SlideShare a Scribd company logo
1 of 35
Download to read offline
Section 4-3
Proving Triangles Congruent: SSS, SAS
Essential Questions
How do you use the SSS Postulate to test for triangle
congruence?
How do you use the SAS Postulate to test for triangle
congruence?
Vocabulary
1. Included Angle:
Postulate 4.1 - Side-Side-Side (SSS) Congruence:
Postulate 4.2 - Side-Angle-Side (SAS) Congruence:
Vocabulary
1. Included Angle: An angle formed by two adjacent sides of a
polygon
Postulate 4.1 - Side-Side-Side (SSS) Congruence:
Postulate 4.2 - Side-Angle-Side (SAS) Congruence:
Vocabulary
1. Included Angle: An angle formed by two adjacent sides of a
polygon
Postulate 4.1 - Side-Side-Side (SSS) Congruence: If three sides
of one triangle are congruent to three corresponding sides of
a second, then the triangles are congruent
Postulate 4.2 - Side-Angle-Side (SAS) Congruence:
Vocabulary
1. Included Angle: An angle formed by two adjacent sides of a
polygon
Postulate 4.1 - Side-Side-Side (SSS) Congruence: If three sides
of one triangle are congruent to three corresponding sides of
a second, then the triangles are congruent
Postulate 4.2 - Side-Angle-Side (SAS) Congruence: If two sides
and the included angle of one triangle are congruent to two
corresponding sides and included angle of a second triangle,
then the triangles are congruent
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU 1. Given
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU 1. Given
2. DU ≅ DU
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU 1. Given
2. DU ≅ DU 2. Reflexive
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU 1. Given
2. DU ≅ DU 2. Reflexive
3. DU ≅ UD
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU 1. Given
2. DU ≅ DU 2. Reflexive
3. DU ≅ UD 3. Symmetric
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU 1. Given
2. DU ≅ DU 2. Reflexive
3. DU ≅ UD 3. Symmetric
4. △QUD ≅△ADU
Example 1
Prove the following.
Given: QU ≅ AD, QD ≅ AU
Prove: △QUD ≅△ADU
1. QU ≅ AD, QD ≅ AU 1. Given
2. DU ≅ DU 2. Reflexive
3. DU ≅ UD 3. Symmetric
4. △QUD ≅△ADU 4. SSS
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
W
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
W
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
W
L
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
W
L
P
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
W
L
P
M
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
W
L
P
M
Example 2
∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM
has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both
triangles on the coordinate plane. Then, using your drawing,
determine whether the triangles are congruent or not,
providing a logical argument for your statement.
x
y
D
V
W
L
P
M
These are congruent. What
possible ways could we show this?
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
FG ≅ HG, EG ≅ IG2.
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm.
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm.
∠FGE ≅ ∠HGI3.
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm.
∠FGE ≅ ∠HGI3. 3. Vertical Angles Thm.
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm.
∠FGE ≅ ∠HGI3. 3. Vertical Angles Thm.
4. △FEG ≅△HIG
Example 3
Prove the following.
Prove: △FEG ≅△HIG
Given: EI ≅ FH, G is the midpoint of EI and FH
1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm.
∠FGE ≅ ∠HGI3. 3. Vertical Angles Thm.
4. △FEG ≅△HIG 4. SAS

More Related Content

What's hot

ON β-NORMAL SPACES
ON β-NORMAL SPACES ON β-NORMAL SPACES
ON β-NORMAL SPACES mathsjournal
 
Cd32939943
Cd32939943Cd32939943
Cd32939943IJMER
 
Analysis of variance(menong)
Analysis of variance(menong)Analysis of variance(menong)
Analysis of variance(menong)Maria Theresa
 
2 7 variations
2 7 variations2 7 variations
2 7 variationsmath123b
 
Strong Semiclosed Sets in Topological Spaces
Strong Semiclosed Sets in Topological SpacesStrong Semiclosed Sets in Topological Spaces
Strong Semiclosed Sets in Topological Spacesijtsrd
 
5.1 sequences and summation notation
5.1 sequences and summation notation5.1 sequences and summation notation
5.1 sequences and summation notationmath260
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressionsDr. Nirav Vyas
 
Stability criterion of periodic oscillations in a (9)
Stability criterion of periodic oscillations in a (9)Stability criterion of periodic oscillations in a (9)
Stability criterion of periodic oscillations in a (9)Alexander Decker
 
sets and venn diagrams
sets and venn diagramssets and venn diagrams
sets and venn diagramsShahmir Ali
 
