Functions
Prepared by:
Malik Sabah-ud-din
1
Basic2advanced.blogspot.com
OBJECTIVES
•distinguish functions and relations
•identify domain and range of a function/relation evaluate
functions/relations.
•perform operation on functions/relations
•graph functions/relations
2
Basic2advanced.blogspot.com
Relation is referred to as any set of ordered pair.
Conventionally, It is represented by the ordered pair
( x , y ). x is called the first element or x-coordinate
while y is the second element or y-coordinate of the
ordered pair.
DEFINITION
3
Basic2advanced.blogspot.com
Ways of Expressing a Relation
5. Mapping
2. Tabular form
3. Equation
4. Graph
1. Set notation
4
Basic2advanced.blogspot.com
.
Example: Express the relation y = 2x;x= 0,1,2,3
in 5 ways.
1. Set notation
(a) S = { ( 0, 0) , ( 1, 2 ) , ( 2, 4 ), ( 3, 6) } or
(b) S = { (x , y) such that y = 2x, x = 0, 1, 2, 3 }
2. Tabular form
x 0 1 2 3
y 0 2 4 6
5
Basic2advanced.blogspot.com
3. Equation: y = 2x
4. Graph
y
x
5
-4 -2 1 3 5
5
-4
-2
1
3
5
-5 -1 4
-5
-1
4
-3
-5
2
2
-5
-3
●
●
●
1 2
2 4
6
3
0 0
x y
5. Mapping
6
Basic2advanced.blogspot.com
DEFINITION: Domain and Range
All the possible values of x is called the domain and all the
possible values of y is called the range. In a set of ordered
pairs, the set of first elements and second elements of
ordered pairs is the domain and range, respectively.
Example: Identify the domain and range of the following
relations.
1.) S = { ( 4, 7 ),( 5, 8 ),( 6, 9 ),( 7, 10 ),( 8, 11 ) }
Answer : D: { 4,5,6,7,8} R:{7,8,9,10,11}
7
Basic2advanced.blogspot.com
2.) S = { ( x , y ) s. t. y = | x | ; x  R }
Answer: D: all real nos. R: all real nos. > 0
3) y = x 2 – 5
Answer. D: all real nos. R: all real nos. > -5
4) | y | = x
Answer: D: all real nos. > 0 R: all real nos.
)
,
( 
 )
,
0
[ 
)
,
( 
 )
,
5
[ 

)
,
0
[  )
,
( 

8
Basic2advanced.blogspot.com
2
x
x
2
y


5.
Answer:
D: all real nos. except -2
R: all real nos. except 2
1
x
y 

6. Answer :
D: all real nos. > –1
R: all real nos. > 0
g)
3
3



x
x
y
7. Answer:
D: all real nos. < 3
R: all real nos. except 0
2
except
)
,
(
:
D 

 2
except
)
,
(
:
D 


)
,
1
[
:
D 

)
,
0
[
:
R 
)
3
,
(
: 
D
0
except
)
,
(
:
D 

9
Basic2advanced.blogspot.com
Exercises: Identify the domain and range of the
following relations.
1. {(x,y) | y = x 2 – 4 }
8. y = (x 2 – 3) 2








x
2
x
3
y
)
y
,
x
(
4.
 
3
)
,
( x
y
y
x 
2.
 
9
)
,
( 
 x
y
y
x
3.
 
