data world
• Seamless integration of private data with open data
• Enrich Wikidata with your data
• Contribute your data to Wikidata
• Link to your own data, make it visible
• Examples:
• Open biomedical databases – Wikidata as a central hub
• Cultural heritage
Use Cases for the Wikidata Knowledge Graph
24
Histropedia
Examples and Applications
Cultural Heritage
26
• Challenge:
• Very context-rich data
• Multi-disciplinary data, e.g. archaeologists, historians, librarians
• Multi-institutional data
• Complex domain, relationships, e.g. temporal, spatial, historical, political
• Benefits of Knowledge Graphs
• Integration and interchange of heterogeneous cultural heritage information
• Rich ontologies for knowledge representation
• Deep semantics for true conceptual merging
• Multi-lingual knowledge representation
• Knowledge access across museums and organizations
• Enabling knowledge sharing and collaboration
Benefits of Knowledge Graphs for Cultural Heritage
27
• Collaboration environment for
researchers in Cultural Heritage
• Expert users: researchers, curators
• Based on CIDOC-CRM: very rich,
expressive ontology
• Large, cross-museum data sets
• E.g. British Museum: 100s millions of
triples
• Advanced search capabilities
• Supporting query construction
• Sharing of searches, results,
visualizations
• Knowledge sharing
• Discussions around cultural heritage
annotations
• Argumentation support:
Representation of conflicting views and
opionions
ResearchSpace: Knowledge Graphs for Cultural Heritage
http://researchspace.org/
28
Demo ResearchSpace Platform
Examples and Applications
Life Sciences
30
Challenge:
• Much of the relevant
knowledge in external
databases
• Many disparate
databases / data silos
• Many different
data formats
• Complex domain, complex relationships
e.g. compounds, targets, pathways, diseases and tissues
Benefits of Knowledge Graphs in the Life Sciences
31
• Integrated knowledge
representation
• Common format
• Stable, global identifiers
• Federated queries
• Integrated knowledge access:
One-stop portals
• Rich semantic search on a
conceptual level
• Entry points to further data,
in-house and external
• Crossing boundaries between
private and open data
Benefits of Knowledge Graphs in the Life Sciences
Standards and Principles
34
Semantics on the Web
Semantic Web Stack
Berners-Lee (2006)
Syntactic basis
Basic data model
Simple vocabulary
(schema) language
Expressive vocabulary
(ontology) language
Query language
Application specific
declarative-knowledge
Digital signatures,
recommendations
Proof generation,
exchange, validation
35
Knowledge Graphs Built on the Semantic Web Layer Cake
Unicode URIs
RDF	(Resource	Description	Framework)
RDF-Schema
OWLSKOS
SPARQL
Query language
Entities
Relationships
Vocabularies
Ontologies
Expressive Ontology
Language
Thesauri,
classification
schemes
Graph data
model
Simple vocabulary
language
36
Linked Data
• Set of standards, principles for
publishing, sharing
and interrelating structured
knowledge
• From data silos to interconnected
knowledge graphs
Linked Data Principles
• Use URIs as names for things.
• Use HTTP URIs so that people can
look up those names.
• When someone looks up a URI,
provide useful information, using
the standards: RDF, SPARQL.
• Include links to other URIs, so that
they can discover more things.
Knowledge Graphs Built on Linked Data Principles
37
Our Knowledge Graph again (a bit more technical)
38
Graph consists of:
• Resources
(identified via
URIs)
• Literals: data
values with data
type (URI) or
language
(multilinguality
integrated)
• Attributes of
resources are
also URI-
identified (from
vocabularies)
Our Knowledge Graph again (a bit more technical)
• Various data sources and vocabularies can be arbitrarily mixed and meshed
• URIs can be shortened with namespace prefixes; e.g. schema: →
http://schema.org/
39
Allows one to talk about anything
Uniform Resource Identifier (URI) can be used to identify entities
http://dbpedia.org/resource/Leonardo_da_Vinci
is a name for Leonardo da Vinci
http://www.wikidata.org/entity/Q12418
is a name for the Mona Lisa painting
Resource Description Framework (RDF)
dbpedia:
Leonardo_da_Vinci
wd:Q12418
40
Allows one to express statements
An RDF statement consists of:
• Subject: resource identified by a URI
• Predicate: resource identified by a URI
• Object: resource or literal
Variety of RDF syntaxes,
e.g. Turtle (Terse RDF Triple Language):
Resource Description Framework (RDF)
dbpedia:
Leonardo_da_Vinci
wd:Q12418
dcterms:creator
wd:Q12418 dcterms:creator dbpedia:Leonardo_da_Vinci .
41
• Language for two tasks w.r.t. the RDF data model:
• Definition of vocabulary – nominate:
• the ‘types’, i.e., classes, of things we might make assertions
about, and
• the properties we might apply, as predicates in these
assertions, to capture their relationships.
• Inference – given a set of assertions, using these classes
and properties, specify what should be inferred about
assertions that are implicitly made.
RDF-S – RDF Schema
42
• rdfs:Class – Example:
foaf:Person – Represents the class of persons
• rdf:Property – Class of RDF properties. Example:
foaf:knows – Represents that a person “knows” another
• rdfs:domain – States that any resource that has a given property
is an instance of one or more classes
foaf:knows rdfs:domain foaf:Person
• rdfs:range – States that the values of a property are instances of
one or more classes
foaf:knows rdfs:range foaf:Person
RDF-S – RDF Schema
43
RDF-S – RDF Schema
foaf:knows
rdfs:range
foaf:Person .
<http://example.org/bob#me>
foaf:knows
<http://example.org/alice#me>.
<http://example.org/alice#me>
rdf:type
foaf:Person.
Schema
Existing
fact
Inferred
fact
We	expect to	use	this	
vocabulary	to	make	
assertions	about persons.
Having	made	such	an	
assertion...
Inferences can	be	drawn	that	
we	did	not	explicitly	make
44
• RDFS provides a simplified ontological language for
defining vocabularies about specific domains.
• OWL provides more ontological constructs for knowledge
representation.
• Semantics grounded in Description Logics.
• OWL 2 is divided into sub-languages denominated profiles:
• OWL 2 EL: Limited to basic classification,
but with polynomial-time reasoning
• OWL 2 QL: Designed to be translatable
to relational database querying
• OWL 2 RL: Designed to be efficiently
implementable in rule-based systems
• Most graph databases concentrate on the use of RDFS with
a subset of OWL features.
OWL – Web Ontology Language
More restrictive
than OWL DL
45
OWL is made up of terms which provide for:
• Class construction: forming new classes from
membership of existing ones (e.g., unionOf,
intersectionOf, etc.).
• Property construction: distinction between OWL
ObjectProperties (resources as values) and OWL
DatatypeProperties (literals as values).
• Class axioms: sub-class, equivalence and disjointness
relationships.
• Property axioms: sub-property relationship, equivalence
and disjointness, and relationships between properties.
• Individual axioms: statements about individuals
(sameIndividual, differentIndividuals).
OWL – Web Ontology Language
46
Example: CIDOC-CRM Ontology
Class: Person
SubClassOf: Actor
SubClassOf: Biological Object
SubClassOf: was_born exactly 1
SubClassOf: has_parent min 2
Class: Physical Thing
SubClassOf: Legal Object
SubClassOf: Spacetime Volume
DisjointWith: Conceptual Object
SubClassOf: consists_of some Material
47
• Data model for knowledge organization systems (thesauri,
classification scheme, taxonomies)
• Conceptual resources (concepts) can be
• identified with URIs,
• labeled with lexical strings in natural language,
• documented with various types of note,
• semantically related to each other in informal hierarchies
and association networks and
• aggregated into concept schemes.
SKOS - Simple Knowledge Organization System
http://www.w3.org/TR/skos-reference/
48
Example: Concept Definition for Paper
49
• Query language for RDF-based knowledge graphs.
• Designed to use a syntax similar to SQL for retrieving data
from relational databases.
• Different query forms:
• SELECT returns variables and their bindings directly.
• CONSTRUCT returns a single RDF graph specified by a graph
template.
• ASK test whether or not a query pattern has a solution. Returns
yes/no.
• DESCRIBE returns a single RDF graph containing RDF data about
resources.
SPARQL – * Protocol and RDF Query Language
50
Main idea: Pattern matching
• Queries describe sub-graphs of the queried graph
• Graph patterns are RDF graphs specified in Turtle syntax, which contain variables (prefixed by
either “?” or “$”)
• Sub-graphs that match the graph patterns yield a result
• The syntax of a SELECT query is as follows:
• SELECT nominates which components of the matches made against the data should be returned.
• FROM (optional) indicates the sources for the data against which to find matches.
• WHERE defines patterns to match against the data.
• ORDER BY defines a means to order the selected matches.
SPARQL – * Protocol and RDF Query Language
dbpedia:
Leonardo_da_Vinci
?var
dcterms:creator
51
Example:
Select the creator of the things
that Bob is interested in.
SPARQL – * Protocol and RDF Query Language
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
SELECT ?creator
WHERE {
<http://example.org/bob#me> foaf:topic_interest ?interest .
?interest dcterms:creator ?creator
}
dbpedia:Leonardo_da_VinciResults:
metaphactory Knowledge Graph Platform
53
metaphacts – Our Mission
The metaphacts team offers an unmatched
experience and know-how around enterprise
knowledge graphs for our clients in areas
such as business, finance, life science, and
cultural heritage.
The metaphactory is our end-to-end
platform to create and utilize enterprise
knowledge graphs - from semantic graph
