SlideShare a Scribd company logo
1 of 29
Download to read offline
Departamento de Engenharia Química
Rua Dr. Roberto Frias, S/N | 4200-465 Porto| Portugal lsre@fe.up.pt
http://lsre.fe.up.pt
Sorption-Enhanced Steam Reforming
of Ethanol for Hydrogen Production
By: Yi-Jiang Wu
Supervisor: Prof. Alirio E. Rodrigues
Co-advisor: Dr. Adelino F. Cunha
11 July 2014
Outline
Background
Objectives
Preliminary Investigation
Material Development
Process Study
Conclusions and Future Work
1
1. Background
Hydrogen
Clean
– Low environmental impact
High energy density
– 120.7 kJ/g
High efficiency
– Hydrogen fuel cell
Production
– Electrolysis
– Photobiological
– Water-gas-shift
– Steam reforming
• (natural gas, bio-ethanol...)
*U.S. Department of energy, http://www.hydrogen.energy.gov/
Figure 1. The integration of a hydrogen economy.*
2
1. Background
Standard methane reforming process
– High temperature reaction
• energy supply, construction material, catalyst deactivation
– Purification
• H2 purity, H2 recovery
3
Harrison, Ind. Eng. Chem. Res., 2008, 47, 6486–6501.
Reforming
Reactor
CH4/H2O
Feed
Flue gas
WGS
Reactor
PSA
units
99.5 + % H2
CO2
absorption
Methanator
or PROX
95 + % H2
Trace CO,CO2
PSA Off-gasFuel/Air
Reaction Purification
CH4+H2O⇌CO+3H2 CO+H2O⇌CO2+3H2
1. Background
Sorption-enhanced reaction process (SERP)
– Le Chatelier’s principle
Old and new
– Concept proposed in 1868*
– SERP named in 1996**
4
CH4 g + 2H2O g
catalyst
4H2 g + CO2(g) CH4 g + 2H2O g
catalyst and sorbent
4H2 g + CO2 ∙ sorbent(s)
Reaction
Catalyst
CO2
Sorbent
CH4 + H2O CO2
H2
H2
H2
CO2
CO2
CO2
CO2
H2
CO2
C2H6O + H2O
6CO2+12H2O
Photosynthesis
ΔH0 = +2540kJ/mol
ΔG0 = +2830kJ/mol
C6H12O6+6H2O
Distillation & Combustion
(Low efficiency)
Fermentation
ΔH0= +20 kJ/mol
ΔG0= -210 kJ/mol
Hydrogen Fuel Cell
ΔH0= -2904 kJ/mol
ΔG0= -2748 kJ/mol
Steam Reforming
ΔH0= +344 kJ/mol
ΔG0= +128 kJ/mol
2CO2+2C2H5OH+6H2O
6CO2(s)+12H2
6O2
* Motay et al., Bull. Soc. Chim. Fr., 1868, 9, 334.
** Sircar et al., AICHE J., 1996, 42(10), 2765-2772.
2. Objectives
High purity hydrogen production from ethanol at
intermediate temperature (673 K – 773 K)
Sorption-enhanced steam reforming of ethanol (SE-SRE)
Materials requirements:
– Catalysts
• activity, selectivity and stability
– Sorbents
• capacity, selectivity, kinetics, regeneration and stability
Numerical simulation for improvement
– Reaction condition
– Operating parameter
5
H2O,
C2H5OH
H2, H2O
Catalyst
Sorbent
22 5 2 2( ) 3 ( ) 2( ( )6 )catalyst
sorbent
C H OH g CO Sorbent sH O g H g   
3. Preliminary Investigation
Experimental setup
He N2 H2 CO2
Mass
Spectrometer
Vent
1
2
3
54
6
7
8 9
Figure 1 Schematic and picture of the experimental unit: (1) feeding
gases; (2) mass-flow controllers; (3) feeding mixture; (4)
pump for liquids; (5) mixing valve; (6) reforming reactor; (7)
heating furnace; (8) back pressure valve; (9) mass
spectrometer.
6
Ethanol Acetaldehyde
Dehydrogenation
Hydrogen
Steam Methane Reforming
Dehydration
Coke
Ethane
Dehydrogenation Steam Ethylene Reforming*
Ethylene
Boudouard Reaction
Methane Decomposition
Water Gas Shift
Carbon monoxide
4 22CH C H 
2 2C CO CO 
2 2 2CO H O CO H  
4 2 6 22CH C H H 
4 2 23CH H O CO H  
4 2 2 22 4CH H O CO H  
2 2C H O CO H  
2 4 2
1
2
C H C H 
3 2 2 4 2CH CH OH C H H O 
Methane
3 4CH CHO CH CO 
Decomposition
3 2 4 2CH CH OH CH CO H  
3 2 3 2CH CH OH CH CHO H 
Decomposition
2 6 2 4 2C H C H H 
Ethylene
Polymerisation
Coke Gasification
Steam Ethane Reforming**
3. Preliminary Investigation
Reaction pathway for steam reforming of ethanol (SRE)
– Reaction conditions
• temperature, pressure, steam-to-ethanol molar ratio (RS/E)…
– Catalysts compositions
• active metal, support, structure…
7
Wu et al., Can. J. Chem. Eng., 2014, 92 (1), 116-130.
3. Preliminary Investigation
Reaction mechanism on Ni/Al2O3(Degussa 1001)
– Langmuir-Hinshelwood Hougen-Watson (LHHW)
Reaction kinetics
– Power-rate law and LHHW expressions
8
0 1 2 3 4 5
0
8
16
24
32
40
pEtOH
[kPa]
473 K
573 K
673 K
773 K
873 K
rSRE
[mol·kg-1
h-1
]
Figure 2 Kinetic model vs. Experimental results
(filled spots) at ptotal = 1 bar with a RS/E of
10 in the feed. Power rate model (dashed
lines); LHHW model (solid lines).
Wu et al., Can. J. Chem. Eng., 2014, 92 (1), 116-130.
3. Preliminary Investigation