4
x
3
x
y
)
y
,
x
( 2



5.
y = | x – 7 |
6.
7. y = 25 – x 2
x
5
x
3
y


9.
5
x
25
x
y
2



10.
10
PROBLEM SET #5-1
FUNCTIONS
Identify the domain and range of the following relations.
11
12
Definition: Function
•A function is a special relation such that every first
element is paired to a unique second element.
•It is a set of ordered pairs with no two pairs having
the same first element.

x
y sin

1
3

 x
y
One-to-one and many-to-one functions
Each value of x maps to only one
value of y . . .
Consider the following graphs
Each value of x maps to only one
value of y . . .
BUT many other x values map to
that y.
and each y is mapped from only
one x.
and
Functions
13
One-to-one and many-to-one functions
is an example of a
one-to-one function
1
3

 x
y
is an example of a
many-to-one function

x
y sin


x
y sin

1
3

 x
y
Consider the following graphs
and
Functions
One-to-many is NOT a function. It is just a
relation. Thus a function is a relation but a relation
could never be a function.
14
15
Example: Identify which of the following
relations are functions.
a) S = { ( 4, 7 ), ( 5, 8 ), ( 6, 9 ), ( 7, 10 ), ( 8, 11 ) }
b) S = { ( x , y ) s. t. y = | x | ; x  R }
c) y = x 2 – 5
d) | y | = x
2
x
x
2
y


e)
1
x
y 

f)
16
DEFINITION: Function Notation
•Letters like f , g , h and the likes are used to designate
functions.
•When we use f as a function, then for each x in the
domain of f , f ( x ) denotes the image of x under f .
•The notation f ( x ) is read as “ f of x ”.
17
EXAMPLE: Evaluate each function
value
1. If f ( x ) = x + 9 , what is the value of f ( x 2 ) ?
2. If g ( x ) = 2x – 12 , what is the value of g (– 2 )?
3. If h ( x ) = x 2 + 5 , find h ( x + 1 ).
4. If f(x) = x – 2 and g(x) = 2x2 – 3 x – 5 ,
Find: a) f(g(x)) b) g(f(x))
18
Piecewise Defined Function
if x<0





1
x
x
)
x
(
f
.
1
2
0
x 
if 







2
)
2
x
(
1
x
x
3
)
x
(
f
.
2
A piecewise defined function is defined
by different formulas on different parts
of its domain.
Example:
19
Piecewise Defined Function
if x<0 f(-2), f(-1), f(0), f(1), f(2)
EXAMPLE: Evaluate the piecewise function at the
indicated values.





1
x
x
)
x
(
f
.
1
2
0
x 
if








2
)
2
x
(
1
x
x
3
)
x
(
f
.
2
f(-5), f(0), f(1), f(5)
0
x 
if
if
if
2
x
0 

2
x 
20
DEFINITION: Operations on
Functions
If f (x) and g (x) are two functions, then
a) Sum and Difference
( f + g ) ( x ) = f(x) + g(x)
b) Product
( f g ) ( x ) = [ f(x) ] [ g(x) ]
c) Quotient
( f / g ) ( x ) = f(x) / g(x)
d) Composite
( f ◦ g ) ( x ) = f (g(x))
Example :1. Given f(x) = 11– x and g(x) = x 2 +2x –10
evaluate each of the following functions
a. f(-5)
b. g(2)
c. (f g)(5)
d. (f - g)(4)
e. f(7)+g(x)
f. g(-1) – f(-4)
g. (f ○ g)(x)
h. (g ○ f)(x)
i. (g ○ f)(2)
j. (f○ g)

)
(x 2
21

22

23
24
DEFINITION: Graph of a Function
•If f(x) is a function, then its graph is the set of all points
(x,y) in the two-dimensional plane for which (x,y) is an
ordered pair in f(x)
•One way to graph a function is by point plotting.
•We can also find the domain and range from the
graph of a function.
25
Example: Graph each of the following
functions.
5
x
3
y
.
1 