data management to data-driven application
development.
Built entirely on open standards and
technologies, our platform covers the entire
lifecycle of dealing with knowledge graphs.
As a main benefit our platform enables
knowledge workers to create and gain
meaningful insight into their data with one
comprehensive software solution.
54
metaphactory Features
KNOWLEDGE GRAPH
BACKEND
• Scalable data processing
• Easy-to-use interface
• High-performance
querying and analytics
• Built-in inferencing and
custom services
• Standard connectors for a
variety of data formats
• Single server, embedded
mode, high availability,
and scale out
KNOWLEDGE GRAPH
CREATION
• Semi-automatic creation
of knowledge graphs
• Curation and interlinking
of data from
heterogeneous sources
• Collaborative
management and
authoring
• Custom query and
templates catalogs
• Data annotation
• Capturing of provenance
information
KNOWLEDGE GRAPH
APPLICATIONS
• Rapid development of
end-user oriented
applications
• Web components for end-
user friendly presentation
and interaction
• Interactive visualization
• Rich semantic search with
visual query construction
and faceting
• Customizable semantic
clipboard
55
metaphactory as an Open Platform
BUILT IN OPEN SOURCE
ü Dual licensing (LGPL & commercial license)
ü Open Platform API and SDK
ü Integration of external tools and application via APIs
ü Easy development of own web components and services
ü Full HTML5 compliance
ü Re-usable, declaratively configurable Web Components
= Easy modification, customization, and extensibility
BUILT ON OPEN STANDARDS
ü W3C Web Components
ü W3C Open Annotation Data Model
ü W3C Linked Data Platform Containers
ü Data processing based on W3C standards such as RDF, SPARQL
ü Expressive ontologies for schema modeling based on OWL 2, SKOS
ü Rules, constraints, and query specification based on SPIN and RDF Data
Shapes
= Sustainable Solution
56
metaphactory Platform Architecture
Data
Services
Applications
Graph Database Graph Analytics Provenance
Catalog Services Exploration VisualizationConfiguration Search Access Control
Knowledge Graph Management App Factory
End UsersExpert/domain Users
Smart Apps
Developers
InferencingSPARQL Endpoint
57
Users and their Benefits
EXPERT USERS
• Collaboratively construct
and manage knowledge
graphs
• Integrate data from
heterogeneous sources
• Use standard connectors
for a variety of data
formats
• Benefit from scalable data
processing for big graphs
• Conduct high-
performance querying and
analytics
DEVELOPERS
• Rapidly develop Web and
mobile end-user oriented
applications
• Benefit from various
deployment modes: stand-
alone, HA, scale-up, scale-
out
• Interact with an easy-to-
use interface
• Collaboratively manage,
annotate and author data
• Use large set of custom
query and templates
catalogs
• Capture of provenance
information
END USERS
• Benefit from user-friendly
interaction with data
• Gain insights into
complex relationships
• Enable transparency and
extract value
• Ask questions and obtain
precise results
• Reduce effort for data
analysis
• Reduce noise – obtain
targeted, high quality
results
• Enhance quality of
business decisions
58
metaphacts Supports the Whole Data Lifecyle
Data
Extraction &
Integration
Data Linking
& Enrichment
Storage &
Repositories
Querying &
Inferencing
Search
Visualization
Authoring
end-to-end
platform
59
Search
• Domain independent, fully
customizable search widget
• Satisfy complex information needs
without learning SPARQL
• Search functionalities
• Graphical query construction
• End user friendly search
interfaces for building and
sharing complex queries
• Semantic auto suggestion
• Interactive result visualization
• Faceted search and exploration
of item collections
• Ability to invoke external full text
search indices such as Solr including
the possibility to score, rank and limit
the results for responsive
autosuggestion
• Saving and sharing of queries and
search results
Search
60
Table
Transform your queries into
durable, interactive tables
Many customization
possibilities, e.g. pagination,
filters and cell templates
Graph
Visualize and explore connections in a graph view
Custom styling of the graph
Variety of graph layouts
Carousel
Animated browsing through a list of
result items
Chart
Visualize trends and
relationships between
numbers, ratios, or
proportions
Visuali-
zation
Tree Table
Tree-based
visualization,
navigation and
browsing through sub-
tree structures
Map
Displaying spatial
data on a
geographic map
Visualization
61
Autho-
ring
• Annotations
• Based on W3C Open
Annotation Data Model
• Automated semantic link
extraction
• Form based authoring
• Manually author and update
instance data, backed by
query templates, data
dependencies, and type
constraints
• Rich editing components for
special data types
• Customizable flexible forms
• Autosuggestion and
validation against the
knowledge graph
• Capturing of provenance
information
• User group management
Authoring
62
Install & Go: Out-of-the-Box Functionality
Getting Started Tutorial
to guide you through your
first steps with metaphactory
Get
started
Management of Queries in
Catalog
for easy reuse and updating
Keyword Search Interface
with semantic autosuggestion,
driven by SPARQL
Search
Data Overview Pages
with Web components for
end-user friendly data
presentation and interaction
Template-based Data Browser
used to define generic views
which are automatically applied
to entire sets of instances
Explore
63
Example: Simple Semantic Search
Keyword search with semantic
autosuggestion, driven by SPARQL
Set up in ~2 minutes!
Declarative Components
Developer embeds
‘semantic-simple-search’
into the page
<semantic-simple-search data-
config='{
"query":"
SELECT ?result ?label ?desc
?img WHERE {
?result rdfs:label ?label .
?result rdfs:comment ?desc .
?result foaf:thumbnail ?img .
FILTER(CONTAINS(?label,
?token))
}",
"searchTermVariable":"token", //
user input
"template":"
<span title="{{result}}">
<img src="{{img}}"
height="30"/>
{{label}} ({{desc}})</span>"
}'/>
1
Rendered component is
displayed to the user and
can be used right away
2
Autosuggestions are
dynamically computed
based on query and user
input
3
64
• Associate a class in the knowledge graph with a template
• The template is applied to instances of the class
HTML5 Template Pages
Bob
foaf:Person
rdf:type
Hands-on Exercises
66
Hands-on Exercises
DATA LOADING &
QUERYING
• Loading your
data
• Querying your
data
VISUALIZATION
• Visualizing
results in a table
• Visualizing
results in a graph
SEARCH
• Embedding a
simple search
interface
AUTHORING
• Creating a
template
• Inserting and
updating data
67
• Download metaphactory (or copy from USB stick)
http://www.knowledgegraph.info/
• Follow README, start metaphactory
start.sh / start.bat
• Open start page
http://localhost:10214
• Follow “Getting started tutorial”
http://localhost:10214/resource/Help:Tutorial
• Have fun and ask questions ;-)
Hands-on Exercises
68
Data Loading & Querying
Load data into the store via
the data import and export
administration page
1 2
Query the data via the
SPARQL endpoint.
E.g.: issue a query for all
statements made about Bob
as a subject
3
Visualize results in a table
… or as raw data
69
Visualizing Results in a Table
3
Visualize results in a table
displaying thumbnails as
images, the labels of the
resources as captions, and
links to the individual
resource pages
1
Embed ‘semantic-table’
component
<semantic-table config='{
"query":"SELECT * WHERE {
<http://example.org/bob#me>
?predicate ?object }“
}'>
</semantic-table>
to visualize previous query
as a table in a page
2
Customize the query to
embed thumbnail images
in the result visualization
SELECT ?uri ?label
?thumbnail WHERE { ?uri
rdfs:label ?label;
<http://schema.org/thumbnail
> ?thumbnail }
Use tupleTemplate to
define a template for
displaying the new table
70
Visualizing Results in a Graph
1
Embed ‘semantic-graph’
component
<semantic-graph
query="CONSTRUCT WHERE { ?s ?p ?o
}">
</semantic-graph>
2
Visualize results in a graph
71
Embedding a Simple Search Interface
Embed ‘semantic-simple-
search’ into the page
<semantic-simple-search
config='{
"query":"
SELECT ?uri ?label
WHERE {
FILTER REGEX(?label,
"?token", "i")
?uri rdfs:label
?label
} LIMIT 10
",
"searchTermVariable":"token",
"resourceSelection":{
"resourceBindingName":"uri",
"template":"<span
style="color: blue;"
title="{{uri.value}}">{{label.
value}}</span>"
},
"inputPlaceholder":"Search for
something e.g. "Bob""
}'>
</semantic-simple-search>
1
Rendered component is
displayed and can be used
right away
2
Autosuggestions are
dynamically computed
based on query and user
input
3
72
Creating a Template
1
Use the templating mechanism to
create a template for the resource
type ‘Person’, to display:
• the person's name
• an image, if available
• his interests
• his friendship relationship
2
Visualize the result on
Bob’s instance page
73
Inserting and Updating Data
1
Use a SPARQL UPDATE operation
against the SPARQL endpoint to
create and add new instance data
• the person's name
• an image, if available
• his interests
• his friendship relationship
2
Visualize the result
74
• Knowledge graphs as a flexible model for data integration and knowledge representation
• Standards for “semantic” knowledge graphs
• RDF as graph-based data model
• OWL as expressive ontology language
• SKOS for taxonomic knowledge
• SPARQL as query language
• Application areas
• Open knowledge graphs, e.g. Wikidata
• Cultural Heritage
• Life Sciences
• And many more
• Get started with the metaphactory Knowledge Graph platform today!
Summary
75
metaphacts GmbH
Industriestraße 41
69190 Walldorf
Germany
p +49 6227 6989965
m +49 157 50152441
e info@metaphacts.com
@metaphacts
www.metaphacts.com
Get in Touch!