Thermodynamic analysis
– Gibbs free energy minimization
– Real gas vs. ideal gas for SRE
• Virial model
– Steam-to-ethanol (RS/E) molar ratio
• Carbon deposition
• Hydrogen yield
9
SRE (real gas) SRE (ideal gas)
T XH2O YH2 YCO XH2O YH2 YCO
K % mol/molEtOH % mol/molEtOH
773 12.7 5.21 0.11 13.6 5.48 0.06
Table 1. Equilibrium of SRE at 100 kPa, H2O/Ethanol = 20 [mol/mol]
Wu et al., Chem. Eng. Technol. 2012, 35 (5), 847-858.
min 1 2( , , , ,... )NG G T p n n n
500 600 700 800 900
4
6
8
10
12
14
16
18
20
YH2
[mol/molEtOH,0
]
T [K]
0.0
0.4
0.7
1.4
2.1
2.8
3.4
4.0
4.4
4.9
5.2
5.5
5.8
6.0
b)
RS/E
[mol/mol]
Figure 3 The effects of steam-to-ethanol ratio on
carbon deposition (a) and hydrogen yield (b).
500 625 750 875 1000 1125 1250
0
1
2
3
4
5
H2
yield
Carbon deposition
3
2.5
2
1.5
1
0.5
0
3 2.5
2
1.5 1
0.5
Y[mol/molEtOH,0
]
T [K]
0
RS/E
a)
3. Preliminary Investigation
High temperature CO2 sorbent
– SE-SRE reaction performance
– Hydrogen product with HTlc
• High purity > 99 mol %
• CO content < 30 ppm
• Direct fuel cell application
10
Wu et al., Chem. Eng. Technol. 2012, 35 (5), 847-858.
CaO Li2ZrO3 HTlc
T
[K] [mol %] [ppm] [mol %] [ppm] [mol %] [ppm]
773 84 915 78 1460 99 11
Figure 4 CO2 adsorption Li2ZrO3 (a) and HTlc (b).
2Hy COy COy COy2Hy 2Hy
Materials Capacity Stability Kinetics
CaO Good Poor Fair
Li2ZrO3 Fair Good Poor
Hydrotalcite (HTlc) Poor Good Good
Li2ZrO3
Adsorption at
773 K
Li2ZrO3
ZrO2
Li2CO3
(Solid)
Li2ZrO3
Li+
ZrO2 Shell O2-
Li2CO3 Shell
co2
ZrO2 ZrO2ZrO2
Desorption at
1053 K
Li2CO3
(Liquid)
Li+
CO2 O2-
Li2ZrO3
ZrO2
Li2ZrO3
co2
a)
b)
Table 2 Equilibrium of SE-SRE at 100 kPa, H2O/Ethanol = 20 [mol/mol].
3. Preliminary Investigation
Sorption enhanced reaction performance
– Ni/Al2O3 catalyst (Degussa 1001)
– Hydrotalcite sorbent (Sasol MG30)
Figure 5 Product distribution vs. Reaction time.
Reaction conditions: T = 673 K; p = 100 kPa;
RS/E = 10; mcat = 4×1.25 g; msorb = 3×25.0 g.
H2O,
C2H5OH
H2, H2O
Nickel-based
Catalyst
(1001)
Hydrotalcite
Sorbent
(MG30)
11
Cunha et al., Can. J. Chem. Eng. 2012, 90(6), 1514-1526.
He N2 H2 CO2
Mass
Spectrometer
Vent
0 10 20 30 40 50 60
0
20
40
60
80
100
yCO
[mol%]
yH2
,CH4
,CO2
[mol%]
t [min]
H2
CO2
CH4
CO 0
1
2
4. Material Development
Compatibility of catalyst and sorbent
– Layered system
– Ideal mixture
– Hybrid material
H2
Catalyst (active phase)
H2C2H5OH/CH4
H2O
Adsorbent
H2 Yield CO2 Yield
H2C2H5OH/CH4
H2O
C2H5OH/CH4
H2O
Cunha et al., Chem. Eng. Res. Des., 2013, 91(3), 581-592.
12
4. Material Development
Deactivation due to the carbon deposition
– Ni-based catalyst at high temperature
Cu-based catalysts for dehydrogenation
– Avoid carbon deposition
Cu-Catalyst
H2C2H5OH, H2O
Adsorbent
C2H4O, H2O
CH4, H2,COX
Ni-Catalyst
1st
Layer 2nd
Layer
Ni-catalyst polymerisation
2 5 2 2 4high-temperature
CarbonC H OH H O C H  
Cu-catalyst Ni-catalyst
2 5 2 2 4 4C H OH H C H O CH CO   
P. D. Vaidya, A. E. Rodrigues, Chem. Eng. J., 2006, 117(1), 39-49.
13
Cunha et al., Chem. Eng. Res. Des., 2013, 91(3), 581-592.
4. Material Development
Preparation of the hybrid materials
14
HTlc
Solution of
Ni(NO3)2 or Cu(NO3)2
Impregnation
Dried at 383 K
overnight
Calcination and reduction at
higher temperature (548 - 723 K)
Cu-HTlc / Ni-HTlc materials
SE-SRE with Cu (5 wt. %) and Ni (6 wt. %)-HTlc materials
– High purity H2 during initial period
– Low CO2 sorption capacity
• ~ 0.15 mol/kg…
4. Material Development
15
Figure 6 Product distribution on dry basis as function of reaction time on Cu-HTlc material (a) and Ni-HTlc
material (b) at 773 K, p = 101.3 kPa with a RS/E of 10 in the feed.
Wu et al., Chem. Eng. J.,2013, 231, 36-48.
Cunha et al., Chem. Eng. Res. Des., 2013, 91 (3), 581–592.
0 600 1200 1800 2400 3000
0
15
30
45
60
yH2
[mol%]
t [s]
H2
CO2
CH4
CO
b)Ni-HTlc Material for SE-SRE
yCO,CH4
,CO2
[mol%]
0
20
40
60
80
100
0 600 1200 1800 2400 3000
0
5
10
15
20
25
30
yH2
[mol%]
t [s]
H2
CO2
CH4
CO
a)Cu-HTlc Material for SE-SRE
yCO,CH4
,CO2
[mol%]
50
60
70
80
90
100
4. Material Development
K-promoted (20 wt. %) HTlc with KNO3 as K precursor
– Impregnation
• MG30 hydrotalcite + KNO3, Ultrasonic 6h, 110 ºC 24h
– Calcination
• 2KNO3 → K2O + O2 + NO + NO2, 485 ºC 48h
K-promoter effect**
O Mg K
16
0.0
0.2
0.4
0.6
0.8
1.0
1.2
MG30-KNO3
MG30-Cs2
CO3
MG30-K2
CO3
CO2