Sets in Maths (Complete Topic)
Sets in Maths (Complete Topic)Sets in Maths (Complete Topic)
Sets in Maths (Complete Topic)Manik Bhola
 
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...Abu Bakar Soomro
 
5.4 use medians and altitudes
5.4 use medians and altitudes5.4 use medians and altitudes
5.4 use medians and altitudesdetwilerr
 
LINEAR PROGRAMMING-Arithmetic Sequences
LINEAR PROGRAMMING-Arithmetic SequencesLINEAR PROGRAMMING-Arithmetic Sequences
LINEAR PROGRAMMING-Arithmetic SequencesShahaziya Ummer
 
Partial ordering in soft set context
Partial ordering in soft set contextPartial ordering in soft set context
Partial ordering in soft set contextAlexander Decker
 
Cut and Count
Cut and CountCut and Count
Cut and CountASPAK2014
 
DISTANCE FORMULA (GRADE 10 MATH)
DISTANCE FORMULA (GRADE 10 MATH)DISTANCE FORMULA (GRADE 10 MATH)
DISTANCE FORMULA (GRADE 10 MATH)daisyree medino
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1ramlahmailok
 

What's hot (19)

ON β-NORMAL SPACES
ON β-NORMAL SPACES ON β-NORMAL SPACES
ON β-NORMAL SPACES
 
Cd32939943
Cd32939943Cd32939943
Cd32939943
 
Analysis of variance(menong)
Analysis of variance(menong)Analysis of variance(menong)
Analysis of variance(menong)
 
2 7 variations
2 7 variations2 7 variations
2 7 variations
 
20104136 ----set operations
20104136 ----set operations20104136 ----set operations
20104136 ----set operations
 
Strong Semiclosed Sets in Topological Spaces
Strong Semiclosed Sets in Topological SpacesStrong Semiclosed Sets in Topological Spaces
Strong Semiclosed Sets in Topological Spaces
 
5.1 sequences and summation notation
5.1 sequences and summation notation5.1 sequences and summation notation
5.1 sequences and summation notation
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Stability criterion of periodic oscillations in a (9)
Stability criterion of periodic oscillations in a (9)Stability criterion of periodic oscillations in a (9)
Stability criterion of periodic oscillations in a (9)
 
sets and venn diagrams
sets and venn diagramssets and venn diagrams
sets and venn diagrams
 
Sets in Maths (Complete Topic)
Sets in Maths (Complete Topic)Sets in Maths (Complete Topic)
Sets in Maths (Complete Topic)
 
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
 
5.4 use medians and altitudes
5.4 use medians and altitudes5.4 use medians and altitudes
5.4 use medians and altitudes
 
LINEAR PROGRAMMING-Arithmetic Sequences
LINEAR PROGRAMMING-Arithmetic SequencesLINEAR PROGRAMMING-Arithmetic Sequences
LINEAR PROGRAMMING-Arithmetic Sequences
 
Partial ordering in soft set context
Partial ordering in soft set contextPartial ordering in soft set context
Partial ordering in soft set context
 
Cut and Count
Cut and CountCut and Count
Cut and Count
 
DISTANCE FORMULA (GRADE 10 MATH)
DISTANCE FORMULA (GRADE 10 MATH)DISTANCE FORMULA (GRADE 10 MATH)
DISTANCE FORMULA (GRADE 10 MATH)
 
Set Difference
Set DifferenceSet Difference
Set Difference
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1
 

Similar to Geometry Section 4-3

Geometry Section 4-4 1112
Geometry Section 4-4 1112Geometry Section 4-4 1112
Geometry Section 4-4 1112Jimbo Lamb
 
Geometry Section 4-5 1112
Geometry Section 4-5 1112Geometry Section 4-5 1112
Geometry Section 4-5 1112Jimbo Lamb
 
Geometry Section 2-8
Geometry Section 2-8Geometry Section 2-8
Geometry Section 2-8Jimbo Lamb
 
Geometry unit 9.6 9.7
Geometry unit 9.6 9.7Geometry unit 9.6 9.7
Geometry unit 9.6 9.7Mark Ryder
 