More Related Content

What's hot

Natural Language Processing with Graph Databases and Neo4j
Natural Language Processing with Graph Databases and Neo4jNatural Language Processing with Graph Databases and Neo4j
Natural Language Processing with Graph Databases and Neo4j
William Lyon
 
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
Neo4j
 
Introduction To RDF and RDFS
Introduction To RDF and RDFSIntroduction To RDF and RDFS
Introduction To RDF and RDFS
Nilesh Wagmare
 
Building an Enterprise Knowledge Graph @Uber: Lessons from Reality
Building an Enterprise Knowledge Graph @Uber: Lessons from RealityBuilding an Enterprise Knowledge Graph @Uber: Lessons from Reality
Building an Enterprise Knowledge Graph @Uber: Lessons from Reality
Joshua Shinavier
 
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data ScienceAI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
Optum
 
GPT and Graph Data Science to power your Knowledge Graph
GPT and Graph Data Science to power your Knowledge GraphGPT and Graph Data Science to power your Knowledge Graph
GPT and Graph Data Science to power your Knowledge Graph
Neo4j
 
Slides: Knowledge Graphs vs. Property Graphs
Slides: Knowledge Graphs vs. Property GraphsSlides: Knowledge Graphs vs. Property Graphs
Slides: Knowledge Graphs vs. Property Graphs
DATAVERSITY
 
Graph databases
Graph databasesGraph databases
Graph databases
Vinoth Kannan
 
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
Neo4j
 
Querying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge GraphQuerying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge Graph
Ioan Toma
 
Enterprise Knowledge Graph
Enterprise Knowledge GraphEnterprise Knowledge Graph
Enterprise Knowledge Graph
Lukas Masuch
 
Web ontology language (owl)
Web ontology language (owl)Web ontology language (owl)
Web ontology language (owl)
Ameer Sameer
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
Narni Rajesh
 
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021
Tristan Baker
 
How Kafka Powers the World's Most Popular Vector Database System with Charles...
How Kafka Powers the World's Most Popular Vector Database System with Charles...How Kafka Powers the World's Most Popular Vector Database System with Charles...
How Kafka Powers the World's Most Popular Vector Database System with Charles...
HostedbyConfluent
 
Graph database Use Cases
Graph database Use CasesGraph database Use Cases
Graph database Use Cases
Max De Marzi
 
Neo4j Fundamentals
Neo4j FundamentalsNeo4j Fundamentals
Neo4j Fundamentals
Max De Marzi
 
AI Use Cases OA
AI Use Cases OAAI Use Cases OA
AI Use Cases OA
Object Automation
 
Supply Chain Twin Demo - Companion Deck
Supply Chain Twin Demo - Companion DeckSupply Chain Twin Demo - Companion Deck
Supply Chain Twin Demo - Companion Deck
Neo4j
 
Intro to Neo4j
Intro to Neo4jIntro to Neo4j
Intro to Neo4j
Neo4j
 

What's hot (20)

Natural Language Processing with Graph Databases and Neo4j
Natural Language Processing with Graph Databases and Neo4jNatural Language Processing with Graph Databases and Neo4j
Natural Language Processing with Graph Databases and Neo4j
 
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
The perfect couple: Uniting Large Language Models and Knowledge Graphs for En...
 
Introduction To RDF and RDFS
Introduction To RDF and RDFSIntroduction To RDF and RDFS
Introduction To RDF and RDFS
 
Building an Enterprise Knowledge Graph @Uber: Lessons from Reality
Building an Enterprise Knowledge Graph @Uber: Lessons from RealityBuilding an Enterprise Knowledge Graph @Uber: Lessons from Reality
Building an Enterprise Knowledge Graph @Uber: Lessons from Reality
 
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data ScienceAI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
 
GPT and Graph Data Science to power your Knowledge Graph
GPT and Graph Data Science to power your Knowledge GraphGPT and Graph Data Science to power your Knowledge Graph
GPT and Graph Data Science to power your Knowledge Graph
 
Slides: Knowledge Graphs vs. Property Graphs
Slides: Knowledge Graphs vs. Property GraphsSlides: Knowledge Graphs vs. Property Graphs
Slides: Knowledge Graphs vs. Property Graphs
 
Graph databases
Graph databasesGraph databases
Graph databases
 
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
Knowledge Graphs & Graph Data Science, More Context, Better Predictions - Neo...
 
Querying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge GraphQuerying the Wikidata Knowledge Graph
Querying the Wikidata Knowledge Graph
 
Enterprise Knowledge Graph
Enterprise Knowledge GraphEnterprise Knowledge Graph
Enterprise Knowledge Graph
 
Web ontology language (owl)
Web ontology language (owl)Web ontology language (owl)
Web ontology language (owl)
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
 
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021
Intuit's Data Mesh - Data Mesh Leaning Community meetup 5.13.2021
 
How Kafka Powers the World's Most Popular Vector Database System with Charles...
How Kafka Powers the World's Most Popular Vector Database System with Charles...How Kafka Powers the World's Most Popular Vector Database System with Charles...
How Kafka Powers the World's Most Popular Vector Database System with Charles...
 