sorptioncapacity[mol/kg]
MG30
Figure 7 Comparison of the sorption capacity of CO2 for pure and
alkali-modified HTlc at 676 K, pCO2 of 0.40 bar. *
*Oliveira et al., Sep. Purif. Technol., 2008, 62, 137–147.
Wu et al., Chem. Eng. Technol., 2013, 36(4), 567-574.
**Meis et al., Ind. Eng. Chem. Res., 2010, 49, 8086–8093.
4. Material Development
K-Cu-Ni-HTlc (20-5-5 wt. %) hybrid material preparation
– Impregnation
• MG30 HTlc+ Ni(NO3)2 + Cu(NO3)2 + KNO3, Ultrasonic 6h, 483 K 24h
– Calcination
• Ni(NO3)2 + Cu(NO3)2 + 2KNO3 → NiO + CuO + K2O + 6NO2 + 3/2O2, 723 K 48h
– Reduction
• NiO + CuO + 2H2 → 2Ni0.5Cu0.5 + 2H2O, 723 K ~3h
17
40 42 44 46 48
Cu-HTlc
K-HTlcCu Ni
K-Cu-Ni-HTlc
Ni-HTlc
2 [o
]
Cu-Ni
a)
Figure 8 Comparison of XRD patterns (a) and the SEM graph of the K-Cu-Ni-HTlc material (b).
Cunha et al., Ind. Eng. Chem. Res., 2014, 53 (10), 3842–3853.
4. Material Development
K-Cu-Ni-HTlc hybrid material for tests
– Adsorption and SE-SRE reaction performance
18
Cunha et al., Ind. Eng. Chem. Res., 2014, 53 (10), 3842–3853.
0 10 20 30 40 50
0.0
0.2
0.4
0.6
0.8
1.0
T = 669 K
T = 721 K
T = 763 K
qCO2
[mol/kg]
pCO2
[kPa]
a)
0 500 1000 1500 2000 2500 3000
0
20
40
60
80
100
T = 773 K
mcat
/nEtOH,0
= 43.7 gcat
.hmol-1
t [s]
yCH4
yH2
yCO2
b)
.
yH2
,CO2
,CH4
[mol%]
0
4
8
12
16
20
yCO
yCO
[mol%]
Figure 9 CO2 adsorption isotherms (a) and SE-SRE reaction (b) over K-Ni-Cu-HTlc material at
773 K, 101 kPa, RS/E = 10.
Cu-particles
H2C2H5OH,
H2O
K-Promoted HTlcNi-particles
H2 Yield CO2 Yield
5. Process Study
SE-SRE operation in a single column
– Column arrangement
– Reaction conditions
19
0 2 4 6 8 10
0
1500
3000
4500
6000
7500
time[s]
RS/C
[mol/mol]
CO content limit (< 30 ppm)
H2
purity limit (> 99%)
Allowable operation region
a)
0 2 4 6 8 10
0.0
0.3
0.6
0.9
1.2
1.5
H2
produced[mol/kg]
RS/C
[mol/mol]
b)
0.0
0.2
0.4
0.6
0.8
1.0
H2
productivity
Thermal efficiency
Thermalefficiency[kJ/kJ]
Figure 10 The effect of RS/C conditions on operation window (a) and hydrogen production
performance (b) with u0 = 0.1 m∙s-1, p = 101.3 kPa at 773 K.
Wu et al., Ind. Eng. Chem. Res., 2014, 53 (20), 8515–8527.
q'L pL
qH
pH
qL
PSA+TSA
TSA
H = high
L = low
TH
TL
PSA
.
..
.
5. Process Study
Pressure effect
– Volume increase reaction
– Enhance sorbent performance
Periodically regeneration
– Pressure swing (PSA)
– Thermal swing (TSA)
– Inert purge (concentration swing)
20
Figure 12 Methods for sorbent regeneration.
p
[kPa]
Operation time
[s]
H2 produced
[mol∙kg-1]
Thermal efficiency
[kJ/kJ]
101.3 2410 0.761 0.799
304.0 930 0.853 0.791
506.6 485 0.717 0.778
Table 3 Operating performance in SE-SRE under different pressure
conditions with CO content (< 30 ppm) limit.
0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0 Adsorbed
101.3 kPa
202.7 kPa
304.0 kPa
405.3 kPa
506.6 kPa
qCO2
[mol/kg]
z [m]
Equilibrium
Figure 11 SE-SRE performance under different
pressure conditions.
5. Process Study
Operating scheme for continuous H2 production
SE-SRE vs. SRE performance
21
Operation
H2 yield
[mol %]
CO2 yield
[mol %]
Thermal
efficiency
[kJ∙kJ-1]
H2
productivity
[mol∙kg-1h-1]
SE-SRE 78.5 75.0 0.45 0.51
SRE 38.3 51.0 0.47 0.93
Table 4 Comparison of hydrogen production performance for SRE
process and cyclic SE-SRE process under CSS.
EtOH
H2O
H2
CO2
H2O
H2O
H2O
H2
Reaction
Rinse Regeneration
Purge
CO2(gas)CO2(ads)
H2(gas)
CO2(ads)CO2(gas)
CH4, H2
COX, H2O
H2O
CO2(gas)CO2(ads)
tinitial treaction trinse tregeneration tpurge
Pressure
pH
pL
Time
H2O, H2
Wu et al., Ind. Eng. Chem. Res., 2014, 53 (20), 8515–8527.
5. Process Study
Two-dimensional adsorptive reactor
– Model validation (dR = 3.3 cm)
22
Figure 13 Product distributions as a function of time. Operating conditions: T = 773 K, p = 101 kPa
and RS/E = 10. nEtOH,0 = 4∙10-5 mol∙s-1 (a) and 8∙10-5 mol∙s-1 (b).
0 500 1000 1500 2000 2500 3000 3500
0
20
40
60
80
100
yH2
yCO2
t [s]
yCH4
a)
yH2
,CO2
,CH4
[mol%]
0
10
20
30
40
50
PostbreakthroughBreakthrough
yCO
yCO
[mol%]
Pre-
Breakthrough
0 500 1000 1500 2000 2500 3000 3500
0
20
40
60
80
100
yCH4
yH2
yCO2
PostbreakthroughBreakthrough
Prebreakthrough
yH2
,CO2
,CH4
[mol%]
t [s]
b)
0
10
20
30
40
50
yCO
yCO
[mol%]
,
1
t t
Radial Axial
i i i
r r z zi i
ConvectiveConvective
Diffusive Diffusive fluxflux
flux flux
i r
C r C
C y y
D u C r D u C
t r r r z z
r
   