9.5 Kites and Trapezoids
9.5 Kites and Trapezoids9.5 Kites and Trapezoids
9.5 Kites and Trapezoidssmiller5
 
Geometry Section 4-2
Geometry Section 4-2Geometry Section 4-2
Geometry Section 4-2Jimbo Lamb
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5Jimbo Lamb
 
Geometry Section 4-4
Geometry Section 4-4Geometry Section 4-4
Geometry Section 4-4Jimbo Lamb
 
Geometry Section 4-3
Geometry Section 4-3Geometry Section 4-3
Geometry Section 4-3Jimbo Lamb
 
Congruent figures
Congruent figuresCongruent figures
Congruent figuresjbianco9910
 
Geometry unit 7.4
Geometry unit 7.4Geometry unit 7.4
Geometry unit 7.4Mark Ryder
 
Geometry unit 6.2
Geometry unit 6.2Geometry unit 6.2
Geometry unit 6.2Mark Ryder
 
On continuity of complex fuzzy functions
On continuity of complex fuzzy functionsOn continuity of complex fuzzy functions
On continuity of complex fuzzy functionsAlexander Decker
 
4.4 & 4.5 & 5.2 proving triangles congruent
4.4 & 4.5 & 5.2 proving triangles congruent4.4 & 4.5 & 5.2 proving triangles congruent
4.4 & 4.5 & 5.2 proving triangles congruentMary Angeline Molabola
 
Group {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related GraphsGroup {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related GraphsIJASRD Journal
 
Congruent figures 2013
Congruent figures 2013Congruent figures 2013
Congruent figures 2013jbianco9910
 
Geometry unit 6.5
Geometry unit 6.5Geometry unit 6.5
Geometry unit 6.5Mark Ryder
 

Similar to Geometry Section 4-3 (20)

Geometry Section 4-4 1112
Geometry Section 4-4 1112Geometry Section 4-4 1112
Geometry Section 4-4 1112
 
Geometry Section 4-5 1112
Geometry Section 4-5 1112Geometry Section 4-5 1112
Geometry Section 4-5 1112
 
Geometry Section 2-8
Geometry Section 2-8Geometry Section 2-8
Geometry Section 2-8
 
Geometry unit 9.6 9.7
Geometry unit 9.6 9.7Geometry unit 9.6 9.7
Geometry unit 9.6 9.7
 
9.5 Kites and Trapezoids
9.5 Kites and Trapezoids9.5 Kites and Trapezoids
9.5 Kites and Trapezoids
 
Geometry Section 4-2
Geometry Section 4-2Geometry Section 4-2
Geometry Section 4-2
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
 
Geometry Section 4-4
Geometry Section 4-4Geometry Section 4-4
Geometry Section 4-4
 
Geometry Section 4-3
Geometry Section 4-3Geometry Section 4-3
Geometry Section 4-3
 
Congruent figures
Congruent figuresCongruent figures
Congruent figures
 
Geometry L 4.3
Geometry L 4.3Geometry L 4.3
Geometry L 4.3
 
Geometry unit 7.4
Geometry unit 7.4Geometry unit 7.4
Geometry unit 7.4
 
Geometry unit 6.2
Geometry unit 6.2Geometry unit 6.2
Geometry unit 6.2
 
Module 6
Module 6Module 6
Module 6
 
Gch04 l3
Gch04 l3Gch04 l3
Gch04 l3
 
On continuity of complex fuzzy functions
On continuity of complex fuzzy functionsOn continuity of complex fuzzy functions
On continuity of complex fuzzy functions
 
4.4 & 4.5 & 5.2 proving triangles congruent
4.4 & 4.5 & 5.2 proving triangles congruent4.4 & 4.5 & 5.2 proving triangles congruent
4.4 & 4.5 & 5.2 proving triangles congruent
 
Group {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related GraphsGroup {1, −1, i, −i} Cordial Labeling of Product Related Graphs
Group {1, −1, i, −i} Cordial Labeling of Product Related Graphs
 
Congruent figures 2013
Congruent figures 2013Congruent figures 2013
Congruent figures 2013
 
Geometry unit 6.5
Geometry unit 6.5Geometry unit 6.5
Geometry unit 6.5
 

More from Jimbo Lamb

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5Jimbo Lamb
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4Jimbo Lamb
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2Jimbo Lamb
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1Jimbo Lamb
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3Jimbo Lamb
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2Jimbo Lamb
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1Jimbo Lamb
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9Jimbo Lamb
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8Jimbo Lamb
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6Jimbo Lamb
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6Jimbo Lamb
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4Jimbo Lamb
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3Jimbo Lamb
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2Jimbo Lamb
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1Jimbo Lamb
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5Jimbo Lamb
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4Jimbo Lamb
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2Jimbo Lamb
 

