SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 1 (May. - Jun. 2013), PP 40-46
www.iosrjournals.org
www.iosrjournals.org 40 | Page
Experimental Study of R134a, R406A and R600a Blends as
Alternative To Freon 12
Akintunde, M.A.
Mechanical Engineering Department, The Federal University of Technology,P.M.B 704, Akure, Nigeria
Abstract: In the vent of chlorofluorocarbons (CFCs) phase-out, identify long term alternative to meet
requirements in respect of system performance and service is an important area of research in the refrigeration
and are conditioning industry. This work focuses on experimental study of the performance of eco-friendly
refrigerant mixtures. Mixtures of three existing refrigerants namely: R600a (n-butane), R134a (1,1,
1,2,tetrafluoroethane) and R406A (55%R22/4%R600a/41%R142b)were considered for this research. These
refrigerants were mixed in various ratios, studied and compared with R-12 (dichlorodifluoromethane) which
was used as the control for the experimentation. The rig used in the experimentation is a 2 hp (1.492 kW)
domestic refrigerator, designed based on condensing and evaporating temperatures. The rig was
tested with R-12, and blends of the three refrigerants. During the experimentation, both evaporator and
condenser temperatures were measured. These were used to determine the heat absorbed in evaporator
and the heat rejected incondenser . The results show that R134a/R600a mixture in the ratio 50:50 can
be used as alternative to R-12 in domestic refrigerators, without the necessity of changing the compressor
lubricating oil. At and , R-12 gives a COP of 2.08 while 50:50 blend of R134a/R600a
gives a COP of 2.30 under the same operating conditions.
Keywords: Refrigerants, Alternatives, Blends, COP, Performance, Comparison, new-refrigerants.
I. Introduction
Chlorofluorocarbons (CFCs) proved to be one of the most useful classes of compounds, ever developed
as refrigeration and air conditioning working fluids called refrigerants, because of their desirable thermal
properties. These refrigerants promote workers and consumers safeties because they are non-flammable, non-
corrosive and very low in toxicity. As a result, these compounds are used in a wide variety of applications, such
as refrigerators, foam bowings, aerosol propellants and cleaning solvents due to their desirable physical and
chemical properties that enhance energy efficiency and product reliability, (Lee et al., 2002).
However, some of the properties that make CFCs desirable, such as chemical stability, had led to global
environmental problems. As a result of chemical stability, CFCs have long environmental residence time and its
emissions lead to accumulation in the lower atmosphere. CFCs migrate and mix with chemicals in the upper
atmosphere where they dissociate, releasing chlorine atoms that catalyze the destruction of Ozone molecules.
Past and recent scientific findings have clearly linked chloride from CFCs and other man-made compounds to
the seasonal ozone losses over the northern and southern hemisphere, Eckels and Tesene (2003). Since ozone
provides a screen against solar ultraviolet radiation (UV-B) and excess UV-B has a potential of contributing to
health and environmental hazard, hence significant depletion of ozone layer should be avoided. This provides a
sound basis for the Montreal Protocol, an international agreement amended in 1990 requiring a total phase out
of CFCs production and consumption by 2000, (Calm, 2002).
In developing nations, the vapour compression based refrigeration; air conditioning and heat pump,
continue to run on halogenated refrigerants due to its excellent thermodynamics and thermophysical properties,
apart from the low cost. Hence, the need for alternative refrigerants to fulfill the objectives of the international
protocol (Montreal and Kyoto) so as to satisfy the growing worldwide demand.
Refrigerant-12 (dichlorodifluoromethane), which is a chlorofluorocarbon (CFC) compound, is found to be stable
in the troposphere, (Chivian et al., (1993)). It moves to the stratosphere and breaks down by strong ultraviolet
light where it releases chlorine atom which then deplete the ozone layer by catalyzing the breakdown of ozone
molecules. The CFCs in the stratosphere undergoes photo decomposition by the action of high energy ultraviolet
radiation resulting in equation (1.1)
* *
(1.1)
which releases chlorine atoms, denoted simply as . These atoms react with ozone, reducing it and undergo a
chemical reaction as shown in equation (1.2).
*
(1.2)
Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12
www.iosrjournals.org 41 | Page
In the atmosphere is an appreciable concentration of atomic oxygen by virtue of the reaction shown in equation
(1.3)
(1.3)
In the presence of Nitric oxide (NO), the *
species may react with either “O” or “NO”, regenerating *
atoms and resulting in chain reaction that cause the net depletion of ozone as shown in equations.
Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbon (HCFCs) have a long and successful association with
the refrigeration industry. This started to decline only after the environmental hazard associated with their
release into the atmosphere. The first known artificial refrigeration was by putting ethylethene to boil in a partial
vacuum vessel. Methyl chloride was first employed in 1878, and remains in use for many years until
1960s. A mixture called chemogene (consisting of petrol, ether and naphtha) was patented as a refrigerant for
vapour compression system in 1866 while dimethyl-ether was introduced as a refrigerant two years later. In the
same year an ice production machine that uses carbon (IV) oxide was invented, (Hwang et al., 1998).
The progression of refrigerants from early stage to the present addressing future direction and candidates, breaks
the history into four refrigerant generations based on selection criteria. The generation of refrigerants are as
summarized in Fig. 1 by, Calm and Didon (1997).
Alternative refrigerants are the present and future refrigerants options. Although production and use of the fully
halogenated refrigerants such as R11, R12, R13,R113, R114, and R115 will be phased out under the auspice of
the Montreal Protocol. The partially halogenated CFC refrigerants such as R22 and R123 may remain in use for
years to come as they are not as stable fully halogenated refrigerants and cause little damages to the ozone layer,
(Bhatti, 1999).
The range of possibilities includeshydrofluorocarbons (HCFCs), refrigerant mixtures and natural fluids such as
shown in Table 1. Among these groups of alternatives, hydrochlorofluorocarbons(HCFCs) and the
hydrofluorocarbons (HFCs) are most useful. The HCFCs were developed to serve as interim replacement for
CFCs. They are used in existing equipment. HCF refrigerants are developed to serve as alternative to CFC and
HCFC refrigerants, since they do not contain chlorine and have almost zero ODP. Hence, to develop possible
alternative refrigerant that has zero ozone depletion potential (ODP) and, lower global warming potential
(GWP), it is necessary to consider HCFs.
Fig. 1: The Generation of Refrigerants
In the process of searching for new alternative, since no single component refrigerant matches, hence
refrigerant blends as alternative was recommended, because by mixing two or more refrigerants a new working
fluid with the desired characteristic can be developed. Problem with blend of refrigerantsis that not all of the
properties can match the original refrigerant under all conditions. R12 for example will rarely match the
pressure at all point in the desired temperature range. What is more common is that the blend will match in one
region and the pressure differs elsewhere. The mixture of refrigerants could be Azeotropic, in which two or
more refrigerants with similar boiling point acts as a single fluid. The components of the mixture will not
separate under normal operating conditions and can be charged as a vapour or liquid.An example of these blends
is 50/50, which is the mixture of R32 and R134a. The near Azeotrope mixture consist of two or more
refrigerants with different boiling points, when in liquid or vapour state, act as one component. When changing
from vapour to liquid or liquid to vapour, the individual refrigerant evaporates or condenses at different
temperatures. The mixture has a temperature glide of less than 10 and should be charged in the liquid state to
1
st
Generation of refrigerant
Aim: whatever worked Ether,
CO2, NH3, H2O, CCl4 etc.2
nd
Generation of refrigerant
Aim: safely and durability,
CFC, HCFCs, NH3, H2O,etc.
3
rd
Generation of refrigerant
Aim: protection of the ozone
HCFCs, HFCs, CO2, NH3,
H2OH2O,etc
4
th