   
   
   
   
   
   
   
      
    
 ,eaction i adsorptionr
Wu et al., Chem. Eng. Sci.., 2014, DOI: 10.1016/j.ces.2014.07.005.
5. Process Study
Reactor dynamics (dR = 10 cm)
23
Figure 14 The temperature profiles of the pellet (a,b) and CO2 reaction/adsorption rate (c,d)
during the SE-SRE reaction at 773 K, 304 kPa, RS/C = 4 and n0= 0.05 mol∙s-1.
0 1 2 3 4 5 6
-0.04
-0.02
0.00
0.02
0.04
z [m]
r[m]
763.0
764.0
765.0
766.0
767.0
768.0
769.0
771.0
772.0
773.0
Tp
[K]a)
t = 1200 s
0 1 2 3 4 5 6
-0.04
-0.02
0.00
0.02
0.04
z [m]
r[m]
763.0
764.0
765.0
766.0
767.0
768.0
769.0
771.0
772.0
773.0
Tp
[K]b)
t = 2400 s
0 1 2 3 4 5 6
0
1
2
3
4
CO2
Forming CO2
Adsorbing
at r = 0 m
at r = 0.05 m
rCO2
[mol/(m3
pellet
s)]
z [m]
c)
at t = 1200 s
0 1 2 3 4 5 6
0
1
2
3
4
CO2
Forming CO2
Adsorbing
at r = 0 m
at r = 0.05 m
rCO2
[mol/(m3
pellet
s)]
z [m]
d)
at t = 2400 s
5. Process Study
Continuous hydrogen production process
24
Figure 15 Four-column schemes and cyclic configurations
employed SE-SRE process.
Figure 16 SE-SRE performance (a) and the CO2
loading profile at the end of reaction
step (b) during cyclic operation.
0 10 20 30 40 50
99.0
99.2
99.4
99.6
99.8
100.0
H2
purity [mol %]
Cycle number
H2
purity[mol%]
0
5
10
15
20
25
30
CO content [ppm]
COcontent[ppm]
a)
0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
Cycle 1
Cycle 2
Cycle 3
CSS
qCO2
[mol/kg]
z [m]
b)
r = 0 m
fresh sorbent
Wu et al., Chem. Eng. Sci.., 2014, DOI: 10.1016/j.ces.2014.07.005.
6. Conclusions
High purity H2 can be obtained from SE-SRE with HTlc
material as CO2 sorbent
Hybrid material can be prepared from the impregnation of
active phase(s) on the HTlc material as sorbent
KNO3 is found to be a good alkali promoter
Continuous high purity H2 production can be performed
with a four-column pressure swing operating scheme
Radial temperature gradient should be considered in a
large reactor for SE-SRE
25
7. Future Work
Material developments
– Adsorption performance improvement
– Pellet preparation and test
– Mechanical strength
Process developments
– Kinetic model with carbon deposit
– Real-gas thermodynamic model
– Sorption enhanced oxidative and auto-thermal reforming
– Integration with fuel cell model
SERP concept for H2 production from other feedstocks
– Biogas, glycerol, syngas, biomass…
26
Acknowledgement
27
Supervisor: Prof. Alírio E. Rodrigues, University of Porto
Co-advisor: Dr. Adelino F. Cunha, University of Porto
Prof. Jian-Guo Yu and Prof. Ping Li, East China University
of Science and Technology
Helps from LSRE/LCM group and DEQ-FEUP.
Doctoral grant from China Scholarship Council
– CSC 2010674011
Thank you for your attention!
Questions?
28

More Related Content

What's hot

Lee Wonjae, Extended Essay
Lee Wonjae, Extended EssayLee Wonjae, Extended Essay
Lee Wonjae, Extended EssayWonjae Lee
 
Regioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylationRegioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylationParth Shah
 
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...fer18400
 
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson PublishersStudies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson PublishersDanesBlake
 
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...crimsonpublisherspps
 
PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC] PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC] Shikha Popali
 
Section 7 organic practicals exam questions
Section 7 organic practicals exam questionsSection 7 organic practicals exam questions
Section 7 organic practicals exam questionsMartin Brown
 
Transition Metal and Organo-Catalysis
Transition Metal and Organo-CatalysisTransition Metal and Organo-Catalysis
Transition Metal and Organo-CatalysisASHOK GAUTAM
 
Homogeneous catalysis 2021
Homogeneous catalysis 2021Homogeneous catalysis 2021
Homogeneous catalysis 2021MadhuraDatar
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Pawan Kumar
 
Phase transfer catalysis
Phase transfer catalysisPhase transfer catalysis
Phase transfer catalysisROHIT PAL
 
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx CatalystRemoval of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalystinventy
 
OXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARMOXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARMShubham Sharma
 

What's hot (19)

Alkanes
AlkanesAlkanes
Alkanes
 
Lee Wonjae, Extended Essay
Lee Wonjae, Extended EssayLee Wonjae, Extended Essay
Lee Wonjae, Extended Essay
 
Hydrocarbon
HydrocarbonHydrocarbon
Hydrocarbon
 
Regioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylationRegioselective 1H-1,2,4 Triazole alkylation
Regioselective 1H-1,2,4 Triazole alkylation
 
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
A green synthesis of isatoic anhydrides from isatins with urea–hydrogen perox...
 
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson PublishersStudies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
 
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
 
PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC] PHASE TRANSFER CATALYSIS [PTC]
PHASE TRANSFER CATALYSIS [PTC]
 
Section 7 organic practicals exam questions
Section 7 organic practicals exam questionsSection 7 organic practicals exam questions
Section 7 organic practicals exam questions
 
Transition Metal and Organo-Catalysis
Transition Metal and Organo-CatalysisTransition Metal and Organo-Catalysis
Transition Metal and Organo-Catalysis
 
Homogeneous catalysis 2021
Homogeneous catalysis 2021Homogeneous catalysis 2021
Homogeneous catalysis 2021
 
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
Visible light assisted photocatalytic reduction of CO2 using a graphene oxide...
 