Graph database Use Cases
Graph database Use CasesGraph database Use Cases
Graph database Use Cases
 
Neo4j Fundamentals
Neo4j FundamentalsNeo4j Fundamentals
Neo4j Fundamentals
 
AI Use Cases OA
AI Use Cases OAAI Use Cases OA
AI Use Cases OA
 
Supply Chain Twin Demo - Companion Deck
Supply Chain Twin Demo - Companion DeckSupply Chain Twin Demo - Companion Deck
Supply Chain Twin Demo - Companion Deck
 
Intro to Neo4j
Intro to Neo4jIntro to Neo4j
Intro to Neo4j
 

Viewers also liked

Building Next-Generation Web APIs with JSON-LD and Hydra
Building Next-Generation Web APIs with JSON-LD and HydraBuilding Next-Generation Web APIs with JSON-LD and Hydra
Building Next-Generation Web APIs with JSON-LD and Hydra
Markus Lanthaler
 
RDF validation tutorial
RDF validation tutorialRDF validation tutorial
RDF validation tutorial
Jose Emilio Labra Gayo
 
Hydra: A Vocabulary for Hypermedia-Driven Web APIs
Hydra: A Vocabulary for Hypermedia-Driven Web APIsHydra: A Vocabulary for Hypermedia-Driven Web APIs
Hydra: A Vocabulary for Hypermedia-Driven Web APIs
Markus Lanthaler
 
Model Your Application Domain, Not Your JSON Structures
Model Your Application Domain, Not Your JSON StructuresModel Your Application Domain, Not Your JSON Structures
Model Your Application Domain, Not Your JSON Structures
Markus Lanthaler
 
Building Knowledge Graphs in DIG
Building Knowledge Graphs in DIGBuilding Knowledge Graphs in DIG
Building Knowledge Graphs in DIG
Palak Modi
 
SHACL by example
SHACL by exampleSHACL by example
SHACL by example
Jose Emilio Labra Gayo
 

Viewers also liked (6)

Building Next-Generation Web APIs with JSON-LD and Hydra
Building Next-Generation Web APIs with JSON-LD and HydraBuilding Next-Generation Web APIs with JSON-LD and Hydra
Building Next-Generation Web APIs with JSON-LD and Hydra
 
RDF validation tutorial
RDF validation tutorialRDF validation tutorial
RDF validation tutorial
 
Hydra: A Vocabulary for Hypermedia-Driven Web APIs
Hydra: A Vocabulary for Hypermedia-Driven Web APIsHydra: A Vocabulary for Hypermedia-Driven Web APIs
Hydra: A Vocabulary for Hypermedia-Driven Web APIs
 
Model Your Application Domain, Not Your JSON Structures
Model Your Application Domain, Not Your JSON StructuresModel Your Application Domain, Not Your JSON Structures
Model Your Application Domain, Not Your JSON Structures
 
Building Knowledge Graphs in DIG
Building Knowledge Graphs in DIGBuilding Knowledge Graphs in DIG
Building Knowledge Graphs in DIG
 
SHACL by example
SHACL by exampleSHACL by example
SHACL by example
 

Similar to Getting Started with Knowledge Graphs

Linked Open Data for Cultural Heritage
Linked Open Data for Cultural HeritageLinked Open Data for Cultural Heritage
Linked Open Data for Cultural Heritage
Noreen Whysel
 
Beyond the catalogue : BibFrame, Linked Data and Ending the Invisible Library
Beyond the catalogue : BibFrame, Linked Data and Ending the 	Invisible LibraryBeyond the catalogue : BibFrame, Linked Data and Ending the 	Invisible Library
Beyond the catalogue : BibFrame, Linked Data and Ending the Invisible Library
Ksenija Mincic Obradovic
 
Introduction_to_knowledge_graph.pdf
Introduction_to_knowledge_graph.pdfIntroduction_to_knowledge_graph.pdf
Introduction_to_knowledge_graph.pdf
JaberRad1
 
Linked (Open) Data
Linked (Open) DataLinked (Open) Data
Linked (Open) Data
Bernhard Haslhofer
 
DBpedia Mappings Wiki, SMWCon Fall 2013, Berlin
DBpedia Mappings Wiki, SMWCon Fall 2013, BerlinDBpedia Mappings Wiki, SMWCon Fall 2013, Berlin
DBpedia Mappings Wiki, SMWCon Fall 2013, Berlin
Anja Jentzsch
 
A theory of Metadata enriching & filtering
A theory of  Metadata enriching & filteringA theory of  Metadata enriching & filtering
A theory of Metadata enriching & filtering
Cuerpo Academico 'Estudios de la Información'
 
IASSIST 2012 - DDI-RDF - Trouble with Triples
IASSIST 2012 - DDI-RDF - Trouble with TriplesIASSIST 2012 - DDI-RDF - Trouble with Triples
IASSIST 2012 - DDI-RDF - Trouble with Triples
Dr.-Ing. Thomas Hartmann
 
The Rhetoric of Research Objects
The Rhetoric of Research ObjectsThe Rhetoric of Research Objects
The Rhetoric of Research Objects
Carole Goble
 
Semantic web 101: Benefits for geologists
Semantic web 101: Benefits for geologistsSemantic web 101: Benefits for geologists
Semantic web 101: Benefits for geologists
dgarijo
 
The Europeana Strategy and Linked Open Data
The Europeana Strategy and Linked Open DataThe Europeana Strategy and Linked Open Data
The Europeana Strategy and Linked Open Data
David Haskiya
 
20130622 okfn hackathon t2
20130622 okfn hackathon t220130622 okfn hackathon t2
20130622 okfn hackathon t2
Seonho Kim
 
Change Management for Libraries
Change Management for LibrariesChange Management for Libraries
Change Management for Libraries
Thomas King
 
2013 RBMS Premodern manuscript application profile presentation
2013 RBMS Premodern manuscript application profile presentation2013 RBMS Premodern manuscript application profile presentation
2013 RBMS Premodern manuscript application profile presentation
ssteuer
 
Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary)
Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary) Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary)
Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary)
OpenAIRE
 
Semantic web
Semantic webSemantic web
Semantic web
Tapas Kumar Mishra
 
Linked Data
Linked DataLinked Data
Linked Data
Anja Jentzsch
 
Linked Data for Libraries: Experiments between Cornell, Harvard and Stanford
Linked Data for Libraries: Experiments between Cornell, Harvard and StanfordLinked Data for Libraries: Experiments between Cornell, Harvard and Stanford
Linked Data for Libraries: Experiments between Cornell, Harvard and Stanford
Simeon Warner
 
NISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to RealityNISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to Reality
National Information Standards Organization (NISO)
 
Introduction to linked data
Introduction to linked dataIntroduction to linked data
Introduction to linked data
Laura Po
 
OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...
OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...
OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...
OpenAIRE
 

Similar to Getting Started with Knowledge Graphs (20)

Linked Open Data for Cultural Heritage
Linked Open Data for Cultural HeritageLinked Open Data for Cultural Heritage
Linked Open Data for Cultural Heritage
 
Beyond the catalogue : BibFrame, Linked Data and Ending the Invisible Library
Beyond the catalogue : BibFrame, Linked Data and Ending the 	Invisible LibraryBeyond the catalogue : BibFrame, Linked Data and Ending the 	Invisible Library
Beyond the catalogue : BibFrame, Linked Data and Ending the Invisible Library
 
Introduction_to_knowledge_graph.pdf
Introduction_to_knowledge_graph.pdfIntroduction_to_knowledge_graph.pdf
Introduction_to_knowledge_graph.pdf
 
Linked (Open) Data
Linked (Open) DataLinked (Open) Data
Linked (Open) Data
 
DBpedia Mappings Wiki, SMWCon Fall 2013, Berlin
DBpedia Mappings Wiki, SMWCon Fall 2013, BerlinDBpedia Mappings Wiki, SMWCon Fall 2013, Berlin
DBpedia Mappings Wiki, SMWCon Fall 2013, Berlin
 
A theory of Metadata enriching & filtering
A theory of  Metadata enriching & filteringA theory of  Metadata enriching & filtering
A theory of Metadata enriching & filtering
 
IASSIST 2012 - DDI-RDF - Trouble with Triples
IASSIST 2012 - DDI-RDF - Trouble with TriplesIASSIST 2012 - DDI-RDF - Trouble with Triples
IASSIST 2012 - DDI-RDF - Trouble with Triples
 
The Rhetoric of Research Objects
The Rhetoric of Research ObjectsThe Rhetoric of Research Objects
The Rhetoric of Research Objects
 
Semantic web 101: Benefits for geologists
Semantic web 101: Benefits for geologistsSemantic web 101: Benefits for geologists
Semantic web 101: Benefits for geologists
 
The Europeana Strategy and Linked Open Data
The Europeana Strategy and Linked Open DataThe Europeana Strategy and Linked Open Data
The Europeana Strategy and Linked Open Data
 