Generation of refrigerant
Aim: Centre at global
warming
Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12
www.iosrjournals.org 42 | Page
assume proper mixture, and the Zoetrope which is a mixture made up of two or more refrigerants with different
boiling points, they are charged in the liquid state.
Table 1: List of Alternatives to CFC and HCFC Refrigerants and Their Environmental Effects
Refrigerants Boiling Point Ozone Depletion
Potential (ODP)
Global Warming
Potential (GWP)
Alternatives for R-12
R-12 -29.79 1.0 8100
R-134a -26.1 0 1300
R-410A -33.0 0.037 1100
R-409A 34.3 0.048 1400
Other Alternatives for R-12
R-22 -40.75 0.055 1700
R-407C -44.0 0 1600
R-410A -52.7 0 1900
Other option – natural refrigerants
Air -320 0 0
Water 100 0 0
Ammonia -33 0 0
Carbon dioxide -78 0 0
Zoetrope are similar to near azeotrope with the exception of having temperatures glide greater than
10 . By blending refrigerants, it is possible to create new blend that are non-flammable but still contain
moderate flammable refrigerants, hence blends are created to improve such systems characteristic as compressor
discharge temperature or to improve lubricant circulation by adding more lubricant mixable refrigerant. The
vapour pressure of the final fluid can be tailored to match that of the CFCs or HCFCs being replaced,
(Domanski and Mclinden, 1992). Lorenz and Nuetznerstudied two-evaporators of domestic refrigerator/freezer
and reported power saving as high as 20 percent with a refrigerant mixture in comparison to the existing
refrigerant, (Stoecker, 1983).
A single chlorine-free, replacement for R12 has been found in R134a. Some studies have been carried
out on the performance of R134a compared with that of R12 in vapour compression refrigeration systems,
(Akintunde, (2004); Akintunde, (2006)). Despite its better heat transfer than R12, R134a has its disadvantage as
compared to R12. It has been noted that R134a is a highly fluorinated compound with higher specific volume. It
absorbs more moisture than R12 at all temperatures, (Calm, et al., 2002). Therefore, the system will be more
prone to rusting and copper platting due to large moisture content. Also while the ozone depletion potential
(ODP) is zero the global warming potential (GWP) is very high (GWP, 1300). For these reasons, the production
and use of R134a will be terminated in the near future.
Moreover, international concerns over relatively high global warming potential of R134a have made
some developed nations to have a rethink about R134a as R12 replacement in the near future, (Radermecher and
Kim, 2006). Therefore, other replacement will be needed that are thermodynamically attractive as R12. Other
known alternative refrigerants to R12 are R152a, R410A and R407C. Eckels and Tesene (2003) compared the
thermodynamic properties of R22, R134a, R410A and 407C in a range of typical condenser tubes. The average
heat transfer coefficient was measured at a saturation temperature of 40 over a mass flux range of 125
kg/m2
sto 600 kg/m2
s. Local heat transfer coefficient was measured in the outer diameter of smooth and fin
enhanced tubes. It was discovered that,R22 and R410A have similar performance that was slightly less than
R134a in COP and R407C had the lowest performance of all the refrigerants tested. R134a has similar
thermodynamic properties as R12 and has attracted the most attention as a substitute refrigerant for R12. The
major drawback is that it is not miscible with mineral oils that is been used in the past and system requirements
are strongly dependent on lubricant used. R152a has a better theoretical vapour compression efficient than R12
or R134a and it has a very low GWP. However, compensating factors including operating temperature, heat
capacity and thermal conductivity may allow R134a system to be moreefficient comparable to those that can be
achieved with R152a. Also because R152a is flammable some researchers have raised concern over its use in an
application where non-flammable refrigerant has been the standard. Also while the ozone depletion potential
(ODP) of R134a relative to R11 is (<5 x 10-4
), the global warming potential (GWP) is very high (GWP, 1300),
(Kuilpers, 1995; Radermecher and Kim, 2006; Wongwises and Chimres, 2005). The aim of this research
therefore, is to look for mixture of eco-friendly refrigerants that can be used to replace this Ozone depletion
Freon-12.
Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12
www.iosrjournals.org 43 | Page
II. Materials And Method
Refrigerant mixtures have received renewed interest from designers in the process of searching for new
alternatives. By mixing two or more refrigerants, a new working fluid with the desired characteristic can be
created by adjusting the composition of a blend containing high pressure refrigerants, the vapour pressure of the
final fluid can be tailored to match that of the CFC being replaced (Gopalnarayanan, 1998). Three existing
refrigerants namely: R600a (n-butane);R134a (1,1,1,2,tetrafluoroethane) and R406A
(55%R22/4%R600a/41%R142b),were considered for this research, taking into consideration their availability,
eco-friendliness, safety, non-flammable and low toxicity, (Wongwises and Chimres, 2005). The properties of
these selected refrigerants at normal atmospheric conditions are presented in Table 2.
Table 2: The properties of the selected refrigerants
Properties
refrigerant
Molecular
weight(g)
Boiling
point
Flammability limit in air Ozone depletion
potential (ODP)
Global
warming
potential
(GWP)
R406A 89.86 -32.7 None 0.036 0
R134a 102.03 -26.1 None 0 1300
R600a 58.1 11.6 Highly flammable 0 0
Since these selected refrigerants have closely similar thermodynamics properties with R12, hence can
be a direct substitute for R12. By mixing two or more of these refrigerants, a new working fluid with the desired
characteristics can be created by adjusting of a blend containing high pressure and low pressure refrigerant. The
vapour pressure of the final fluid was tailored to match that of the CFC being replaced, as suggested by,
Golpalnarayanan, (1998).
In this investigation, several blends of the three refrigerants were tested but ten promising mixturesare
as shown in Table 3 follow the suggestions of Hammed and Alsaad (1999), Akintunde (2011); Utulu, 2012,
Calm and Didion (1997). To match the properties of single refrigerant with a blend, the individual component
was mixed in the right proportions by volume. If refrigerant B is mixed to form a blend, conveying the high
pressure first, if a greater amount of A is added, then the blend will have a pressure closer to A, on the other
hand if a greater amount of B is in the mix, then the blend will have a pressure tend towards B. If equal amount
of the refrigerants are mixed the blend will fall between the pressure of A and B, McMullian (2002).
Table 3: Various Rations of the Refrigerant Mixtures
S/N Code %R600a %R134a %R406A
1. RA1 50 50 -
2. RB1 50 - 50
3. RA2 70 30 -
4. RB2 70 - 30
5. RA3 - 20 80
6. RB3 20 - 80
7. RA4 - 60 40
8. RB4 40 60 -
9. RA5 30 70 -
10. RB5 30 - 70
During the experiment, consideration was given to the operational pressure and temperature of the
control refrigerant (R12) as the base for the experimentations and result comparison. The experiment was
carried out first by charging experimental rig with various quantities of R12, and readings were taken at
intervals of 30minutes. The prevailing temperatures in the evaporator (Te) and condenser (Tc) were measured.
These were used in conjunction with steam table to determine prevailing enthalpy for the estimation of heat
absorbed in the evaporator (Qe) and heat rejected in the condenser (Qc) as indicated in equations (1) and (2).
Compressor power was estimated from the thermodynamics properties of R-12 as shown in equation (3). From
these results the coefficient of performance was estimated from equation (4) and the efficiency (comparison of
COPs of the alternatives with that of R12) from equation (5).
(1)
(2)
(3)
(4)
(5)
where the subscripts are:
ee - evaporator exit; ei - evaporator inlet
Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12
www.iosrjournals.org 44 | Page
ce - condenser exit; ci - condenser inlet
cpe - compressor exit cpi - compressor inlet
r - refrigerant
The second experiment was conducted by first purging the system, and then a mixture of R134a/R600a in the
ratio of 50:50 coded RA1 was charged in various quantities into the experimental rig, (a1.492kW/2hp domestic
refrigerator). Various values ofTe and Tc were obtained and compressor power. The system was then purged and
other mixtures were introduced, and experiment was carried out in the same way as the previous and reading
were recorded.
III. Result And Discussion