Phase transfer catalysis
Phase transfer catalysisPhase transfer catalysis
Phase transfer catalysis
 
Chapter 2 aldehyde
Chapter 2 aldehydeChapter 2 aldehyde
Chapter 2 aldehyde
 
K0428699
K0428699K0428699
K0428699
 
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx CatalystRemoval of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
Removal of Coke during Steam Reforming of Ethanol over La-CoOx Catalyst
 
OXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARMOXIDATION ,PROCESS CHEMISTRY ,MPHARM
OXIDATION ,PROCESS CHEMISTRY ,MPHARM
 
Wilkinson's catalyst
Wilkinson's catalystWilkinson's catalyst
Wilkinson's catalyst
 
iasj
iasjiasj
iasj
 

Similar to Thesis Defense

Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...
Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...
Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...Richa Tungal
 
Literature Review of Mineral Carbonations of steel slag.pptx
Literature Review of Mineral Carbonations of steel slag.pptxLiterature Review of Mineral Carbonations of steel slag.pptx
Literature Review of Mineral Carbonations of steel slag.pptxsandeepsharma432939
 
Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...
Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...
Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...roelmeulepas
 
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...IJERA Editor
 
Biomass Gasification presentation
Biomass Gasification presentationBiomass Gasification presentation
Biomass Gasification presentationPritish Shardul
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...IJRESJOURNAL
 
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...Deepa A K
 
Pawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan Kumar
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Maciej Przybyłek
 
Hydrogenation of sugars over supported metal catalyst - effect of support
Hydrogenation of sugars over supported metal catalyst - effect of supportHydrogenation of sugars over supported metal catalyst - effect of support
Hydrogenation of sugars over supported metal catalyst - effect of supportpbpbms6
 
OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...
OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...
OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...Ratnakaram Venkata Nadh
 
Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...
Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...
Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...Reydick D Balucan
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...Simone Ripandelli
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)chin2014
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)52900339
 
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...52900339
 

Similar to Thesis Defense (20)

Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...Catalyst materials for solar refineries, synthetic fuels and procedures for a...
Catalyst materials for solar refineries, synthetic fuels and procedures for a...
 
Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...
Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...
Hydrogen generation by cascading hydrothermal liquefaction of cotton with pho...
 
Literature Review of Mineral Carbonations of steel slag.pptx
Literature Review of Mineral Carbonations of steel slag.pptxLiterature Review of Mineral Carbonations of steel slag.pptx
Literature Review of Mineral Carbonations of steel slag.pptx
 
Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...
Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...
Sipma, 2004, Effect Of Carbon Monoxide, Hydrogen And Sulfate On Thermophilic ...
 
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
 
Biomass Gasification presentation
Biomass Gasification presentationBiomass Gasification presentation
Biomass Gasification presentation
 
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
Study of the Influence of Nickel Content and Reaction Temperature on Glycerol...
 
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
Hydrodeoxygenation-supported metal catalyst-lignin-aromatic monomers- A.K.Dee...
 
Pawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPT
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
 
Hydrogenation of sugars over supported metal catalyst - effect of support
Hydrogenation of sugars over supported metal catalyst - effect of supportHydrogenation of sugars over supported metal catalyst - effect of support
Hydrogenation of sugars over supported metal catalyst - effect of support
 
1.pdf
1.pdf1.pdf
1.pdf
 
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
 
OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...
OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...
OXIDATION OF POLYETHYLENE GLYCOL-200 BY POTASSIUM PERIODATE IN ALKALINE MEDIU...
 
Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...
Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...
Balucan and Steel_2015_A regenerable precipitant-solvent system for CO2 mitig...
 
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
1,3-Dihydroxypropan-2-one (DHA) synthesis from Glycerol for pharmaceutical ap...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
Enhancing the Kinetcs of Mill Scale Reduction: An Eco-Friendly Approach (Part 2)
 
Sdarticle (2)
Sdarticle (2)Sdarticle (2)
Sdarticle (2)
 
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
Paladio soportado sobre hidrotalcita como un catalizador para la reacción de ...
 