More from Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2
 

Recently uploaded

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Recently uploaded (20)

Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

Geometry Section 4-3

  • 1. Section 4-3 Proving Triangles Congruent: SSS, SAS
  • 2. Essential Questions How do you use the SSS Postulate to test for triangle congruence? How do you use the SAS Postulate to test for triangle congruence?
  • 3. Vocabulary 1. Included Angle: Postulate 4.1 - Side-Side-Side (SSS) Congruence: Postulate 4.2 - Side-Angle-Side (SAS) Congruence:
  • 4. Vocabulary 1. Included Angle: An angle formed by two adjacent sides of a polygon Postulate 4.1 - Side-Side-Side (SSS) Congruence: Postulate 4.2 - Side-Angle-Side (SAS) Congruence:
  • 5. Vocabulary 1. Included Angle: An angle formed by two adjacent sides of a polygon Postulate 4.1 - Side-Side-Side (SSS) Congruence: If three sides of one triangle are congruent to three corresponding sides of a second, then the triangles are congruent Postulate 4.2 - Side-Angle-Side (SAS) Congruence:
  • 6. Vocabulary 1. Included Angle: An angle formed by two adjacent sides of a polygon Postulate 4.1 - Side-Side-Side (SSS) Congruence: If three sides of one triangle are congruent to three corresponding sides of a second, then the triangles are congruent Postulate 4.2 - Side-Angle-Side (SAS) Congruence: If two sides and the included angle of one triangle are congruent to two corresponding sides and included angle of a second triangle, then the triangles are congruent
  • 7. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU
  • 8. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU
  • 9. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU 1. Given
  • 10. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU 1. Given 2. DU ≅ DU
  • 11. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU 1. Given 2. DU ≅ DU 2. Reflexive
  • 12. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU 1. Given 2. DU ≅ DU 2. Reflexive 3. DU ≅ UD
  • 13. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU 1. Given 2. DU ≅ DU 2. Reflexive 3. DU ≅ UD 3. Symmetric
  • 14. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU 1. Given 2. DU ≅ DU 2. Reflexive 3. DU ≅ UD 3. Symmetric 4. △QUD ≅△ADU
  • 15. Example 1 Prove the following. Given: QU ≅ AD, QD ≅ AU Prove: △QUD ≅△ADU 1. QU ≅ AD, QD ≅ AU 1. Given 2. DU ≅ DU 2. Reflexive 3. DU ≅ UD 3. Symmetric 4. △QUD ≅△ADU 4. SSS
  • 16. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement.
  • 17. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y
  • 18. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D
  • 19. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V
  • 20. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V W
  • 21. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V W
  • 22. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V W L
  • 23. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V W L P
  • 24. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V W L P M
  • 25. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V W L P M
  • 26. Example 2 ∆DVW has vertices D(−5, −1), V(−1, −2), and W(−7, −4). ∆LPM has vertices L(1, −5), P(2, −1), and M(4, −7). Graph both triangles on the coordinate plane. Then, using your drawing, determine whether the triangles are congruent or not, providing a logical argument for your statement. x y D V W L P M These are congruent. What possible ways could we show this?
  • 27. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH
  • 28. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH
  • 29. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH 1. Given
  • 30. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH 1. Given FG ≅ HG, EG ≅ IG2.
  • 31. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH 1. Given FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm.
  • 32. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH 1. Given FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm. ∠FGE ≅ ∠HGI3.
  • 33. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH 1. Given FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm. ∠FGE ≅ ∠HGI3. 3. Vertical Angles Thm.
  • 34. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH 1. Given FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm. ∠FGE ≅ ∠HGI3. 3. Vertical Angles Thm. 4. △FEG ≅△HIG
  • 35. Example 3 Prove the following. Prove: △FEG ≅△HIG Given: EI ≅ FH, G is the midpoint of EI and FH 1. EI ≅ FH, G is the midpoint of EI and FH 1. Given FG ≅ HG, EG ≅ IG2. 2. Midpoint Thm. ∠FGE ≅ ∠HGI3. 3. Vertical Angles Thm. 4. △FEG ≅△HIG 4. SAS