The overall performance of vapour compression refrigeration system was evaluated by the
thermodynamic properties of refrigerant blends and the operational parameters such as energy consumption
(input to the compressor) of the system. The quantity of heat absorbed at the evaporator (Qe) and the quantity of
heat rejected at condenser (Qc) for R12, and the various mixtures were estimated using equations (1) and (2).The
coefficient of performance and compressor power was calculated using equations(3) and (4) respectively, while
equation (5) was used to compare the COPs of the blends with that of R12.
Fig. 2 shows the variation of refrigerant flow rate with charging. As show in the figure, the flow rate
increases with the refrigerant charge. The increase in the flow rate was gradual until the charging of 850 g and
there was a rapid increase after then. This indicated that, the increase in due to the increase in the pressure as the
charging increases. Also the flow pattern for the four blends are the same. RA1 has the highest flow rate while
RB1 has the least; both RA2 and RB2 come in between the two. It should be noted that both RA1 and RB1
contained equal percentages of R600a and both of R134a and R407C respectively. The difference in the
performance may be traced to higher percentage of R600a in RB1, since R407C contains some percentage of
R600a. The results obtained for other blends shown in Table 3 diverged widely from these results; hence they
are not included in the result presentation.
Fig. 2 Variation of Refrigerant Flow Rate with Refrigerant Charge
Fig. 3 is the variation of COP with refrigerant charge. The COPs increase until the charging reaches
850 g. As reported by Akintunde, (2004b) and Lee, et al., (2002), required charging for the capacity of the
system used for the experiment should range between 800 g and 900 g for maximum effectiveness. The decrease
in the COPs after 900 g of charge is due to flooding of the evaporator and excess pressure in the condenser. Fig,
Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12
www.iosrjournals.org 45 | Page
4 indicated the variation of refrigeration effects with the refrigerant charge. From both figures (3) and (4) the
results indicated that he four refrigerant blends can be used as replacement for R12.
Fig.3 Variation of COP with refrigerant Charge
Fig. 4 Variation of Qe with Refrigerant Charge
The efficiency of the refrigerant blends was defined as the relative COPs with respect to that of R12,
(equation (5)). The result is as shown in Fig. 5. The figure shows that irrespective of quantity of charging the
efficiency or relative COPs remain constant. The relative COPs for RA1, RA2 and RB2 remain as 96%, 99%
and 98% respectively. The relative COP for RB1 is higher than that of R12 until the quantity of charging
reaches 950 g, and it dropped sharply after then. In between 600 g and 950 g, the relative COP stands at 106%
and it falls to 97% when the quantity of the charge was increased to 1000 g and above.
Fig.5 Efficiency of the Refrigerant blends relative to R12
Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12
www.iosrjournals.org 46 | Page
As shown in figures (2) to (5) RA1, RA2, RB1 and RB2 can be used as alternative to R12 provided the
charging quantity ranges between 600 g and 900g. Further works were done on the transport properties of the
refrigerant blends by Akintunde, (2013). From the results gotten by Akintunde (2013) and this present study,
the blends considered and reported on can be used as alternative to R12.
IV. Conclusion
This research focuses on refrigerant blends as alternatives to R12, one of the principal actors in ozone
depletion. In accordance with the set objectives, the experimented refrigerant mixtureswere obtained by
blending varying proportion of R600a, R134a and R406A.The refrigerant blends were experimented in an
existing refrigerator unit, which was designed to use R12 as its working fluid.RA2 which is the blend of
70%R134a/30%R406A was observed to have similar operating conditions asthat ofR12. The performance
observed, during experimentation, justified that compressors designed for R12 can be used for RA2, without
changing compressor lubricating oil. The obtained results of the refrigerant blends were then compared with that
R12. The overall assessment of the result favoured the use of RA1, RA2, RB1 and RB2 refrigerantsblends as
alternative to R12., but the performance was obtained from the use RA1 mixture in the system. The results show
that irrespective of quantity of charging the efficiency or relative COPs remain constant. The relative COPs for
RA1, RA2 and RB2 remain as 96%, 99% and 98% respectively. The relative COP for RB1 is higher than that of
R12 until the quantity of charging reaches 950 g, and it dropped sharply after then. In between 600 g and 950 g,
the relative COP stands at 106% and it falls to 97% when the quantity of the charge was increased to 1000 g and
above.
Reference
[1]. Akintude, M.A; Adegoke C.O; Fapetu, O.P (2004), “Experimental Investigation of the Performance of A Design Model for Vapour
Compression Refrigeration System”. West Indies Journal of Engineering. Vol. 28 No: 2, pp 80-87
[2]. Akintunde, M. A. (2004), Experimental Investigation of the Performance of R12 and R134a in Capillary Tubes for
Refrigeration Systems. Journal of Engineering Science and Technology, University of Ilorin. Vol. 4 No:1, pp 1 – 12.
[3]. Akintunde, M. A. (2004b) “Theoretical Design Model for Vapour Compression Refrigeration Systems”. –AMSE
Periodicals, France. Vol. 73 No: 5, pp 1 – 14.
[4]. Akintude, M.A. (2006). Experimental Investigation and Modeling solubility in R12 and R13a. Journal of Engineering and Applied
science, Vol 1 No 1 pp 14-22
[5]. Akintude, M.A. (2006). Validation of a Vapour Compression Refrigeration System Design Model. American Journal of scientific and
Industrial Research (AJSIR). Vol 2 No 4, pp 504-510.
[6]. Akintude, M.A. (2013)Experimental Investigation of Thermal Conductivity and Thermal Diffusivity of New Refrigerants
Blends.International Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS). Vol. 4 No: 2, pp 328 – 332.
[7]. Bhatti, M.S. (1999). A historical Look at chlorofluorocarbon Refrigerant ASHRAE transaction, part 1.Pp 1186-12006.
[8]. Calm, J. M. (2002). Emission and environmental impacts from air-conditioning and refrigeration.International Journal of
Refrigeration. Vol. 25, No: 7, pp 293 – 305.
[9]. Calm, J.M and Didion, D.A. (1997). Trade- offs in refrigerants selections: Past, present and future. American Socierty of Heating
refrigerating and Air-conditioning Engineers (ASHRAE), Inc. Altanta (GA):pp 433-444
[10]. Chivian, A.E; McCally, M; Hu and Haines, A. (1993).Loss of stratospheric Ozone and health effect of increase ultra violent
radiation. The MIT press Cambridge.
[11]. Domanski, P.A and Mclinden, M.O (1992). A simplified Cycle Simulation model for the performance rating of Refrigerants and
Refrigerants Mixtures. International Journal of Refrigeration.Vol 115, No: 2 pp 81-88
[12]. Eckels, S.J and Tesene, B.A (2003). A Comparison of R22, R134a, R410A and R407C, Condensation Performance in Smooth and
Enhance Tubes: Part 1, Heat Transfer ASHIRAE Transaction, pp 428-441.
[13]. Gopalnarayanan S. (1998). Choosing the right refrigerant.Mechanical Engineering, published by the American society of Mechanical
Engineer (ASME).Vol 11120 No 11.Pp 1181- 1189
[14]. Hwang, Y. Ohadi; M and Radermacher, R (1998).Natural Refrigerants. Mechanical Engineering published by American society of
Mechanical Engineers (ASME). Vol 1120 No 10, pp 96-99
[15]. Kuijper, L. (1995). Hydrocarbon and the Montrel Protocol Mechanism. Proceedings of International CFC and Halon attentive
conference, Washington D.C., October 23-25: pp 167-173.
[16]. Lee, J. H.; Bae, S. W. Bang, K. H.; and Kim, M. H. (2002).Experimental and numerical research on condenser performance for R-22
and R- 407C refrigerants.International Journal of Refrigeration. Vol. 25, No: 8, pp 372 – 382.
[17]. McMullian, T.J (2002). Refrigerator and the environment issues and strategies for the future international Journal of refrigeration
Vol. 25 No 5; pp 89-99
[18]. Radermacher, R and Kim, K (2006).Domestic refrigeration Recent Development. International Journal of Refrigeration, Vol 119 pp
58-62
[19]. Stoecker, W.F. (1983). Improving the Energy Effectiveness of demerits refrigerator by the application of refrigerant mixtures cont-
830568-1, in; proceeding of the international technical application conference Indiana, pp 3-9
[20]. Wongwises, S. and Chimres, N, (2005). Experimental study of hydrocarbon mixtures to replus HCF134a in a Domestic refrigerator,
Energy Conservation and Management, Vol. 46 pp 85-100.