Thesis Defense

  • 1. Departamento de Engenharia Química Rua Dr. Roberto Frias, S/N | 4200-465 Porto| Portugal lsre@fe.up.pt http://lsre.fe.up.pt Sorption-Enhanced Steam Reforming of Ethanol for Hydrogen Production By: Yi-Jiang Wu Supervisor: Prof. Alirio E. Rodrigues Co-advisor: Dr. Adelino F. Cunha 11 July 2014
  • 3. 1. Background Hydrogen Clean – Low environmental impact High energy density – 120.7 kJ/g High efficiency – Hydrogen fuel cell Production – Electrolysis – Photobiological – Water-gas-shift – Steam reforming • (natural gas, bio-ethanol...) *U.S. Department of energy, http://www.hydrogen.energy.gov/ Figure 1. The integration of a hydrogen economy.* 2
  • 4. 1. Background Standard methane reforming process – High temperature reaction • energy supply, construction material, catalyst deactivation – Purification • H2 purity, H2 recovery 3 Harrison, Ind. Eng. Chem. Res., 2008, 47, 6486–6501. Reforming Reactor CH4/H2O Feed Flue gas WGS Reactor PSA units 99.5 + % H2 CO2 absorption Methanator or PROX 95 + % H2 Trace CO,CO2 PSA Off-gasFuel/Air Reaction Purification CH4+H2O⇌CO+3H2 CO+H2O⇌CO2+3H2
  • 5. 1. Background Sorption-enhanced reaction process (SERP) – Le Chatelier’s principle Old and new – Concept proposed in 1868* – SERP named in 1996** 4 CH4 g + 2H2O g catalyst 4H2 g + CO2(g) CH4 g + 2H2O g catalyst and sorbent 4H2 g + CO2 ∙ sorbent(s) Reaction Catalyst CO2 Sorbent CH4 + H2O CO2 H2 H2 H2 CO2 CO2 CO2 CO2 H2 CO2 C2H6O + H2O 6CO2+12H2O Photosynthesis ΔH0 = +2540kJ/mol ΔG0 = +2830kJ/mol C6H12O6+6H2O Distillation & Combustion (Low efficiency) Fermentation ΔH0= +20 kJ/mol ΔG0= -210 kJ/mol Hydrogen Fuel Cell ΔH0= -2904 kJ/mol ΔG0= -2748 kJ/mol Steam Reforming ΔH0= +344 kJ/mol ΔG0= +128 kJ/mol 2CO2+2C2H5OH+6H2O 6CO2(s)+12H2 6O2 * Motay et al., Bull. Soc. Chim. Fr., 1868, 9, 334. ** Sircar et al., AICHE J., 1996, 42(10), 2765-2772.
  • 6. 2. Objectives High purity hydrogen production from ethanol at intermediate temperature (673 K – 773 K) Sorption-enhanced steam reforming of ethanol (SE-SRE) Materials requirements: – Catalysts • activity, selectivity and stability – Sorbents • capacity, selectivity, kinetics, regeneration and stability Numerical simulation for improvement – Reaction condition – Operating parameter 5 H2O, C2H5OH H2, H2O Catalyst Sorbent 22 5 2 2( ) 3 ( ) 2( ( )6 )catalyst sorbent C H OH g CO Sorbent sH O g H g   
  • 7. 3. Preliminary Investigation Experimental setup He N2 H2 CO2 Mass Spectrometer Vent 1 2 3 54 6 7 8 9 Figure 1 Schematic and picture of the experimental unit: (1) feeding gases; (2) mass-flow controllers; (3) feeding mixture; (4) pump for liquids; (5) mixing valve; (6) reforming reactor; (7) heating furnace; (8) back pressure valve; (9) mass spectrometer. 6
  • 8. Ethanol Acetaldehyde Dehydrogenation Hydrogen Steam Methane Reforming Dehydration Coke Ethane Dehydrogenation Steam Ethylene Reforming* Ethylene Boudouard Reaction Methane Decomposition Water Gas Shift Carbon monoxide 4 22CH C H  2 2C CO CO  2 2 2CO H O CO H   4 2 6 22CH C H H  4 2 23CH H O CO H   4 2 2 22 4CH H O CO H   2 2C H O CO H   2 4 2 1 2 C H C H  3 2 2 4 2CH CH OH C H H O  Methane 3 4CH CHO CH CO  Decomposition 3 2 4 2CH CH OH CH CO H   3 2 3 2CH CH OH CH CHO H  Decomposition 2 6 2 4 2C H C H H  Ethylene Polymerisation Coke Gasification Steam Ethane Reforming** 3. Preliminary Investigation Reaction pathway for steam reforming of ethanol (SRE) – Reaction conditions • temperature, pressure, steam-to-ethanol molar ratio (RS/E)… – Catalysts compositions • active metal, support, structure… 7 Wu et al., Can. J. Chem. Eng., 2014, 92 (1), 116-130.
  • 9. 3. Preliminary Investigation Reaction mechanism on Ni/Al2O3(Degussa 1001) – Langmuir-Hinshelwood Hougen-Watson (LHHW) Reaction kinetics – Power-rate law and LHHW expressions 8 0 1 2 3 4 5 0 8 16 24 32 40 pEtOH [kPa] 473 K 573 K 673 K 773 K 873 K rSRE [mol·kg-1 h-1 ] Figure 2 Kinetic model vs. Experimental results (filled spots) at ptotal = 1 bar with a RS/E of 10 in the feed. Power rate model (dashed lines); LHHW model (solid lines). Wu et al., Can. J. Chem. Eng., 2014, 92 (1), 116-130.
  • 10. 3. Preliminary Investigation Thermodynamic analysis – Gibbs free energy minimization – Real gas vs. ideal gas for SRE • Virial model – Steam-to-ethanol (RS/E) molar ratio • Carbon deposition • Hydrogen yield 9 SRE (real gas) SRE (ideal gas) T XH2O YH2 YCO XH2O YH2 YCO K % mol/molEtOH % mol/molEtOH 773 12.7 5.21 0.11 13.6 5.48 0.06 Table 1. Equilibrium of SRE at 100 kPa, H2O/Ethanol = 20 [mol/mol] Wu et al., Chem. Eng. Technol. 2012, 35 (5), 847-858. min 1 2( , , , ,... )NG G T p n n n 500 600 700 800 900 4 6 8 10 12 14 16 18 20 YH2 [mol/molEtOH,0 ] T [K] 0.0 0.4 0.7 1.4 2.1 2.8 3.4 4.0 4.4 4.9 5.2 5.5 5.8 6.0 b) RS/E [mol/mol] Figure 3 The effects of steam-to-ethanol ratio on carbon deposition (a) and hydrogen yield (b). 500 625 750 875 1000 1125 1250 0 1 2 3 4 5 H2 yield Carbon deposition 3 2.5 2 1.5 1 0.5 0 3 2.5 2 1.5 1 0.5 Y[mol/molEtOH,0 ] T [K] 0 RS/E a)