20130622 okfn hackathon t2
20130622 okfn hackathon t220130622 okfn hackathon t2
20130622 okfn hackathon t2
 
Change Management for Libraries
Change Management for LibrariesChange Management for Libraries
Change Management for Libraries
 
2013 RBMS Premodern manuscript application profile presentation
2013 RBMS Premodern manuscript application profile presentation2013 RBMS Premodern manuscript application profile presentation
2013 RBMS Premodern manuscript application profile presentation
 
Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary)
Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary) Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary)
Moving content across the OpenAIRE infrastructure boundaries (6th RDA Plenary)
 
Semantic web
Semantic webSemantic web
Semantic web
 
Linked Data
Linked DataLinked Data
Linked Data
 
Linked Data for Libraries: Experiments between Cornell, Harvard and Stanford
Linked Data for Libraries: Experiments between Cornell, Harvard and StanfordLinked Data for Libraries: Experiments between Cornell, Harvard and Stanford
Linked Data for Libraries: Experiments between Cornell, Harvard and Stanford
 
NISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to RealityNISO Webinar: Library Linked Data: From Vision to Reality
NISO Webinar: Library Linked Data: From Vision to Reality
 
Introduction to linked data
Introduction to linked dataIntroduction to linked data
Introduction to linked data
 
OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...
OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...
OpenAIRE Guidelines for data providers: new Metadata Application Profile for ...
 

More from Peter Haase

Visual Ontology Modeling for Domain Experts and Business Users with metaphactory
Visual Ontology Modeling for Domain Experts and Business Users with metaphactoryVisual Ontology Modeling for Domain Experts and Business Users with metaphactory
Visual Ontology Modeling for Domain Experts and Business Users with metaphactory
Peter Haase
 
Hybrid Enterprise Knowledge Graphs
Hybrid Enterprise Knowledge GraphsHybrid Enterprise Knowledge Graphs
Hybrid Enterprise Knowledge Graphs
Peter Haase
 
Ephedra: efficiently combining RDF data and services using SPARQL federation
Ephedra: efficiently combining RDF data and services using SPARQL federationEphedra: efficiently combining RDF data and services using SPARQL federation
Ephedra: efficiently combining RDF data and services using SPARQL federation
Peter Haase
 
Building Enterprise-Ready Knowledge Graph Applications in the Cloud
Building Enterprise-Ready Knowledge Graph Applications in the CloudBuilding Enterprise-Ready Knowledge Graph Applications in the Cloud
Building Enterprise-Ready Knowledge Graph Applications in the Cloud
Peter Haase
 
Smart Data Applications powered by the Wikidata Knowledge Graph
Smart Data Applications powered by the Wikidata Knowledge GraphSmart Data Applications powered by the Wikidata Knowledge Graph
Smart Data Applications powered by the Wikidata Knowledge Graph
Peter Haase
 
Discovering Related Data Sources in Data Portals
Discovering Related Data Sources in Data PortalsDiscovering Related Data Sources in Data Portals
Discovering Related Data Sources in Data Portals
Peter Haase
 
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Mapping, Interlinking and Exposing MusicBrainz as Linked DataMapping, Interlinking and Exposing MusicBrainz as Linked Data
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Peter Haase
 
The Information Workbench - Linked Data and Semantic Wikis in the Enterprise
The Information Workbench - Linked Data and Semantic Wikis in the EnterpriseThe Information Workbench - Linked Data and Semantic Wikis in the Enterprise
The Information Workbench - Linked Data and Semantic Wikis in the Enterprise
Peter Haase
 
On demand access to Big Data through Semantic Technologies
 On demand access to Big Data through Semantic Technologies On demand access to Big Data through Semantic Technologies
On demand access to Big Data through Semantic Technologies
Peter Haase
 
Linked Data as a Service
Linked Data as a ServiceLinked Data as a Service
Linked Data as a Service
Peter Haase
 
Fedbench - A Benchmark Suite for Federated Semantic Data Processing
Fedbench - A Benchmark Suite for Federated Semantic Data ProcessingFedbench - A Benchmark Suite for Federated Semantic Data Processing
Fedbench - A Benchmark Suite for Federated Semantic Data Processing
Peter Haase
 
Everything Self-Service:Linked Data Applications with the Information Workbench
Everything Self-Service:Linked Data Applications with the Information WorkbenchEverything Self-Service:Linked Data Applications with the Information Workbench
Everything Self-Service:Linked Data Applications with the Information Workbench
Peter Haase
 
The Information Workbench as a Self-Service Platform for Linked Data Applicat...
The Information Workbench as a Self-Service Platform for Linked Data Applicat...The Information Workbench as a Self-Service Platform for Linked Data Applicat...
The Information Workbench as a Self-Service Platform for Linked Data Applicat...
Peter Haase
 
Cloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application DevelopmentCloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application Development
Peter Haase
 
Semantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud ManagementSemantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud Management
Peter Haase
 

More from Peter Haase (15)

Visual Ontology Modeling for Domain Experts and Business Users with metaphactory
Visual Ontology Modeling for Domain Experts and Business Users with metaphactoryVisual Ontology Modeling for Domain Experts and Business Users with metaphactory
Visual Ontology Modeling for Domain Experts and Business Users with metaphactory
 
Hybrid Enterprise Knowledge Graphs
Hybrid Enterprise Knowledge GraphsHybrid Enterprise Knowledge Graphs
Hybrid Enterprise Knowledge Graphs
 
Ephedra: efficiently combining RDF data and services using SPARQL federation
Ephedra: efficiently combining RDF data and services using SPARQL federationEphedra: efficiently combining RDF data and services using SPARQL federation
Ephedra: efficiently combining RDF data and services using SPARQL federation
 
Building Enterprise-Ready Knowledge Graph Applications in the Cloud
Building Enterprise-Ready Knowledge Graph Applications in the CloudBuilding Enterprise-Ready Knowledge Graph Applications in the Cloud
Building Enterprise-Ready Knowledge Graph Applications in the Cloud
 
Smart Data Applications powered by the Wikidata Knowledge Graph
Smart Data Applications powered by the Wikidata Knowledge GraphSmart Data Applications powered by the Wikidata Knowledge Graph
Smart Data Applications powered by the Wikidata Knowledge Graph
 
Discovering Related Data Sources in Data Portals
Discovering Related Data Sources in Data PortalsDiscovering Related Data Sources in Data Portals
Discovering Related Data Sources in Data Portals
 
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
Mapping, Interlinking and Exposing MusicBrainz as Linked DataMapping, Interlinking and Exposing MusicBrainz as Linked Data
Mapping, Interlinking and Exposing MusicBrainz as Linked Data
 
The Information Workbench - Linked Data and Semantic Wikis in the Enterprise
The Information Workbench - Linked Data and Semantic Wikis in the EnterpriseThe Information Workbench - Linked Data and Semantic Wikis in the Enterprise
The Information Workbench - Linked Data and Semantic Wikis in the Enterprise
 
On demand access to Big Data through Semantic Technologies
 On demand access to Big Data through Semantic Technologies On demand access to Big Data through Semantic Technologies
On demand access to Big Data through Semantic Technologies
 
Linked Data as a Service
Linked Data as a ServiceLinked Data as a Service
Linked Data as a Service
 
Fedbench - A Benchmark Suite for Federated Semantic Data Processing
Fedbench - A Benchmark Suite for Federated Semantic Data ProcessingFedbench - A Benchmark Suite for Federated Semantic Data Processing
Fedbench - A Benchmark Suite for Federated Semantic Data Processing
 
Everything Self-Service:Linked Data Applications with the Information Workbench
Everything Self-Service:Linked Data Applications with the Information WorkbenchEverything Self-Service:Linked Data Applications with the Information Workbench
Everything Self-Service:Linked Data Applications with the Information Workbench
 
The Information Workbench as a Self-Service Platform for Linked Data Applicat...
The Information Workbench as a Self-Service Platform for Linked Data Applicat...The Information Workbench as a Self-Service Platform for Linked Data Applicat...
The Information Workbench as a Self-Service Platform for Linked Data Applicat...
 
Cloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application DevelopmentCloud-based Linked Data Management for Self-service Application Development
Cloud-based Linked Data Management for Self-service Application Development
 
Semantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud ManagementSemantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud Management
 

Recently uploaded

How Can Hiring A Mobile App Development Company Help Your Business Grow?
How Can Hiring A Mobile App Development Company Help Your Business Grow?How Can Hiring A Mobile App Development Company Help Your Business Grow?
How Can Hiring A Mobile App Development Company Help Your Business Grow?
ToXSL Technologies
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Julian Hyde
 
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom KittEnhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
Peter Caitens
 
ppt on the brain chip neuralink.pptx
ppt  on   the brain  chip neuralink.pptxppt  on   the brain  chip neuralink.pptx
ppt on the brain chip neuralink.pptx
Reetu63
 
Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)
alowpalsadig
 
TMU毕业证书精仿办理
TMU毕业证书精仿办理TMU毕业证书精仿办理
TMU毕业证书精仿办理
aeeva
 
All you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVMAll you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVM
Alina Yurenko
 
Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...
Paul Brebner
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
Patrick Weigel
 
WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...
WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...
WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...
Luigi Fugaro
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
kalichargn70th171
 
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
safelyiotech
 
Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !
Marcin Chrost
 
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
kalichargn70th171
 
Upturn India Technologies - Web development company in Nashik
Upturn India Technologies - Web development company in NashikUpturn India Technologies - Web development company in Nashik
Upturn India Technologies - Web development company in Nashik
Upturn India Technologies
 
42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert
vaishalijagtap12
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
Drona Infotech
 
What’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete RoadmapWhat’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete Roadmap
Envertis Software Solutions
 
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
widenerjobeyrl638
 
ACE - Team 24 Wrapup event at ahmedabad.
ACE - Team 24 Wrapup event at ahmedabad.ACE - Team 24 Wrapup event at ahmedabad.
ACE - Team 24 Wrapup event at ahmedabad.
Maitrey Patel
 

Recently uploaded (20)

How Can Hiring A Mobile App Development Company Help Your Business Grow?
How Can Hiring A Mobile App Development Company Help Your Business Grow?How Can Hiring A Mobile App Development Company Help Your Business Grow?
How Can Hiring A Mobile App Development Company Help Your Business Grow?
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
 
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom KittEnhanced Screen Flows UI/UX using SLDS with Tom Kitt
Enhanced Screen Flows UI/UX using SLDS with Tom Kitt
 
ppt on the brain chip neuralink.pptx
ppt  on   the brain  chip neuralink.pptxppt  on   the brain  chip neuralink.pptx
ppt on the brain chip neuralink.pptx
 
Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)Photoshop Tutorial for Beginners (2024 Edition)
Photoshop Tutorial for Beginners (2024 Edition)
 
TMU毕业证书精仿办理
TMU毕业证书精仿办理TMU毕业证书精仿办理
TMU毕业证书精仿办理
 
All you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVMAll you need to know about Spring Boot and GraalVM
All you need to know about Spring Boot and GraalVM
 
Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...Superpower Your Apache Kafka Applications Development with Complementary Open...
Superpower Your Apache Kafka Applications Development with Complementary Open...
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
 
WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...
WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...
WMF 2024 - Unlocking the Future of Data Powering Next-Gen AI with Vector Data...
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
 
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
 
Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !
 
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
The Power of Visual Regression Testing_ Why It Is Critical for Enterprise App...
 
Upturn India Technologies - Web development company in Nashik
Upturn India Technologies - Web development company in NashikUpturn India Technologies - Web development company in Nashik
Upturn India Technologies - Web development company in Nashik
 
42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert42 Ways to Generate Real Estate Leads - Sellxpert
42 Ways to Generate Real Estate Leads - Sellxpert
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
 
What’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete RoadmapWhat’s New in Odoo 17 – A Complete Roadmap
What’s New in Odoo 17 – A Complete Roadmap
 
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
美洲杯赔率投注网【​网址​🎉3977·EE​🎉】
 
ACE - Team 24 Wrapup event at ahmedabad.
ACE - Team 24 Wrapup event at ahmedabad.ACE - Team 24 Wrapup event at ahmedabad.
ACE - Team 24 Wrapup event at ahmedabad.
 