More Related Content

What's hot

IRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A Review
IRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A ReviewIRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A Review
IRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A ReviewIRJET Journal
 
Arezoodoktkonf2007
Arezoodoktkonf2007Arezoodoktkonf2007
Arezoodoktkonf2007atungler
 
Wet air-oxidation-by-prof-v.v-mahajani
Wet air-oxidation-by-prof-v.v-mahajaniWet air-oxidation-by-prof-v.v-mahajani
Wet air-oxidation-by-prof-v.v-mahajaniAtal Khan
 
ppt on hydrogen for class XI th chemistry
ppt on hydrogen for class XI th chemistryppt on hydrogen for class XI th chemistry
ppt on hydrogen for class XI th chemistrylokesh meena
 
Unit process
Unit processUnit process
Unit processmvenkat2016
 
Presentation1 catalysis
Presentation1 catalysisPresentation1 catalysis
Presentation1 catalysisMuhammad Zahid
 
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column IJMER
 
Homogeneous catalysis 2021
Homogeneous catalysis 2021Homogeneous catalysis 2021
Homogeneous catalysis 2021MadhuraDatar
 
Carbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of OlaparibCarbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of OlaparibAbulKalam62
 
Reduction using catalytic hydrogenation
Reduction using catalytic hydrogenationReduction using catalytic hydrogenation
Reduction using catalytic hydrogenationScifySolution
 
Homogenous catalysis
Homogenous catalysisHomogenous catalysis
Homogenous catalysisKeerthanaD21
 
THERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTS
THERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTSTHERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTS
THERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTSMichal Jablonsky
 
Homogeneous catalysis
Homogeneous catalysisHomogeneous catalysis
Homogeneous catalysisBOBBY SOLANKI
 
Fischer tropsch
Fischer tropschFischer tropsch
Fischer tropschShadi Razmara
 
Hydrogen
HydrogenHydrogen
HydrogenKevin Anil
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis DefenseYijiang Wu
 
Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.Santosh Damkondwar
 
ALL ABOUT OF HYDROGEN IN A PRESENTATION
ALL ABOUT OF HYDROGEN IN A PRESENTATIONALL ABOUT OF HYDROGEN IN A PRESENTATION
ALL ABOUT OF HYDROGEN IN A PRESENTATIONAbdullah Pathan
 
OXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARMOXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARMShubham Sharma
 

What's hot (20)

IRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A Review
IRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A ReviewIRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A Review
IRJET- CO2 as a Refrigerant in Supermarket Refrigeration Systems: A Review
 
Arezoodoktkonf2007
Arezoodoktkonf2007Arezoodoktkonf2007
Arezoodoktkonf2007
 
Wet air-oxidation-by-prof-v.v-mahajani
Wet air-oxidation-by-prof-v.v-mahajaniWet air-oxidation-by-prof-v.v-mahajani
Wet air-oxidation-by-prof-v.v-mahajani
 
ppt on hydrogen for class XI th chemistry
ppt on hydrogen for class XI th chemistryppt on hydrogen for class XI th chemistry
ppt on hydrogen for class XI th chemistry
 
Unit process
Unit processUnit process
Unit process
 
Presentation1 catalysis
Presentation1 catalysisPresentation1 catalysis
Presentation1 catalysis
 
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column Absorption of Nitrogen Dioxide into Sodium Carbonate Solution  in Packed Column
Absorption of Nitrogen Dioxide into Sodium Carbonate Solution in Packed Column
 
Homogeneous catalysis 2021
Homogeneous catalysis 2021Homogeneous catalysis 2021
Homogeneous catalysis 2021
 
Carbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of OlaparibCarbonylation strategy and Scaleup of Olaparib
Carbonylation strategy and Scaleup of Olaparib
 
Reduction using catalytic hydrogenation
Reduction using catalytic hydrogenationReduction using catalytic hydrogenation
Reduction using catalytic hydrogenation
 
Hydrogen Gas
Hydrogen GasHydrogen Gas
Hydrogen Gas
 
Homogenous catalysis
Homogenous catalysisHomogenous catalysis
Homogenous catalysis
 
THERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTS
THERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTSTHERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTS
THERMAL STABILITY OF SELECTED DEEP EUTECTIC SOLVENTS
 
Homogeneous catalysis
Homogeneous catalysisHomogeneous catalysis
Homogeneous catalysis
 
Fischer tropsch
Fischer tropschFischer tropsch
Fischer tropsch
 
Hydrogen
HydrogenHydrogen
Hydrogen
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis Defense
 
Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.Chemistry of hydrogen and its advancements.
Chemistry of hydrogen and its advancements.
 
ALL ABOUT OF HYDROGEN IN A PRESENTATION
ALL ABOUT OF HYDROGEN IN A PRESENTATIONALL ABOUT OF HYDROGEN IN A PRESENTATION
ALL ABOUT OF HYDROGEN IN A PRESENTATION
 
OXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARMOXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARM
 

Viewers also liked

Finite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite PlatesFinite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite PlatesIOSR Journals
 
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...IOSR Journals
 
Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...
Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...
Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...IOSR Journals
 
Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...
Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...
Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...IOSR Journals
 
Causes of Delay in Construction of Bridge Girders
Causes of Delay in Construction of Bridge GirdersCauses of Delay in Construction of Bridge Girders
Causes of Delay in Construction of Bridge GirdersIOSR Journals
 
Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...
Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...
Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...IOSR Journals
 
Design and Implementation of Smart Docking and Recharging System for Defense ...
Design and Implementation of Smart Docking and Recharging System for Defense ...Design and Implementation of Smart Docking and Recharging System for Defense ...
Design and Implementation of Smart Docking and Recharging System for Defense ...IOSR Journals
 
Comparative Study between DCT and Wavelet Transform Based Image Compression A...
Comparative Study between DCT and Wavelet Transform Based Image Compression A...Comparative Study between DCT and Wavelet Transform Based Image Compression A...
Comparative Study between DCT and Wavelet Transform Based Image Compression A...IOSR Journals
 
Enhancing Project Management Efficiency using Lean Concepts
Enhancing Project Management Efficiency using Lean ConceptsEnhancing Project Management Efficiency using Lean Concepts
Enhancing Project Management Efficiency using Lean ConceptsIOSR Journals
 
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...IOSR Journals
 
An Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology ProjectsAn Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology ProjectsIOSR Journals
 
Verification of the Validity of Relativity Principle
Verification of the Validity of Relativity PrincipleVerification of the Validity of Relativity Principle
Verification of the Validity of Relativity PrincipleIOSR Journals
 
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...IOSR Journals
 
Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...
Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...
Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...IOSR Journals
 
Seismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover AnalysisSeismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover AnalysisIOSR Journals
 
Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...
Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...
Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...IOSR Journals
 
A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...
A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...
A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...IOSR Journals
 
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...IOSR Journals
 
Manual Unpacking Of Upx Packed Executable Using Ollydbg and Importrec
Manual Unpacking Of Upx Packed Executable Using Ollydbg and ImportrecManual Unpacking Of Upx Packed Executable Using Ollydbg and Importrec
Manual Unpacking Of Upx Packed Executable Using Ollydbg and ImportrecIOSR Journals
 
Wireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop RoutingWireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop RoutingIOSR Journals
 

Viewers also liked (20)

Finite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite PlatesFinite Elements Modeling and Analysis of Double Skin Composite Plates
Finite Elements Modeling and Analysis of Double Skin Composite Plates
 
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
Implementation of Vertical Handoff Algorithm between IEEE 802.11 WLAN & CDMA ...
 
Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...
Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...
Computational Intelligence Methods for Clustering of Sense Tagged Nepali Docu...
 
Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...
Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...
Implementation of Product Reed Solomon Codes for Multi level cell Flash contr...
 
Causes of Delay in Construction of Bridge Girders
Causes of Delay in Construction of Bridge GirdersCauses of Delay in Construction of Bridge Girders
Causes of Delay in Construction of Bridge Girders
 
Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...
Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...
Performance Analysis Methodology for Parabolic Dish Solar Concentrators for P...
 
Design and Implementation of Smart Docking and Recharging System for Defense ...
Design and Implementation of Smart Docking and Recharging System for Defense ...Design and Implementation of Smart Docking and Recharging System for Defense ...
Design and Implementation of Smart Docking and Recharging System for Defense ...
 
Comparative Study between DCT and Wavelet Transform Based Image Compression A...
Comparative Study between DCT and Wavelet Transform Based Image Compression A...Comparative Study between DCT and Wavelet Transform Based Image Compression A...
Comparative Study between DCT and Wavelet Transform Based Image Compression A...
 
Enhancing Project Management Efficiency using Lean Concepts
Enhancing Project Management Efficiency using Lean ConceptsEnhancing Project Management Efficiency using Lean Concepts
Enhancing Project Management Efficiency using Lean Concepts
 
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
Assessment of Water Quality in Imo River Estuary Using Multivariate Statistic...
 
An Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology ProjectsAn Investigation of Critical Failure Factors In Information Technology Projects
An Investigation of Critical Failure Factors In Information Technology Projects
 
Verification of the Validity of Relativity Principle
Verification of the Validity of Relativity PrincipleVerification of the Validity of Relativity Principle
Verification of the Validity of Relativity Principle
 
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
Effect of Port Reform on Cargo Throughput Level at Onne Seaport Nigeria. A Co...
 
Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...
Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...
Design and Simulation of Soft Switched Converter with Current Doubler Scheme ...
 
Seismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover AnalysisSeismic Performance Assessment of RCS Building By Pushover Analysis
Seismic Performance Assessment of RCS Building By Pushover Analysis
 
Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...
Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...
Performance Analysis of Minimum Hop Source Routing Algorithm for Two Dimensio...
 
A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...
A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...
A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at...
 
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
 
Manual Unpacking Of Upx Packed Executable Using Ollydbg and Importrec
Manual Unpacking Of Upx Packed Executable Using Ollydbg and ImportrecManual Unpacking Of Upx Packed Executable Using Ollydbg and Importrec
Manual Unpacking Of Upx Packed Executable Using Ollydbg and Importrec
 
Wireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop RoutingWireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop Routing
 

Similar to Experimental Study of R134a, R406A and R600a Blends as Alternative To Freon 12

Thermodynamic analysis of vapour compression refrigeration system using alte...
Thermodynamic analysis of vapour compression  refrigeration system using alte...Thermodynamic analysis of vapour compression  refrigeration system using alte...
Thermodynamic analysis of vapour compression refrigeration system using alte...IOSR Journals
 
Energies 14-00946-v2
Energies 14-00946-v2Energies 14-00946-v2
Energies 14-00946-v2JayakumarA11
 
CO2 As A Future Refrigerant - An Aranca Report
CO2 As A Future Refrigerant - An Aranca ReportCO2 As A Future Refrigerant - An Aranca Report
CO2 As A Future Refrigerant - An Aranca ReportAranca
 
peer reviewed journals.pdf
peer reviewed journals.pdfpeer reviewed journals.pdf
peer reviewed journals.pdfnareshkotra
 
Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a
Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134aExperimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a
Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134aIOSRJMCE
 
6051-r410a-whtpaper_9
6051-r410a-whtpaper_96051-r410a-whtpaper_9
6051-r410a-whtpaper_9zain kirmani
 
6051 r410a-whtpaper 9
6051 r410a-whtpaper 96051 r410a-whtpaper 9
6051 r410a-whtpaper 9zain kirmani
 
6051-r410a-whtpaper_9
6051-r410a-whtpaper_96051-r410a-whtpaper_9
6051-r410a-whtpaper_9zain kirmani
 
IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...
IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...
IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...Husain Mehdi
 
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGENPRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGENPriyam Jyoti Borah
 
E04573437
E04573437E04573437
E04573437IOSR-JEN
 
Successive improvement of refrigerants in vapour compression refrigeration sy...
Successive improvement of refrigerants in vapour compression refrigeration sy...Successive improvement of refrigerants in vapour compression refrigeration sy...
Successive improvement of refrigerants in vapour compression refrigeration sy...Rahul Singh
 
H0502 01 3747
H0502 01 3747H0502 01 3747
H0502 01 3747IJMER
 

Similar to Experimental Study of R134a, R406A and R600a Blends as Alternative To Freon 12 (20)

Q01245139144
Q01245139144Q01245139144
Q01245139144
 
Thermodynamic analysis of vapour compression refrigeration system using alte...
Thermodynamic analysis of vapour compression  refrigeration system using alte...Thermodynamic analysis of vapour compression  refrigeration system using alte...
Thermodynamic analysis of vapour compression refrigeration system using alte...
 
B012250811
B012250811B012250811
B012250811
 
Energies 14-00946-v2
Energies 14-00946-v2Energies 14-00946-v2
Energies 14-00946-v2
 
CO2 As A Future Refrigerant - An Aranca Report
CO2 As A Future Refrigerant - An Aranca ReportCO2 As A Future Refrigerant - An Aranca Report
CO2 As A Future Refrigerant - An Aranca Report
 
peer reviewed journals.pdf
peer reviewed journals.pdfpeer reviewed journals.pdf
peer reviewed journals.pdf
 
Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a
Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134aExperimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a
Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a
 
I1303056370
I1303056370I1303056370
I1303056370
 
V4408114122
V4408114122V4408114122
V4408114122
 
6051-r410a-whtpaper_9
6051-r410a-whtpaper_96051-r410a-whtpaper_9
6051-r410a-whtpaper_9
 
6051 r410a-whtpaper 9
6051 r410a-whtpaper 96051 r410a-whtpaper 9
6051 r410a-whtpaper 9
 
6051-r410a-whtpaper_9
6051-r410a-whtpaper_96051-r410a-whtpaper_9
6051-r410a-whtpaper_9
 
Refrigerants in refrigeration and air conditioning
Refrigerants in refrigeration and air conditioningRefrigerants in refrigeration and air conditioning
Refrigerants in refrigeration and air conditioning
 
IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...
IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...
IJREI_Thermodynamic study of R134a in Vapour Compression Refrigeration System...
 
B012310410
B012310410B012310410
B012310410
 
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGENPRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
 
Refrigerent
RefrigerentRefrigerent
Refrigerent
 
E04573437
E04573437E04573437
E04573437
 
Successive improvement of refrigerants in vapour compression refrigeration sy...
Successive improvement of refrigerants in vapour compression refrigeration sy...Successive improvement of refrigerants in vapour compression refrigeration sy...
Successive improvement of refrigerants in vapour compression refrigeration sy...
 