  • 11. 3. Preliminary Investigation High temperature CO2 sorbent – SE-SRE reaction performance – Hydrogen product with HTlc • High purity > 99 mol % • CO content < 30 ppm • Direct fuel cell application 10 Wu et al., Chem. Eng. Technol. 2012, 35 (5), 847-858. CaO Li2ZrO3 HTlc T [K] [mol %] [ppm] [mol %] [ppm] [mol %] [ppm] 773 84 915 78 1460 99 11 Figure 4 CO2 adsorption Li2ZrO3 (a) and HTlc (b). 2Hy COy COy COy2Hy 2Hy Materials Capacity Stability Kinetics CaO Good Poor Fair Li2ZrO3 Fair Good Poor Hydrotalcite (HTlc) Poor Good Good Li2ZrO3 Adsorption at 773 K Li2ZrO3 ZrO2 Li2CO3 (Solid) Li2ZrO3 Li+ ZrO2 Shell O2- Li2CO3 Shell co2 ZrO2 ZrO2ZrO2 Desorption at 1053 K Li2CO3 (Liquid) Li+ CO2 O2- Li2ZrO3 ZrO2 Li2ZrO3 co2 a) b) Table 2 Equilibrium of SE-SRE at 100 kPa, H2O/Ethanol = 20 [mol/mol].
  • 12. 3. Preliminary Investigation Sorption enhanced reaction performance – Ni/Al2O3 catalyst (Degussa 1001) – Hydrotalcite sorbent (Sasol MG30) Figure 5 Product distribution vs. Reaction time. Reaction conditions: T = 673 K; p = 100 kPa; RS/E = 10; mcat = 4×1.25 g; msorb = 3×25.0 g. H2O, C2H5OH H2, H2O Nickel-based Catalyst (1001) Hydrotalcite Sorbent (MG30) 11 Cunha et al., Can. J. Chem. Eng. 2012, 90(6), 1514-1526. He N2 H2 CO2 Mass Spectrometer Vent 0 10 20 30 40 50 60 0 20 40 60 80 100 yCO [mol%] yH2 ,CH4 ,CO2 [mol%] t [min] H2 CO2 CH4 CO 0 1 2
  • 13. 4. Material Development Compatibility of catalyst and sorbent – Layered system – Ideal mixture – Hybrid material H2 Catalyst (active phase) H2C2H5OH/CH4 H2O Adsorbent H2 Yield CO2 Yield H2C2H5OH/CH4 H2O C2H5OH/CH4 H2O Cunha et al., Chem. Eng. Res. Des., 2013, 91(3), 581-592. 12
  • 14. 4. Material Development Deactivation due to the carbon deposition – Ni-based catalyst at high temperature Cu-based catalysts for dehydrogenation – Avoid carbon deposition Cu-Catalyst H2C2H5OH, H2O Adsorbent C2H4O, H2O CH4, H2,COX Ni-Catalyst 1st Layer 2nd Layer Ni-catalyst polymerisation 2 5 2 2 4high-temperature CarbonC H OH H O C H   Cu-catalyst Ni-catalyst 2 5 2 2 4 4C H OH H C H O CH CO    P. D. Vaidya, A. E. Rodrigues, Chem. Eng. J., 2006, 117(1), 39-49. 13 Cunha et al., Chem. Eng. Res. Des., 2013, 91(3), 581-592.
  • 15. 4. Material Development Preparation of the hybrid materials 14 HTlc Solution of Ni(NO3)2 or Cu(NO3)2 Impregnation Dried at 383 K overnight Calcination and reduction at higher temperature (548 - 723 K) Cu-HTlc / Ni-HTlc materials
  • 16. SE-SRE with Cu (5 wt. %) and Ni (6 wt. %)-HTlc materials – High purity H2 during initial period – Low CO2 sorption capacity • ~ 0.15 mol/kg… 4. Material Development 15 Figure 6 Product distribution on dry basis as function of reaction time on Cu-HTlc material (a) and Ni-HTlc material (b) at 773 K, p = 101.3 kPa with a RS/E of 10 in the feed. Wu et al., Chem. Eng. J.,2013, 231, 36-48. Cunha et al., Chem. Eng. Res. Des., 2013, 91 (3), 581–592. 0 600 1200 1800 2400 3000 0 15 30 45 60 yH2 [mol%] t [s] H2 CO2 CH4 CO b)Ni-HTlc Material for SE-SRE yCO,CH4 ,CO2 [mol%] 0 20 40 60 80 100 0 600 1200 1800 2400 3000 0 5 10 15 20 25 30 yH2 [mol%] t [s] H2 CO2 CH4 CO a)Cu-HTlc Material for SE-SRE yCO,CH4 ,CO2 [mol%] 50 60 70 80 90 100
  • 17. 4. Material Development K-promoted (20 wt. %) HTlc with KNO3 as K precursor – Impregnation • MG30 hydrotalcite + KNO3, Ultrasonic 6h, 110 ºC 24h – Calcination • 2KNO3 → K2O + O2 + NO + NO2, 485 ºC 48h K-promoter effect** O Mg K 16 0.0 0.2 0.4 0.6 0.8 1.0 1.2 MG30-KNO3 MG30-Cs2 CO3 MG30-K2 CO3 CO2 sorptioncapacity[mol/kg] MG30 Figure 7 Comparison of the sorption capacity of CO2 for pure and alkali-modified HTlc at 676 K, pCO2 of 0.40 bar. * *Oliveira et al., Sep. Purif. Technol., 2008, 62, 137–147. Wu et al., Chem. Eng. Technol., 2013, 36(4), 567-574. **Meis et al., Ind. Eng. Chem. Res., 2010, 49, 8086–8093.
  • 18. 4. Material Development K-Cu-Ni-HTlc (20-5-5 wt. %) hybrid material preparation – Impregnation • MG30 HTlc+ Ni(NO3)2 + Cu(NO3)2 + KNO3, Ultrasonic 6h, 483 K 24h – Calcination • Ni(NO3)2 + Cu(NO3)2 + 2KNO3 → NiO + CuO + K2O + 6NO2 + 3/2O2, 723 K 48h – Reduction • NiO + CuO + 2H2 → 2Ni0.5Cu0.5 + 2H2O, 723 K ~3h 17 40 42 44 46 48 Cu-HTlc K-HTlcCu Ni K-Cu-Ni-HTlc Ni-HTlc 2 [o ] Cu-Ni a) Figure 8 Comparison of XRD patterns (a) and the SEM graph of the K-Cu-Ni-HTlc material (b). Cunha et al., Ind. Eng. Chem. Res., 2014, 53 (10), 3842–3853.
  • 19. 4. Material Development K-Cu-Ni-HTlc hybrid material for tests – Adsorption and SE-SRE reaction performance 18 Cunha et al., Ind. Eng. Chem. Res., 2014, 53 (10), 3842–3853. 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 T = 669 K T = 721 K T = 763 K qCO2 [mol/kg] pCO2 [kPa] a) 0 500 1000 1500 2000 2500 3000 0 20 40 60 80 100 T = 773 K mcat /nEtOH,0 = 43.7 gcat .hmol-1 t [s] yCH4 yH2 yCO2 b) . yH2 ,CO2 ,CH4 [mol%] 0 4 8 12 16 20 yCO yCO [mol%] Figure 9 CO2 adsorption isotherms (a) and SE-SRE reaction (b) over K-Ni-Cu-HTlc material at 773 K, 101 kPa, RS/E = 10. Cu-particles H2C2H5OH, H2O K-Promoted HTlcNi-particles H2 Yield CO2 Yield
  • 20. 5. Process Study SE-SRE operation in a single column – Column arrangement – Reaction conditions 19 0 2 4 6 8 10 0 1500 3000 4500 6000 7500 time[s] RS/C [mol/mol] CO content limit (< 30 ppm) H2 purity limit (> 99%) Allowable operation region a) 0 2 4 6 8 10 0.0 0.3 0.6 0.9 1.2 1.5 H2 produced[mol/kg] RS/C [mol/mol] b) 0.0 0.2 0.4 0.6 0.8 1.0 H2 productivity Thermal efficiency Thermalefficiency[kJ/kJ] Figure 10 The effect of RS/C conditions on operation window (a) and hydrogen production performance (b) with u0 = 0.1 m∙s-1, p = 101.3 kPa at 773 K. Wu et al., Ind. Eng. Chem. Res., 2014, 53 (20), 8515–8527.