Getting Started with Knowledge Graphs

  • 1. Getting Started with Knowledge Graphs Smart Data Conference January 30, 2017, San Francisco Bay Peter Haase
  • 2. 2 Peter Haase • Interest and experience in ontologies, semantic technologies and Linked Data • PhD in KR and semantic technologies • 15 years in academic research and software development • Contributor to OWL 2 standard metaphacts Company Facts • Founded in Q4 2014 • Headquartered in Walldorf, Germany • Currently ~10 people • Platform for knowledge graph interaction & application development About the Speaker
  • 3. 3 Introduction: What are Knowledge Graphs? Examples and Applications • Wikidata • Cultural Heritage • Industrial Applications Standards and Principles metaphactory Knowledge Graph Platform Hands-on Exercises Agenda
  • 5. 5 The Rise of Knowledge Graphs
  • 6. 6 • We need a structured and formal representation of knowledge • We are surrounded by entities, which are connected by relations • Graphs are a natural way to represent entities and their relationships • Graphs can be managed efficiently Why (Knowledge) Graphs?
  • 7. 7 A (very small) Knowledge Graph http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/example-graph.jpg
  • 8. 8 • Semantic descriptions of entities and their relationships • Uses a knowledge representation formalism (Focus here: RDF, RDF-Schema, OWL) • Entities: real world objects (things, places, people) and abstract concepts (genres, religions, professions) • Relationships: graph-based data model where relationships are first-class • Semantic descriptions: types and properties with a well- defined meaning (e.g. through an ontology) • Possibly axiomatic knowledge (e.g. rules) to support automated reasoning What are Knowledge Graphs?
  • 9. 9 Knowledge Graphs Enabling Intelligent Applications Knowledge Graph Algorithms Applications Data Transformation, Integration Natural Language Processing Data Sources • Inferencing • Machine Learning • Entity Recognition • Disambiguation • Text Understanding • Recommendations • Semantic Search • Question Answering • Knowledge Sharing • Knowledge Management • Analytics • Entities • Relationships • Semantic Descriptions • Dashboards
  • 12. 12 Entity Search and Summarizations Google Knowledge Graph
  • 15. 15 Knowledge Graph Search API https://developers.google.com/knowledge-graph/
  • 19. 19 Wikipedia page A query against Wikipedia Query the Knowledge of Wikipedia like a Database 19
  • 20. 20 • Collecting structured data. Unlike the Wikipedias, which produce encyclopedic articles, Wikidata collects data, in a structured form. • Collaborative. The data in Wikidata is entered and maintained by Wikidata editors, who decide on the rules of content creation and management in Wikidata supporting the notion of verifiability. • Free. The data in Wikidata is published under the Creative Commons • Large. • 25 million entities • 130 million statements • 130 million labels • 350 languages • >1500 million triples Wikidata
  • 21.
  • 22. 22 • Build your applications using Wikidata • Free corpus of structured knowledge • Easily accessible and standards-based • See http://query.wikidata.org/ • Contextualize your enterprise data • Wikidata provides stable identifiers into the open data world • Seamless integration of private data with open data • Enrich Wikidata with your data • Contribute your data to Wikidata • Link to your own data, make it visible • Examples: • Open biomedical databases – Wikidata as a central hub • Cultural heritage Use Cases for the Wikidata Knowledge Graph
  • 23.
  • 26. 26 • Challenge: • Very context-rich data • Multi-disciplinary data, e.g. archaeologists, historians, librarians • Multi-institutional data • Complex domain, relationships, e.g. temporal, spatial, historical, political • Benefits of Knowledge Graphs • Integration and interchange of heterogeneous cultural heritage information • Rich ontologies for knowledge representation • Deep semantics for true conceptual merging • Multi-lingual knowledge representation • Knowledge access across museums and organizations • Enabling knowledge sharing and collaboration Benefits of Knowledge Graphs for Cultural Heritage
  • 27. 27 • Collaboration environment for researchers in Cultural Heritage • Expert users: researchers, curators • Based on CIDOC-CRM: very rich, expressive ontology • Large, cross-museum data sets • E.g. British Museum: 100s millions of triples • Advanced search capabilities • Supporting query construction • Sharing of searches, results, visualizations • Knowledge sharing • Discussions around cultural heritage annotations • Argumentation support: Representation of conflicting views and opionions ResearchSpace: Knowledge Graphs for Cultural Heritage http://researchspace.org/
  • 30. 30 Challenge: • Much of the relevant knowledge in external databases • Many disparate databases / data silos • Many different data formats • Complex domain, complex relationships e.g. compounds, targets, pathways, diseases and tissues Benefits of Knowledge Graphs in the Life Sciences
  • 31. 31 • Integrated knowledge representation • Common format • Stable, global identifiers • Federated queries • Integrated knowledge access: One-stop portals • Rich semantic search on a conceptual level • Entry points to further data, in-house and external • Crossing boundaries between private and open data Benefits of Knowledge Graphs in the Life Sciences
  • 33. 34 Semantics on the Web Semantic Web Stack Berners-Lee (2006) Syntactic basis Basic data model Simple vocabulary (schema) language Expressive vocabulary (ontology) language Query language Application specific declarative-knowledge Digital signatures, recommendations Proof generation, exchange, validation
  • 34. 35 Knowledge Graphs Built on the Semantic Web Layer Cake Unicode URIs RDF (Resource Description Framework) RDF-Schema OWLSKOS SPARQL Query language Entities Relationships Vocabularies Ontologies Expressive Ontology Language Thesauri, classification schemes Graph data model Simple vocabulary language
  • 35. 36 Linked Data • Set of standards, principles for publishing, sharing and interrelating structured knowledge • From data silos to interconnected knowledge graphs Linked Data Principles • Use URIs as names for things. • Use HTTP URIs so that people can look up those names. • When someone looks up a URI, provide useful information, using the standards: RDF, SPARQL. • Include links to other URIs, so that they can discover more things. Knowledge Graphs Built on Linked Data Principles
  • 36. 37 Our Knowledge Graph again (a bit more technical)
  • 37. 38 Graph consists of: • Resources (identified via URIs) • Literals: data values with data type (URI) or language (multilinguality integrated) • Attributes of resources are also URI- identified (from vocabularies) Our Knowledge Graph again (a bit more technical) • Various data sources and vocabularies can be arbitrarily mixed and meshed • URIs can be shortened with namespace prefixes; e.g. schema: → http://schema.org/
  • 38. 39 Allows one to talk about anything Uniform Resource Identifier (URI) can be used to identify entities http://dbpedia.org/resource/Leonardo_da_Vinci is a name for Leonardo da Vinci http://www.wikidata.org/entity/Q12418 is a name for the Mona Lisa painting Resource Description Framework (RDF) dbpedia: Leonardo_da_Vinci wd:Q12418
  • 39. 40 Allows one to express statements An RDF statement consists of: • Subject: resource identified by a URI • Predicate: resource identified by a URI • Object: resource or literal Variety of RDF syntaxes, e.g. Turtle (Terse RDF Triple Language): Resource Description Framework (RDF) dbpedia: Leonardo_da_Vinci wd:Q12418 dcterms:creator wd:Q12418 dcterms:creator dbpedia:Leonardo_da_Vinci .
  • 40. 41 • Language for two tasks w.r.t. the RDF data model: • Definition of vocabulary – nominate: • the ‘types’, i.e., classes, of things we might make assertions about, and • the properties we might apply, as predicates in these assertions, to capture their relationships. • Inference – given a set of assertions, using these classes and properties, specify what should be inferred about assertions that are implicitly made. RDF-S – RDF Schema
  • 41. 42 • rdfs:Class – Example: foaf:Person – Represents the class of persons • rdf:Property – Class of RDF properties. Example: foaf:knows – Represents that a person “knows” another • rdfs:domain – States that any resource that has a given property is an instance of one or more classes foaf:knows rdfs:domain foaf:Person • rdfs:range – States that the values of a property are instances of one or more classes foaf:knows rdfs:range foaf:Person RDF-S – RDF Schema
  • 42. 43 RDF-S – RDF Schema foaf:knows rdfs:range foaf:Person . <http://example.org/bob#me> foaf:knows <http://example.org/alice#me>. <http://example.org/alice#me> rdf:type foaf:Person. Schema Existing fact Inferred fact We expect to use this vocabulary to make assertions about persons. Having made such an assertion... Inferences can be drawn that we did not explicitly make
  • 43. 44 • RDFS provides a simplified ontological language for defining vocabularies about specific domains. • OWL provides more ontological constructs for knowledge representation. • Semantics grounded in Description Logics. • OWL 2 is divided into sub-languages denominated profiles: • OWL 2 EL: Limited to basic classification, but with polynomial-time reasoning • OWL 2 QL: Designed to be translatable to relational database querying • OWL 2 RL: Designed to be efficiently implementable in rule-based systems • Most graph databases concentrate on the use of RDFS with a subset of OWL features. OWL – Web Ontology Language More restrictive than OWL DL
  • 44. 45 OWL is made up of terms which provide for: • Class construction: forming new classes from membership of existing ones (e.g., unionOf, intersectionOf, etc.). • Property construction: distinction between OWL ObjectProperties (resources as values) and OWL DatatypeProperties (literals as values). • Class axioms: sub-class, equivalence and disjointness relationships. • Property axioms: sub-property relationship, equivalence and disjointness, and relationships between properties. • Individual axioms: statements about individuals (sameIndividual, differentIndividuals). OWL – Web Ontology Language
  • 45. 46 Example: CIDOC-CRM Ontology Class: Person SubClassOf: Actor SubClassOf: Biological Object SubClassOf: was_born exactly 1 SubClassOf: has_parent min 2 Class: Physical Thing SubClassOf: Legal Object SubClassOf: Spacetime Volume DisjointWith: Conceptual Object SubClassOf: consists_of some Material
  • 46. 47 • Data model for knowledge organization systems (thesauri, classification scheme, taxonomies) • Conceptual resources (concepts) can be • identified with URIs, • labeled with lexical strings in natural language, • documented with various types of note, • semantically related to each other in informal hierarchies and association networks and • aggregated into concept schemes. SKOS - Simple Knowledge Organization System http://www.w3.org/TR/skos-reference/
  • 48. 49 • Query language for RDF-based knowledge graphs. • Designed to use a syntax similar to SQL for retrieving data from relational databases. • Different query forms: • SELECT returns variables and their bindings directly. • CONSTRUCT returns a single RDF graph specified by a graph template. • ASK test whether or not a query pattern has a solution. Returns yes/no. • DESCRIBE returns a single RDF graph containing RDF data about resources. SPARQL – * Protocol and RDF Query Language