H0502 01 3747
H0502 01 3747H0502 01 3747
H0502 01 3747
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 

Experimental Study of R134a, R406A and R600a Blends as Alternative To Freon 12

  • 1. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 1 (May. - Jun. 2013), PP 40-46 www.iosrjournals.org www.iosrjournals.org 40 | Page Experimental Study of R134a, R406A and R600a Blends as Alternative To Freon 12 Akintunde, M.A. Mechanical Engineering Department, The Federal University of Technology,P.M.B 704, Akure, Nigeria Abstract: In the vent of chlorofluorocarbons (CFCs) phase-out, identify long term alternative to meet requirements in respect of system performance and service is an important area of research in the refrigeration and are conditioning industry. This work focuses on experimental study of the performance of eco-friendly refrigerant mixtures. Mixtures of three existing refrigerants namely: R600a (n-butane), R134a (1,1, 1,2,tetrafluoroethane) and R406A (55%R22/4%R600a/41%R142b)were considered for this research. These refrigerants were mixed in various ratios, studied and compared with R-12 (dichlorodifluoromethane) which was used as the control for the experimentation. The rig used in the experimentation is a 2 hp (1.492 kW) domestic refrigerator, designed based on condensing and evaporating temperatures. The rig was tested with R-12, and blends of the three refrigerants. During the experimentation, both evaporator and condenser temperatures were measured. These were used to determine the heat absorbed in evaporator and the heat rejected incondenser . The results show that R134a/R600a mixture in the ratio 50:50 can be used as alternative to R-12 in domestic refrigerators, without the necessity of changing the compressor lubricating oil. At and , R-12 gives a COP of 2.08 while 50:50 blend of R134a/R600a gives a COP of 2.30 under the same operating conditions. Keywords: Refrigerants, Alternatives, Blends, COP, Performance, Comparison, new-refrigerants. I. Introduction Chlorofluorocarbons (CFCs) proved to be one of the most useful classes of compounds, ever developed as refrigeration and air conditioning working fluids called refrigerants, because of their desirable thermal properties. These refrigerants promote workers and consumers safeties because they are non-flammable, non- corrosive and very low in toxicity. As a result, these compounds are used in a wide variety of applications, such as refrigerators, foam bowings, aerosol propellants and cleaning solvents due to their desirable physical and chemical properties that enhance energy efficiency and product reliability, (Lee et al., 2002). However, some of the properties that make CFCs desirable, such as chemical stability, had led to global environmental problems. As a result of chemical stability, CFCs have long environmental residence time and its emissions lead to accumulation in the lower atmosphere. CFCs migrate and mix with chemicals in the upper atmosphere where they dissociate, releasing chlorine atoms that catalyze the destruction of Ozone molecules. Past and recent scientific findings have clearly linked chloride from CFCs and other man-made compounds to the seasonal ozone losses over the northern and southern hemisphere, Eckels and Tesene (2003). Since ozone provides a screen against solar ultraviolet radiation (UV-B) and excess UV-B has a potential of contributing to health and environmental hazard, hence significant depletion of ozone layer should be avoided. This provides a sound basis for the Montreal Protocol, an international agreement amended in 1990 requiring a total phase out of CFCs production and consumption by 2000, (Calm, 2002). In developing nations, the vapour compression based refrigeration; air conditioning and heat pump, continue to run on halogenated refrigerants due to its excellent thermodynamics and thermophysical properties, apart from the low cost. Hence, the need for alternative refrigerants to fulfill the objectives of the international protocol (Montreal and Kyoto) so as to satisfy the growing worldwide demand. Refrigerant-12 (dichlorodifluoromethane), which is a chlorofluorocarbon (CFC) compound, is found to be stable in the troposphere, (Chivian et al., (1993)). It moves to the stratosphere and breaks down by strong ultraviolet light where it releases chlorine atom which then deplete the ozone layer by catalyzing the breakdown of ozone molecules. The CFCs in the stratosphere undergoes photo decomposition by the action of high energy ultraviolet radiation resulting in equation (1.1) * * (1.1) which releases chlorine atoms, denoted simply as . These atoms react with ozone, reducing it and undergo a chemical reaction as shown in equation (1.2). * (1.2)
  • 2. Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12 www.iosrjournals.org 41 | Page In the atmosphere is an appreciable concentration of atomic oxygen by virtue of the reaction shown in equation (1.3) (1.3) In the presence of Nitric oxide (NO), the * species may react with either “O” or “NO”, regenerating * atoms and resulting in chain reaction that cause the net depletion of ozone as shown in equations. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbon (HCFCs) have a long and successful association with the refrigeration industry. This started to decline only after the environmental hazard associated with their release into the atmosphere. The first known artificial refrigeration was by putting ethylethene to boil in a partial vacuum vessel. Methyl chloride was first employed in 1878, and remains in use for many years until 1960s. A mixture called chemogene (consisting of petrol, ether and naphtha) was patented as a refrigerant for vapour compression system in 1866 while dimethyl-ether was introduced as a refrigerant two years later. In the same year an ice production machine that uses carbon (IV) oxide was invented, (Hwang et al., 1998). The progression of refrigerants from early stage to the present addressing future direction and candidates, breaks the history into four refrigerant generations based on selection criteria. The generation of refrigerants are as summarized in Fig. 1 by, Calm and Didon (1997). Alternative refrigerants are the present and future refrigerants options. Although production and use of the fully halogenated refrigerants such as R11, R12, R13,R113, R114, and R115 will be phased out under the auspice of the Montreal Protocol. The partially halogenated CFC refrigerants such as R22 and R123 may remain in use for years to come as they are not as stable fully halogenated refrigerants and cause little damages to the ozone layer, (Bhatti, 1999). The range of possibilities includeshydrofluorocarbons (HCFCs), refrigerant mixtures and natural fluids such as shown in Table 1. Among these groups of alternatives, hydrochlorofluorocarbons(HCFCs) and the hydrofluorocarbons (HFCs) are most useful. The HCFCs were developed to serve as interim replacement for CFCs. They are used in existing equipment. HCF refrigerants are developed to serve as alternative to CFC and HCFC refrigerants, since they do not contain chlorine and have almost zero ODP. Hence, to develop possible alternative refrigerant that has zero ozone depletion potential (ODP) and, lower global warming potential (GWP), it is necessary to consider HCFs. Fig. 1: The Generation of Refrigerants In the process of searching for new alternative, since no single component refrigerant matches, hence refrigerant blends as alternative was recommended, because by mixing two or more refrigerants a new working fluid with the desired characteristic can be developed. Problem with blend of refrigerantsis that not all of the properties can match the original refrigerant under all conditions. R12 for example will rarely match the pressure at all point in the desired temperature range. What is more common is that the blend will match in one region and the pressure differs elsewhere. The mixture of refrigerants could be Azeotropic, in which two or more refrigerants with similar boiling point acts as a single fluid. The components of the mixture will not separate under normal operating conditions and can be charged as a vapour or liquid.An example of these blends is 50/50, which is the mixture of R32 and R134a. The near Azeotrope mixture consist of two or more refrigerants with different boiling points, when in liquid or vapour state, act as one component. When changing from vapour to liquid or liquid to vapour, the individual refrigerant evaporates or condenses at different temperatures. The mixture has a temperature glide of less than 10 and should be charged in the liquid state to 1 st Generation of refrigerant Aim: whatever worked Ether, CO2, NH3, H2O, CCl4 etc.2 nd Generation of refrigerant Aim: safely and durability, CFC, HCFCs, NH3, H2O,etc. 3 rd Generation of refrigerant Aim: protection of the ozone HCFCs, HFCs, CO2, NH3, H2OH2O,etc 4 th Generation of refrigerant Aim: Centre at global warming