1
x
y
.
2 

2
x
16
y
.
3 

5
x
y
.
4 2


3
x
2
y
.
5 
x
5
x
3
y


6.
4
x
y
.
7 


26
Graph of piecewise defined function
The graph of a piecewise function consists of separate
functions.





1
x
2
x
)
x
(
f
.
1
2
if
if 1
x 
1
x 









3
x
x
9
x
)
x
(
f
.
2 2
0
x 
1
x 
3
x
0 

if
if
if
Example: Graph each piecewise function.
x
y
1
-2
Plot the points in the coordinate plane
27
x
y
1
-2
Plot the points in the coordinate plane
28
29
Graph of absolute value function.
Recall that





x
x
x
if
if
0
x 
0
x 
Using the same method that we used in graphing
piecewise function, we note that the graph of f
coincides with the line y=x to the right of the y axis
and coincides with the line y= -x the left of the y-axis.
30
Example: Graph each of the follow
functions.
y = | x – 7 |
1.
y = x-| x - 2 |
4.
x
y
1
-2
Plot the points in the coordinate plane
31

32
33
Definition: Greatest integer function.
greatest integer less than or equal to x
The greatest integer function is defined by
  
x
Example:
  
0
  
1
.
0
  
3
.
0
  
9
.
0
  
1
  
1
.
1
  
2
.
1
  
9
.
1
  
2
  
1
.
2
  
4
.
3
  
 4
.
3
  
 9
.
0
0
0
0
0
1
1
1
1
2
2
3
-4
-1
34
Definition: Least integer function.
least integer greater than or equal to x
The least integer function is defined by
  
x
Example:
  
0
  
1
.
0
  
3
.
0
  
9
.
0
  
1
  
1
.
1
  
2
.
1
  
9
.
1
  
2
  
1
.
2
  
4
.
3
  
 4
.
3
  
 9
.
0
0
1
1
1
1
2
2
2
2
3
4
-3
0
35
Graph of greatest integer function.
 
x
y 
Sketch the graph of
x  
x
y 
1
x
2 



0
x
1 


1
x
0 

2
x
1 

3
x
2 

2

1

0
1
2
x
y
1
-2
Plot the points in the coordinate plane
36
37
Graph of least integer function.
 