  • 49. 50 Main idea: Pattern matching • Queries describe sub-graphs of the queried graph • Graph patterns are RDF graphs specified in Turtle syntax, which contain variables (prefixed by either “?” or “$”) • Sub-graphs that match the graph patterns yield a result • The syntax of a SELECT query is as follows: • SELECT nominates which components of the matches made against the data should be returned. • FROM (optional) indicates the sources for the data against which to find matches. • WHERE defines patterns to match against the data. • ORDER BY defines a means to order the selected matches. SPARQL – * Protocol and RDF Query Language dbpedia: Leonardo_da_Vinci ?var dcterms:creator
  • 50. 51 Example: Select the creator of the things that Bob is interested in. SPARQL – * Protocol and RDF Query Language PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dcterms: <http://purl.org/dc/terms/> SELECT ?creator WHERE { <http://example.org/bob#me> foaf:topic_interest ?interest . ?interest dcterms:creator ?creator } dbpedia:Leonardo_da_VinciResults:
  • 52. 53 metaphacts – Our Mission The metaphacts team offers an unmatched experience and know-how around enterprise knowledge graphs for our clients in areas such as business, finance, life science, and cultural heritage. The metaphactory is our end-to-end platform to create and utilize enterprise knowledge graphs - from semantic graph data management to data-driven application development. Built entirely on open standards and technologies, our platform covers the entire lifecycle of dealing with knowledge graphs. As a main benefit our platform enables knowledge workers to create and gain meaningful insight into their data with one comprehensive software solution.
  • 53. 54 metaphactory Features KNOWLEDGE GRAPH BACKEND • Scalable data processing • Easy-to-use interface • High-performance querying and analytics • Built-in inferencing and custom services • Standard connectors for a variety of data formats • Single server, embedded mode, high availability, and scale out KNOWLEDGE GRAPH CREATION • Semi-automatic creation of knowledge graphs • Curation and interlinking of data from heterogeneous sources • Collaborative management and authoring • Custom query and templates catalogs • Data annotation • Capturing of provenance information KNOWLEDGE GRAPH APPLICATIONS • Rapid development of end-user oriented applications • Web components for end- user friendly presentation and interaction • Interactive visualization • Rich semantic search with visual query construction and faceting • Customizable semantic clipboard
  • 54. 55 metaphactory as an Open Platform BUILT IN OPEN SOURCE ü Dual licensing (LGPL & commercial license) ü Open Platform API and SDK ü Integration of external tools and application via APIs ü Easy development of own web components and services ü Full HTML5 compliance ü Re-usable, declaratively configurable Web Components = Easy modification, customization, and extensibility BUILT ON OPEN STANDARDS ü W3C Web Components ü W3C Open Annotation Data Model ü W3C Linked Data Platform Containers ü Data processing based on W3C standards such as RDF, SPARQL ü Expressive ontologies for schema modeling based on OWL 2, SKOS ü Rules, constraints, and query specification based on SPIN and RDF Data Shapes = Sustainable Solution
  • 55. 56 metaphactory Platform Architecture Data Services Applications Graph Database Graph Analytics Provenance Catalog Services Exploration VisualizationConfiguration Search Access Control Knowledge Graph Management App Factory End UsersExpert/domain Users Smart Apps Developers InferencingSPARQL Endpoint
  • 56. 57 Users and their Benefits EXPERT USERS • Collaboratively construct and manage knowledge graphs • Integrate data from heterogeneous sources • Use standard connectors for a variety of data formats • Benefit from scalable data processing for big graphs • Conduct high- performance querying and analytics DEVELOPERS • Rapidly develop Web and mobile end-user oriented applications • Benefit from various deployment modes: stand- alone, HA, scale-up, scale- out • Interact with an easy-to- use interface • Collaboratively manage, annotate and author data • Use large set of custom query and templates catalogs • Capture of provenance information END USERS • Benefit from user-friendly interaction with data • Gain insights into complex relationships • Enable transparency and extract value • Ask questions and obtain precise results • Reduce effort for data analysis • Reduce noise – obtain targeted, high quality results • Enhance quality of business decisions
  • 57. 58 metaphacts Supports the Whole Data Lifecyle Data Extraction & Integration Data Linking & Enrichment Storage & Repositories Querying & Inferencing Search Visualization Authoring end-to-end platform
  • 58. 59 Search • Domain independent, fully customizable search widget • Satisfy complex information needs without learning SPARQL • Search functionalities • Graphical query construction • End user friendly search interfaces for building and sharing complex queries • Semantic auto suggestion • Interactive result visualization • Faceted search and exploration of item collections • Ability to invoke external full text search indices such as Solr including the possibility to score, rank and limit the results for responsive autosuggestion • Saving and sharing of queries and search results Search
  • 59. 60 Table Transform your queries into durable, interactive tables Many customization possibilities, e.g. pagination, filters and cell templates Graph Visualize and explore connections in a graph view Custom styling of the graph Variety of graph layouts Carousel Animated browsing through a list of result items Chart Visualize trends and relationships between numbers, ratios, or proportions Visuali- zation Tree Table Tree-based visualization, navigation and browsing through sub- tree structures Map Displaying spatial data on a geographic map Visualization
  • 60. 61 Autho- ring • Annotations • Based on W3C Open Annotation Data Model • Automated semantic link extraction • Form based authoring • Manually author and update instance data, backed by query templates, data dependencies, and type constraints • Rich editing components for special data types • Customizable flexible forms • Autosuggestion and validation against the knowledge graph • Capturing of provenance information • User group management Authoring
  • 61. 62 Install & Go: Out-of-the-Box Functionality Getting Started Tutorial to guide you through your first steps with metaphactory Get started Management of Queries in Catalog for easy reuse and updating Keyword Search Interface with semantic autosuggestion, driven by SPARQL Search Data Overview Pages with Web components for end-user friendly data presentation and interaction Template-based Data Browser used to define generic views which are automatically applied to entire sets of instances Explore
  • 62. 63 Example: Simple Semantic Search Keyword search with semantic autosuggestion, driven by SPARQL Set up in ~2 minutes! Declarative Components Developer embeds ‘semantic-simple-search’ into the page <semantic-simple-search data- config='{ "query":" SELECT ?result ?label ?desc ?img WHERE { ?result rdfs:label ?label . ?result rdfs:comment ?desc . ?result foaf:thumbnail ?img . FILTER(CONTAINS(?label, ?token)) }", "searchTermVariable":"token", // user input "template":" <span title="{{result}}"> <img src="{{img}}" height="30"/> {{label}} ({{desc}})</span>" }'/> 1 Rendered component is displayed to the user and can be used right away 2 Autosuggestions are dynamically computed based on query and user input 3
  • 63. 64 • Associate a class in the knowledge graph with a template • The template is applied to instances of the class HTML5 Template Pages Bob foaf:Person rdf:type
  • 65. 66 Hands-on Exercises DATA LOADING & QUERYING • Loading your data • Querying your data VISUALIZATION • Visualizing results in a table • Visualizing results in a graph SEARCH • Embedding a simple search interface AUTHORING • Creating a template • Inserting and updating data
  • 66. 67 • Download metaphactory (or copy from USB stick) http://www.knowledgegraph.info/ • Follow README, start metaphactory start.sh / start.bat • Open start page http://localhost:10214 • Follow “Getting started tutorial” http://localhost:10214/resource/Help:Tutorial • Have fun and ask questions ;-) Hands-on Exercises
  • 67. 68 Data Loading & Querying Load data into the store via the data import and export administration page 1 2 Query the data via the SPARQL endpoint. E.g.: issue a query for all statements made about Bob as a subject 3 Visualize results in a table … or as raw data
  • 68. 69 Visualizing Results in a Table 3 Visualize results in a table displaying thumbnails as images, the labels of the resources as captions, and links to the individual resource pages 1 Embed ‘semantic-table’ component <semantic-table config='{ "query":"SELECT * WHERE { <http://example.org/bob#me> ?predicate ?object }“ }'> </semantic-table> to visualize previous query as a table in a page 2 Customize the query to embed thumbnail images in the result visualization SELECT ?uri ?label ?thumbnail WHERE { ?uri rdfs:label ?label; <http://schema.org/thumbnail > ?thumbnail } Use tupleTemplate to define a template for displaying the new table
  • 69. 70 Visualizing Results in a Graph 1 Embed ‘semantic-graph’ component <semantic-graph query="CONSTRUCT WHERE { ?s ?p ?o }"> </semantic-graph> 2 Visualize results in a graph
  • 70. 71 Embedding a Simple Search Interface Embed ‘semantic-simple- search’ into the page <semantic-simple-search config='{ "query":" SELECT ?uri ?label WHERE { FILTER REGEX(?label, "?token", "i") ?uri rdfs:label ?label } LIMIT 10 ", "searchTermVariable":"token", "resourceSelection":{ "resourceBindingName":"uri", "template":"<span style="color: blue;" title="{{uri.value}}">{{label. value}}</span>" }, "inputPlaceholder":"Search for something e.g. "Bob"" }'> </semantic-simple-search> 1 Rendered component is displayed and can be used right away 2 Autosuggestions are dynamically computed based on query and user input 3
  • 71. 72 Creating a Template 1 Use the templating mechanism to create a template for the resource type ‘Person’, to display: • the person's name • an image, if available • his interests • his friendship relationship 2 Visualize the result on Bob’s instance page
  • 72. 73 Inserting and Updating Data 1 Use a SPARQL UPDATE operation against the SPARQL endpoint to create and add new instance data • the person's name • an image, if available • his interests • his friendship relationship 2 Visualize the result
  • 73. 74 • Knowledge graphs as a flexible model for data integration and knowledge representation • Standards for “semantic” knowledge graphs • RDF as graph-based data model • OWL as expressive ontology language • SKOS for taxonomic knowledge • SPARQL as query language • Application areas • Open knowledge graphs, e.g. Wikidata • Cultural Heritage • Life Sciences • And many more • Get started with the metaphactory Knowledge Graph platform today! Summary
  • 74. 75 metaphacts GmbH Industriestraße 41 69190 Walldorf Germany p +49 6227 6989965 m +49 157 50152441 e info@metaphacts.com @metaphacts www.metaphacts.com Get in Touch!