  • 3. Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12 www.iosrjournals.org 42 | Page assume proper mixture, and the Zoetrope which is a mixture made up of two or more refrigerants with different boiling points, they are charged in the liquid state. Table 1: List of Alternatives to CFC and HCFC Refrigerants and Their Environmental Effects Refrigerants Boiling Point Ozone Depletion Potential (ODP) Global Warming Potential (GWP) Alternatives for R-12 R-12 -29.79 1.0 8100 R-134a -26.1 0 1300 R-410A -33.0 0.037 1100 R-409A 34.3 0.048 1400 Other Alternatives for R-12 R-22 -40.75 0.055 1700 R-407C -44.0 0 1600 R-410A -52.7 0 1900 Other option – natural refrigerants Air -320 0 0 Water 100 0 0 Ammonia -33 0 0 Carbon dioxide -78 0 0 Zoetrope are similar to near azeotrope with the exception of having temperatures glide greater than 10 . By blending refrigerants, it is possible to create new blend that are non-flammable but still contain moderate flammable refrigerants, hence blends are created to improve such systems characteristic as compressor discharge temperature or to improve lubricant circulation by adding more lubricant mixable refrigerant. The vapour pressure of the final fluid can be tailored to match that of the CFCs or HCFCs being replaced, (Domanski and Mclinden, 1992). Lorenz and Nuetznerstudied two-evaporators of domestic refrigerator/freezer and reported power saving as high as 20 percent with a refrigerant mixture in comparison to the existing refrigerant, (Stoecker, 1983). A single chlorine-free, replacement for R12 has been found in R134a. Some studies have been carried out on the performance of R134a compared with that of R12 in vapour compression refrigeration systems, (Akintunde, (2004); Akintunde, (2006)). Despite its better heat transfer than R12, R134a has its disadvantage as compared to R12. It has been noted that R134a is a highly fluorinated compound with higher specific volume. It absorbs more moisture than R12 at all temperatures, (Calm, et al., 2002). Therefore, the system will be more prone to rusting and copper platting due to large moisture content. Also while the ozone depletion potential (ODP) is zero the global warming potential (GWP) is very high (GWP, 1300). For these reasons, the production and use of R134a will be terminated in the near future. Moreover, international concerns over relatively high global warming potential of R134a have made some developed nations to have a rethink about R134a as R12 replacement in the near future, (Radermecher and Kim, 2006). Therefore, other replacement will be needed that are thermodynamically attractive as R12. Other known alternative refrigerants to R12 are R152a, R410A and R407C. Eckels and Tesene (2003) compared the thermodynamic properties of R22, R134a, R410A and 407C in a range of typical condenser tubes. The average heat transfer coefficient was measured at a saturation temperature of 40 over a mass flux range of 125 kg/m2 sto 600 kg/m2 s. Local heat transfer coefficient was measured in the outer diameter of smooth and fin enhanced tubes. It was discovered that,R22 and R410A have similar performance that was slightly less than R134a in COP and R407C had the lowest performance of all the refrigerants tested. R134a has similar thermodynamic properties as R12 and has attracted the most attention as a substitute refrigerant for R12. The major drawback is that it is not miscible with mineral oils that is been used in the past and system requirements are strongly dependent on lubricant used. R152a has a better theoretical vapour compression efficient than R12 or R134a and it has a very low GWP. However, compensating factors including operating temperature, heat capacity and thermal conductivity may allow R134a system to be moreefficient comparable to those that can be achieved with R152a. Also because R152a is flammable some researchers have raised concern over its use in an application where non-flammable refrigerant has been the standard. Also while the ozone depletion potential (ODP) of R134a relative to R11 is (<5 x 10-4 ), the global warming potential (GWP) is very high (GWP, 1300), (Kuilpers, 1995; Radermecher and Kim, 2006; Wongwises and Chimres, 2005). The aim of this research therefore, is to look for mixture of eco-friendly refrigerants that can be used to replace this Ozone depletion Freon-12.
  • 4. Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12 www.iosrjournals.org 43 | Page II. Materials And Method Refrigerant mixtures have received renewed interest from designers in the process of searching for new alternatives. By mixing two or more refrigerants, a new working fluid with the desired characteristic can be created by adjusting the composition of a blend containing high pressure refrigerants, the vapour pressure of the final fluid can be tailored to match that of the CFC being replaced (Gopalnarayanan, 1998). Three existing refrigerants namely: R600a (n-butane);R134a (1,1,1,2,tetrafluoroethane) and R406A (55%R22/4%R600a/41%R142b),were considered for this research, taking into consideration their availability, eco-friendliness, safety, non-flammable and low toxicity, (Wongwises and Chimres, 2005). The properties of these selected refrigerants at normal atmospheric conditions are presented in Table 2. Table 2: The properties of the selected refrigerants Properties refrigerant Molecular weight(g) Boiling point Flammability limit in air Ozone depletion potential (ODP) Global warming potential (GWP) R406A 89.86 -32.7 None 0.036 0 R134a 102.03 -26.1 None 0 1300 R600a 58.1 11.6 Highly flammable 0 0 Since these selected refrigerants have closely similar thermodynamics properties with R12, hence can be a direct substitute for R12. By mixing two or more of these refrigerants, a new working fluid with the desired characteristics can be created by adjusting of a blend containing high pressure and low pressure refrigerant. The vapour pressure of the final fluid was tailored to match that of the CFC being replaced, as suggested by, Golpalnarayanan, (1998). In this investigation, several blends of the three refrigerants were tested but ten promising mixturesare as shown in Table 3 follow the suggestions of Hammed and Alsaad (1999), Akintunde (2011); Utulu, 2012, Calm and Didion (1997). To match the properties of single refrigerant with a blend, the individual component was mixed in the right proportions by volume. If refrigerant B is mixed to form a blend, conveying the high pressure first, if a greater amount of A is added, then the blend will have a pressure closer to A, on the other hand if a greater amount of B is in the mix, then the blend will have a pressure tend towards B. If equal amount of the refrigerants are mixed the blend will fall between the pressure of A and B, McMullian (2002). Table 3: Various Rations of the Refrigerant Mixtures S/N Code %R600a %R134a %R406A 1. RA1 50 50 - 2. RB1 50 - 50 3. RA2 70 30 - 4. RB2 70 - 30 5. RA3 - 20 80 6. RB3 20 - 80 7. RA4 - 60 40 8. RB4 40 60 - 9. RA5 30 70 - 10. RB5 30 - 70 During the experiment, consideration was given to the operational pressure and temperature of the control refrigerant (R12) as the base for the experimentations and result comparison. The experiment was carried out first by charging experimental rig with various quantities of R12, and readings were taken at intervals of 30minutes. The prevailing temperatures in the evaporator (Te) and condenser (Tc) were measured. These were used in conjunction with steam table to determine prevailing enthalpy for the estimation of heat absorbed in the evaporator (Qe) and heat rejected in the condenser (Qc) as indicated in equations (1) and (2). Compressor power was estimated from the thermodynamics properties of R-12 as shown in equation (3). From these results the coefficient of performance was estimated from equation (4) and the efficiency (comparison of COPs of the alternatives with that of R12) from equation (5). (1) (2) (3) (4) (5) where the subscripts are: ee - evaporator exit; ei - evaporator inlet