  • 21. q'L pL qH pH qL PSA+TSA TSA H = high L = low TH TL PSA . .. . 5. Process Study Pressure effect – Volume increase reaction – Enhance sorbent performance Periodically regeneration – Pressure swing (PSA) – Thermal swing (TSA) – Inert purge (concentration swing) 20 Figure 12 Methods for sorbent regeneration. p [kPa] Operation time [s] H2 produced [mol∙kg-1] Thermal efficiency [kJ/kJ] 101.3 2410 0.761 0.799 304.0 930 0.853 0.791 506.6 485 0.717 0.778 Table 3 Operating performance in SE-SRE under different pressure conditions with CO content (< 30 ppm) limit. 0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0 Adsorbed 101.3 kPa 202.7 kPa 304.0 kPa 405.3 kPa 506.6 kPa qCO2 [mol/kg] z [m] Equilibrium Figure 11 SE-SRE performance under different pressure conditions.
  • 22. 5. Process Study Operating scheme for continuous H2 production SE-SRE vs. SRE performance 21 Operation H2 yield [mol %] CO2 yield [mol %] Thermal efficiency [kJ∙kJ-1] H2 productivity [mol∙kg-1h-1] SE-SRE 78.5 75.0 0.45 0.51 SRE 38.3 51.0 0.47 0.93 Table 4 Comparison of hydrogen production performance for SRE process and cyclic SE-SRE process under CSS. EtOH H2O H2 CO2 H2O H2O H2O H2 Reaction Rinse Regeneration Purge CO2(gas)CO2(ads) H2(gas) CO2(ads)CO2(gas) CH4, H2 COX, H2O H2O CO2(gas)CO2(ads) tinitial treaction trinse tregeneration tpurge Pressure pH pL Time H2O, H2 Wu et al., Ind. Eng. Chem. Res., 2014, 53 (20), 8515–8527.
  • 23. 5. Process Study Two-dimensional adsorptive reactor – Model validation (dR = 3.3 cm) 22 Figure 13 Product distributions as a function of time. Operating conditions: T = 773 K, p = 101 kPa and RS/E = 10. nEtOH,0 = 4∙10-5 mol∙s-1 (a) and 8∙10-5 mol∙s-1 (b). 0 500 1000 1500 2000 2500 3000 3500 0 20 40 60 80 100 yH2 yCO2 t [s] yCH4 a) yH2 ,CO2 ,CH4 [mol%] 0 10 20 30 40 50 PostbreakthroughBreakthrough yCO yCO [mol%] Pre- Breakthrough 0 500 1000 1500 2000 2500 3000 3500 0 20 40 60 80 100 yCH4 yH2 yCO2 PostbreakthroughBreakthrough Prebreakthrough yH2 ,CO2 ,CH4 [mol%] t [s] b) 0 10 20 30 40 50 yCO yCO [mol%] , 1 t t Radial Axial i i i r r z zi i ConvectiveConvective Diffusive Diffusive fluxflux flux flux i r C r C C y y D u C r D u C t r r r z z r                                              ,eaction i adsorptionr Wu et al., Chem. Eng. Sci.., 2014, DOI: 10.1016/j.ces.2014.07.005.
  • 24. 5. Process Study Reactor dynamics (dR = 10 cm) 23 Figure 14 The temperature profiles of the pellet (a,b) and CO2 reaction/adsorption rate (c,d) during the SE-SRE reaction at 773 K, 304 kPa, RS/C = 4 and n0= 0.05 mol∙s-1. 0 1 2 3 4 5 6 -0.04 -0.02 0.00 0.02 0.04 z [m] r[m] 763.0 764.0 765.0 766.0 767.0 768.0 769.0 771.0 772.0 773.0 Tp [K]a) t = 1200 s 0 1 2 3 4 5 6 -0.04 -0.02 0.00 0.02 0.04 z [m] r[m] 763.0 764.0 765.0 766.0 767.0 768.0 769.0 771.0 772.0 773.0 Tp [K]b) t = 2400 s 0 1 2 3 4 5 6 0 1 2 3 4 CO2 Forming CO2 Adsorbing at r = 0 m at r = 0.05 m rCO2 [mol/(m3 pellet s)] z [m] c) at t = 1200 s 0 1 2 3 4 5 6 0 1 2 3 4 CO2 Forming CO2 Adsorbing at r = 0 m at r = 0.05 m rCO2 [mol/(m3 pellet s)] z [m] d) at t = 2400 s
  • 25. 5. Process Study Continuous hydrogen production process 24 Figure 15 Four-column schemes and cyclic configurations employed SE-SRE process. Figure 16 SE-SRE performance (a) and the CO2 loading profile at the end of reaction step (b) during cyclic operation. 0 10 20 30 40 50 99.0 99.2 99.4 99.6 99.8 100.0 H2 purity [mol %] Cycle number H2 purity[mol%] 0 5 10 15 20 25 30 CO content [ppm] COcontent[ppm] a) 0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 Cycle 1 Cycle 2 Cycle 3 CSS qCO2 [mol/kg] z [m] b) r = 0 m fresh sorbent Wu et al., Chem. Eng. Sci.., 2014, DOI: 10.1016/j.ces.2014.07.005.
  • 26. 6. Conclusions High purity H2 can be obtained from SE-SRE with HTlc material as CO2 sorbent Hybrid material can be prepared from the impregnation of active phase(s) on the HTlc material as sorbent KNO3 is found to be a good alkali promoter Continuous high purity H2 production can be performed with a four-column pressure swing operating scheme Radial temperature gradient should be considered in a large reactor for SE-SRE 25
  • 27. 7. Future Work Material developments – Adsorption performance improvement – Pellet preparation and test – Mechanical strength Process developments – Kinetic model with carbon deposit – Real-gas thermodynamic model – Sorption enhanced oxidative and auto-thermal reforming – Integration with fuel cell model SERP concept for H2 production from other feedstocks – Biogas, glycerol, syngas, biomass… 26
  • 28. Acknowledgement 27 Supervisor: Prof. Alírio E. Rodrigues, University of Porto Co-advisor: Dr. Adelino F. Cunha, University of Porto Prof. Jian-Guo Yu and Prof. Ping Li, East China University of Science and Technology Helps from LSRE/LCM group and DEQ-FEUP. Doctoral grant from China Scholarship Council – CSC 2010674011
  • 29. Thank you for your attention! Questions? 28