x
y 
Sketch the graph of
x  
x
y 
1
x
2 



0
x
1 


1
x
0 

2
x
1 

3
x
2 

1

0
1
2
3
x
y
1
-2
Plot the points in the coordinate plane
38

Functions

  • 1.
  • 2.
    OBJECTIVES •distinguish functions andrelations •identify domain and range of a function/relation evaluate functions/relations. •perform operation on functions/relations •graph functions/relations 2 Basic2advanced.blogspot.com
  • 3.
    Relation is referredto as any set of ordered pair. Conventionally, It is represented by the ordered pair ( x , y ). x is called the first element or x-coordinate while y is the second element or y-coordinate of the ordered pair. DEFINITION 3 Basic2advanced.blogspot.com
  • 4.
    Ways of Expressinga Relation 5. Mapping 2. Tabular form 3. Equation 4. Graph 1. Set notation 4 Basic2advanced.blogspot.com
  • 5.
    . Example: Express therelation y = 2x;x= 0,1,2,3 in 5 ways. 1. Set notation (a) S = { ( 0, 0) , ( 1, 2 ) , ( 2, 4 ), ( 3, 6) } or (b) S = { (x , y) such that y = 2x, x = 0, 1, 2, 3 } 2. Tabular form x 0 1 2 3 y 0 2 4 6 5 Basic2advanced.blogspot.com
  • 6.
    3. Equation: y= 2x 4. Graph y x 5 -4 -2 1 3 5 5 -4 -2 1 3 5 -5 -1 4 -5 -1 4 -3 -5 2 2 -5 -3 ● ● ● 1 2 2 4 6 3 0 0 x y 5. Mapping 6 Basic2advanced.blogspot.com
  • 7.
    DEFINITION: Domain andRange All the possible values of x is called the domain and all the possible values of y is called the range. In a set of ordered pairs, the set of first elements and second elements of ordered pairs is the domain and range, respectively. Example: Identify the domain and range of the following relations. 1.) S = { ( 4, 7 ),( 5, 8 ),( 6, 9 ),( 7, 10 ),( 8, 11 ) } Answer : D: { 4,5,6,7,8} R:{7,8,9,10,11} 7 Basic2advanced.blogspot.com
  • 8.
    2.) S ={ ( x , y ) s. t. y = | x | ; x  R } Answer: D: all real nos. R: all real nos. > 0 3) y = x 2 – 5 Answer. D: all real nos. R: all real nos. > -5 4) | y | = x Answer: D: all real nos. > 0 R: all real nos. ) , (   ) , 0 [  ) , (   ) , 5 [   ) , 0 [  ) , (   8 Basic2advanced.blogspot.com
  • 9.
    2 x x 2 y   5. Answer: D: all realnos. except -2 R: all real nos. except 2 1 x y   6. Answer : D: all real nos. > –1 R: all real nos. > 0 g) 3 3    x x y 7. Answer: D: all real nos. < 3 R: all real nos. except 0 2 except ) , ( : D    2 except ) , ( : D    ) , 1 [ : D   ) , 0 [ : R  ) 3 , ( :  D 0 except ) , ( : D   9 Basic2advanced.blogspot.com
  • 10.
    Exercises: Identify thedomain and range of the following relations. 1. {(x,y) | y = x 2 – 4 } 8. y = (x 2 – 3) 2         x 2 x 3 y ) y , x ( 4.   3 ) , ( x y y x  2.   9 ) , (   x y y x 3.   4 x 3 x y ) y , x ( 2    5. y = | x – 7 | 6. 7. y = 25 – x 2 x 5 x 3 y   9. 5 x 25 x y 2    10. 10
  • 11.
    PROBLEM SET #5-1 FUNCTIONS Identifythe domain and range of the following relations. 11
  • 12.
    12 Definition: Function •A functionis a special relation such that every first element is paired to a unique second element. •It is a set of ordered pairs with no two pairs having the same first element.
  • 13.
     x y sin  1 3   x y One-to-oneand many-to-one functions Each value of x maps to only one value of y . . . Consider the following graphs Each value of x maps to only one value of y . . . BUT many other x values map to that y. and each y is mapped from only one x. and Functions 13
  • 14.
    One-to-one and many-to-onefunctions is an example of a one-to-one function 1 3   x y is an example of a many-to-one function  x y sin   x y sin  1 3   x y Consider the following graphs and Functions One-to-many is NOT a function. It is just a relation. Thus a function is a relation but a relation could never be a function. 14
  • 15.
    15 Example: Identify whichof the following relations are functions. a) S = { ( 4, 7 ), ( 5, 8 ), ( 6, 9 ), ( 7, 10 ), ( 8, 11 ) } b) S = { ( x , y ) s. t. y = | x | ; x  R } c) y = x 2 – 5 d) | y | = x 2 x x 2 y   e) 1 x y   f)