  • 5. Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12 www.iosrjournals.org 44 | Page ce - condenser exit; ci - condenser inlet cpe - compressor exit cpi - compressor inlet r - refrigerant The second experiment was conducted by first purging the system, and then a mixture of R134a/R600a in the ratio of 50:50 coded RA1 was charged in various quantities into the experimental rig, (a1.492kW/2hp domestic refrigerator). Various values ofTe and Tc were obtained and compressor power. The system was then purged and other mixtures were introduced, and experiment was carried out in the same way as the previous and reading were recorded. III. Result And Discussion The overall performance of vapour compression refrigeration system was evaluated by the thermodynamic properties of refrigerant blends and the operational parameters such as energy consumption (input to the compressor) of the system. The quantity of heat absorbed at the evaporator (Qe) and the quantity of heat rejected at condenser (Qc) for R12, and the various mixtures were estimated using equations (1) and (2).The coefficient of performance and compressor power was calculated using equations(3) and (4) respectively, while equation (5) was used to compare the COPs of the blends with that of R12. Fig. 2 shows the variation of refrigerant flow rate with charging. As show in the figure, the flow rate increases with the refrigerant charge. The increase in the flow rate was gradual until the charging of 850 g and there was a rapid increase after then. This indicated that, the increase in due to the increase in the pressure as the charging increases. Also the flow pattern for the four blends are the same. RA1 has the highest flow rate while RB1 has the least; both RA2 and RB2 come in between the two. It should be noted that both RA1 and RB1 contained equal percentages of R600a and both of R134a and R407C respectively. The difference in the performance may be traced to higher percentage of R600a in RB1, since R407C contains some percentage of R600a. The results obtained for other blends shown in Table 3 diverged widely from these results; hence they are not included in the result presentation. Fig. 2 Variation of Refrigerant Flow Rate with Refrigerant Charge Fig. 3 is the variation of COP with refrigerant charge. The COPs increase until the charging reaches 850 g. As reported by Akintunde, (2004b) and Lee, et al., (2002), required charging for the capacity of the system used for the experiment should range between 800 g and 900 g for maximum effectiveness. The decrease in the COPs after 900 g of charge is due to flooding of the evaporator and excess pressure in the condenser. Fig,
  • 6. Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12 www.iosrjournals.org 45 | Page 4 indicated the variation of refrigeration effects with the refrigerant charge. From both figures (3) and (4) the results indicated that he four refrigerant blends can be used as replacement for R12. Fig.3 Variation of COP with refrigerant Charge Fig. 4 Variation of Qe with Refrigerant Charge The efficiency of the refrigerant blends was defined as the relative COPs with respect to that of R12, (equation (5)). The result is as shown in Fig. 5. The figure shows that irrespective of quantity of charging the efficiency or relative COPs remain constant. The relative COPs for RA1, RA2 and RB2 remain as 96%, 99% and 98% respectively. The relative COP for RB1 is higher than that of R12 until the quantity of charging reaches 950 g, and it dropped sharply after then. In between 600 g and 950 g, the relative COP stands at 106% and it falls to 97% when the quantity of the charge was increased to 1000 g and above. Fig.5 Efficiency of the Refrigerant blends relative to R12
  • 7. Experimental Study Of R134a, R406A And R600a Blends As Alternative To Freon 12 www.iosrjournals.org 46 | Page As shown in figures (2) to (5) RA1, RA2, RB1 and RB2 can be used as alternative to R12 provided the charging quantity ranges between 600 g and 900g. Further works were done on the transport properties of the refrigerant blends by Akintunde, (2013). From the results gotten by Akintunde (2013) and this present study, the blends considered and reported on can be used as alternative to R12. IV. Conclusion This research focuses on refrigerant blends as alternatives to R12, one of the principal actors in ozone depletion. In accordance with the set objectives, the experimented refrigerant mixtureswere obtained by blending varying proportion of R600a, R134a and R406A.The refrigerant blends were experimented in an existing refrigerator unit, which was designed to use R12 as its working fluid.RA2 which is the blend of 70%R134a/30%R406A was observed to have similar operating conditions asthat ofR12. The performance observed, during experimentation, justified that compressors designed for R12 can be used for RA2, without changing compressor lubricating oil. The obtained results of the refrigerant blends were then compared with that R12. The overall assessment of the result favoured the use of RA1, RA2, RB1 and RB2 refrigerantsblends as alternative to R12., but the performance was obtained from the use RA1 mixture in the system. The results show that irrespective of quantity of charging the efficiency or relative COPs remain constant. The relative COPs for RA1, RA2 and RB2 remain as 96%, 99% and 98% respectively. The relative COP for RB1 is higher than that of R12 until the quantity of charging reaches 950 g, and it dropped sharply after then. In between 600 g and 950 g, the relative COP stands at 106% and it falls to 97% when the quantity of the charge was increased to 1000 g and above. Reference [1]. Akintude, M.A; Adegoke C.O; Fapetu, O.P (2004), “Experimental Investigation of the Performance of A Design Model for Vapour Compression Refrigeration System”. West Indies Journal of Engineering. Vol. 28 No: 2, pp 80-87 [2]. Akintunde, M. A. (2004), Experimental Investigation of the Performance of R12 and R134a in Capillary Tubes for Refrigeration Systems. Journal of Engineering Science and Technology, University of Ilorin. Vol. 4 No:1, pp 1 – 12. [3]. Akintunde, M. A. (2004b) “Theoretical Design Model for Vapour Compression Refrigeration Systems”. –AMSE Periodicals, France. Vol. 73 No: 5, pp 1 – 14. [4]. Akintude, M.A. (2006). Experimental Investigation and Modeling solubility in R12 and R13a. Journal of Engineering and Applied science, Vol 1 No 1 pp 14-22 [5]. Akintude, M.A. (2006). Validation of a Vapour Compression Refrigeration System Design Model. American Journal of scientific and Industrial Research (AJSIR). Vol 2 No 4, pp 504-510. [6]. Akintude, M.A. (2013)Experimental Investigation of Thermal Conductivity and Thermal Diffusivity of New Refrigerants Blends.International Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS). Vol. 4 No: 2, pp 328 – 332. [7]. Bhatti, M.S. (1999). A historical Look at chlorofluorocarbon Refrigerant ASHRAE transaction, part 1.Pp 1186-12006. [8]. Calm, J. M. (2002). Emission and environmental impacts from air-conditioning and refrigeration.International Journal of Refrigeration. Vol. 25, No: 7, pp 293 – 305. [9]. Calm, J.M and Didion, D.A. (1997). Trade- offs in refrigerants selections: Past, present and future. American Socierty of Heating refrigerating and Air-conditioning Engineers (ASHRAE), Inc. Altanta (GA):pp 433-444 [10]. Chivian, A.E; McCally, M; Hu and Haines, A. (1993).Loss of stratospheric Ozone and health effect of increase ultra violent radiation. The MIT press Cambridge. [11]. Domanski, P.A and Mclinden, M.O (1992). A simplified Cycle Simulation model for the performance rating of Refrigerants and Refrigerants Mixtures. International Journal of Refrigeration.Vol 115, No: 2 pp 81-88 [12]. Eckels, S.J and Tesene, B.A (2003). A Comparison of R22, R134a, R410A and R407C, Condensation Performance in Smooth and Enhance Tubes: Part 1, Heat Transfer ASHIRAE Transaction, pp 428-441. [13]. Gopalnarayanan S. (1998). Choosing the right refrigerant.Mechanical Engineering, published by the American society of Mechanical Engineer (ASME).Vol 11120 No 11.Pp 1181- 1189 [14]. Hwang, Y. Ohadi; M and Radermacher, R (1998).Natural Refrigerants. Mechanical Engineering published by American society of Mechanical Engineers (ASME). Vol 1120 No 10, pp 96-99 [15]. Kuijper, L. (1995). Hydrocarbon and the Montrel Protocol Mechanism. Proceedings of International CFC and Halon attentive conference, Washington D.C., October 23-25: pp 167-173. [16]. Lee, J. H.; Bae, S. W. Bang, K. H.; and Kim, M. H. (2002).Experimental and numerical research on condenser performance for R-22 and R- 407C refrigerants.International Journal of Refrigeration. Vol. 25, No: 8, pp 372 – 382. [17]. McMullian, T.J (2002). Refrigerator and the environment issues and strategies for the future international Journal of refrigeration Vol. 25 No 5; pp 89-99 [18]. Radermacher, R and Kim, K (2006).Domestic refrigeration Recent Development. International Journal of Refrigeration, Vol 119 pp 58-62 [19]. Stoecker, W.F. (1983). Improving the Energy Effectiveness of demerits refrigerator by the application of refrigerant mixtures cont- 830568-1, in; proceeding of the international technical application conference Indiana, pp 3-9 [20]. Wongwises, S. and Chimres, N, (2005). Experimental study of hydrocarbon mixtures to replus HCF134a in a Domestic refrigerator, Energy Conservation and Management, Vol. 46 pp 85-100.