  • 16.
    16 DEFINITION: Function Notation •Letterslike f , g , h and the likes are used to designate functions. •When we use f as a function, then for each x in the domain of f , f ( x ) denotes the image of x under f . •The notation f ( x ) is read as “ f of x ”.
  • 17.
    17 EXAMPLE: Evaluate eachfunction value 1. If f ( x ) = x + 9 , what is the value of f ( x 2 ) ? 2. If g ( x ) = 2x – 12 , what is the value of g (– 2 )? 3. If h ( x ) = x 2 + 5 , find h ( x + 1 ). 4. If f(x) = x – 2 and g(x) = 2x2 – 3 x – 5 , Find: a) f(g(x)) b) g(f(x))
  • 18.
    18 Piecewise Defined Function ifx<0      1 x x ) x ( f . 1 2 0 x  if         2 ) 2 x ( 1 x x 3 ) x ( f . 2 A piecewise defined function is defined by different formulas on different parts of its domain. Example:
  • 19.
    19 Piecewise Defined Function ifx<0 f(-2), f(-1), f(0), f(1), f(2) EXAMPLE: Evaluate the piecewise function at the indicated values.      1 x x ) x ( f . 1 2 0 x  if         2 ) 2 x ( 1 x x 3 ) x ( f . 2 f(-5), f(0), f(1), f(5) 0 x  if if if 2 x 0   2 x 
  • 20.
    20 DEFINITION: Operations on Functions Iff (x) and g (x) are two functions, then a) Sum and Difference ( f + g ) ( x ) = f(x) + g(x) b) Product ( f g ) ( x ) = [ f(x) ] [ g(x) ] c) Quotient ( f / g ) ( x ) = f(x) / g(x) d) Composite ( f ◦ g ) ( x ) = f (g(x))
  • 21.
    Example :1. Givenf(x) = 11– x and g(x) = x 2 +2x –10 evaluate each of the following functions a. f(-5) b. g(2) c. (f g)(5) d. (f - g)(4) e. f(7)+g(x) f. g(-1) – f(-4) g. (f ○ g)(x) h. (g ○ f)(x) i. (g ○ f)(2) j. (f○ g)  ) (x 2 21
  • 22.
  • 23.
  • 24.
    24 DEFINITION: Graph ofa Function •If f(x) is a function, then its graph is the set of all points (x,y) in the two-dimensional plane for which (x,y) is an ordered pair in f(x) •One way to graph a function is by point plotting. •We can also find the domain and range from the graph of a function.
  • 25.
    25 Example: Graph eachof the following functions. 5 x 3 y . 1   1 x y . 2   2 x 16 y . 3   5 x y . 4 2   3 x 2 y . 5  x 5 x 3 y   6. 4 x y . 7   
  • 26.
    26 Graph of piecewisedefined function The graph of a piecewise function consists of separate functions.      1 x 2 x ) x ( f . 1 2 if if 1 x  1 x           3 x x 9 x ) x ( f . 2 2 0 x  1 x  3 x 0   if if if Example: Graph each piecewise function.
  • 27.
    x y 1 -2 Plot the pointsin the coordinate plane 27
  • 28.
    x y 1 -2 Plot the pointsin the coordinate plane 28
  • 29.
    29 Graph of absolutevalue function. Recall that      x x x if if 0 x  0 x  Using the same method that we used in graphing piecewise function, we note that the graph of f coincides with the line y=x to the right of the y axis and coincides with the line y= -x the left of the y-axis.
  • 30.
    30 Example: Graph eachof the follow functions. y = | x – 7 | 1. y = x-| x - 2 | 4.
  • 31.
    x y 1 -2 Plot the pointsin the coordinate plane 31
  • 32.
  • 33.
    33 Definition: Greatest integerfunction. greatest integer less than or equal to x The greatest integer function is defined by    x Example:    0    1 . 0    3 . 0    9 . 0    1    1 . 1    2 . 1    9 . 1    2    1 . 2    4 . 3     4 . 3     9 . 0 0 0 0 0 1 1 1 1 2 2 3 -4 -1
  • 34.
    34 Definition: Least integerfunction. least integer greater than or equal to x The least integer function is defined by    x Example:    0    1 . 0    3 . 0    9 . 0    1    1 . 1    2 . 1    9 . 1    2    1 . 2    4 . 3     4 . 3     9 . 0 0 1 1 1 1 2 2 2 2 3 4 -3 0
  • 35.
    35 Graph of greatestinteger function.   x y  Sketch the graph of x   x y  1 x 2     0 x 1    1 x 0   2 x 1   3 x 2   2  1  0 1 2
  • 36.
    x y 1 -2 Plot the pointsin the coordinate plane 36
  • 37.
    37 Graph of leastinteger function.   x y  Sketch the graph of x   x y  1 x 2     0 x 1    1 x 0   2 x 1   3 x 2   1  0 1 2 3
  • 38.
    x y 1 -2 Plot the pointsin the coordinate plane 38