SlideShare a Scribd company logo
Chapter 3
Free convection
(Formulae & Problems)
Forced Convection – Internalflow – Home work
Air at2 bar pressure and 60oC isheated asitflowsthrough a tube ofdiameter 25 m m ata
velocityof15 m/s.Ifthewalltemperature ismaintained at100oC, findtheheattransferper
unitlength ofthe tube.How much would be the bulk temperature increase over one meter
lengthofthetube..
Given:
Pressure,p = 2x 105N/m2
Velocity,U = 15m/s
Diameter,D = 0.025m
Inletairtemperature,Tmi = 60oC
Length,L = 1 m
Walltemp = 100oC
To find: i)Heat transferrate(Q ) ii)Riseinbulktemperature (ΔT)
Solution:
Given pressureisabove patm. So ρ and γvarieswithpressure.
(ValueofPr,k,Cp willremain same)
γ= γatm x(patm/pgiven)
γ= 9.485x10-6m2/s
ρ = (p /RT)
ρ = 2.092kg/m3
Propertiesofairat60oC
ρ = 1.060kg/m3
γ= 18.97x10-6m2/s
Pr= 0.696
k = 0.02896W/mK
Re = (UD/γ)= 3.95x 104
SinceRe > 2300,flowisturbulent.
Re > 10000and Pr valueisinbetween 0.6and 160.
So, Nu =0.023(Re)0.8(Pr)n
The processinvolvedisheating,hence n = 0.4
Nu = 94.7
Heat transfercoefficient,h = Nu k /D
h = 109.7W/m2K
Forced Convection – Internalflow – Home work
Mass flowrate,m = ρAU
m = 0.015kg /s
Heat transfer,Q = m Cp ∆T
Q = m Cp (Tmo -Tmi) = 0.015x1005x (Tmo –60) (Cp forairis1005J/kgK)
Heat transfer,Q = hA ∆T = h πDL (Tw-Tm)
Q = 109.7xπ x0.025x1 x(100–Tm)
Q = 109.7xπ x0.025x1 x(100–[Tmi + Tmo) /2])
Q = 109.7xπ x0.025x1 x(100–[60+ Tmo) /2])
EquatingtheequationsforQ and solvingforTmo, we getTmo = 77.78oC
Riseinbulktemperature (ΔT) = (Tmo –Tmi)
ΔT = 17.78oC
Heat transfer,Q = m Cp ∆T = m Cp (Tmo -Tmi)
Q = 268.03W
Free convection
Free convection – If the fluid motion is produced due to change in density
resulting from temperature gradients, the mode of heat transfer issaid to be
freeornaturalconvection.
Exam ples:
Heatingofrooms by useofradiators
Cooling of transmission lines,electric transformers and rectifiers
Wallofairconditioninghouse,Condenser ofsome refrigerationunits.
The rateofheattransferiscalculatedusingthegeneralconvectionlaw
Q = hA (Tw–T∞)
Where Q = heattransferrateinWatts
A =Areainm2
Tw = SurfacetemperatureinoC
T∞ = FluidtemperatureinoC
1. Film temperature,Tf= (Tw+ T∞) /2,
whereTw– Surfacetemperature inoC and T∞– Fluidtemperature inoC
2. Coefficientofthermal expansion
β = 1/Tf (TfinK)
3. NusseltNumber, Nu = hL/k,
where h – Heat transfercoefficient,W/m2K
L –Length,m,
k –Thermal conductivity,W/mK
4. Grashof Number forverticalplate,Gr = (gxβ x L3 x ∆T) /γ2
(HMT Data book,Pg:134)
where L – Lengthoftheplate,
∆T –(Tw–T∞)
γ– Kinematic viscosity,m2/s,
β –Coefficientofthermal expansion
5. IfGrPr valueislessthan109,flowislaminar.IfGrPr valueisgreaterthan109,flowis
turbulent.
i.e.,Gr Pr < 109,->Laminar flow
Gr Pr > 109,->Turbulentflow
Formula used forFree Convection
6. Forlaminarflow(Verticalplate):
NusseltNumber, Nu = 0.59(GrPr)0.25
Thisexpressionisvalidfor,104< Gr Pr < 109 (HMT Data book,Pg:135)
7. Forturbulentflow(Verticalplate):
NusseltNumber, Nu = 0.10[GrPr]0.333 (HMT Databook,Pg:135)
8. Heat transfer(Verticalplate):Q = hA (Tw–T∞)
9. Grashof Number forHorizontalplate:Gr = (gx β x Lc
3 x
∆T) /γ2 where,Lc –Characteristiclength= W /2,
W –Width oftheplate (HMT Data book,Pg:135)
10. Forhorizontalplate,upper surfaceheated,
NusseltNumber, Nu = 0.54[Gr Pr]0.25
Thisexpressionisvalidfor,2x104< Gr Pr < 8x106 (HMT Databook,Pg:135)
NusseltNumber, Nu = 0.15[GrPr]0.333
Thisexpressionisvalidfor,8x106< Gr Pr < 1011 (HMT Data book,Pg:135)
11. Forhorizontalplate,lowersurfaceheated,
NusseltNumber, Nu = 0.27[GrPr]0.25
Thisexpressionisvalidfor,105< Gr Pr < 1011 (HMT Data book,Pg:136)
Formula used forFree Convection
Formula used forFree Convection
12. Heat transfer(Horizontalplate),Q = (hu + hl)xA x (Tw–T∞)
where hu –Upper surfaceheated,heattransfercoefficientW/m2K,
hl–Lower surfaceheated,heattransfercoefficientW/m2K
13. Forhorizontalcylinder,Nu = C [Gr Pr ]m (HMT Data book,Pg:137)
14. Forhorizontalcylinder,
Heat transfer,Q = hA (Tw–T∞)
whereA = π D L
• (HMT Data book,Pg:137)For sphere,NusseltNumber, Nu = 2+ 0.43[Gr Pr]0.25
Heat transfer,Q = h xA x(Tw–T∞)
whereA = 4π r2
GrDPr C m
10-10 to 10-2 0.675 0.058
10-2 to 102 1.02 0.148
102 to 104 0.85 0.188
104 to 107 0.48 0.25
107 to 1012 0.125 0.333
Formula used forFree Convection
16. Boundary layerthickness
δx= [3.93x(Pr)-0.5(0.952+ Pr)0.25x(Gr)-0.25] (HMT Data book,Pg:134)
17. Maximum velocity,
umax = 0.766x γx (0.952+ Pr)-1/2x[{gβ (Tw–T∞)} /γ2]1/2 x χ1/2
Free Convection
1)A verticalplateof0.75m heightisat170oC and isexposedtoairatatemperature of
105oC and one atmosphere. Calculate:
(i)Mean heattransfercoefficient,
(ii)Rate ofheattransferperunitwidthoftheplate
Given:
Length,L = 0.75m Wall temperature,Tw = 170oC Fluidtemperature,T∞ = 105oC
To find:1.Heat transfercoefficient,(h )2.Heat transfer(Q )perunitwidth
Solution:
Velocity(U )isnotgiven.So
this isnatural convection
typeproblem.
FilmTemp, Tf = (Tw+ T∞) /2
Tf= 137.5oC
Propertiesofairat
137.5oC ~ 140oC
(HMT Data book,Pg:33)
ρ = 0.854kg/m3
γ= 27.80x10-6m2/s
Pr= 0.684
k = 0.03489W/mK
Coefficientofthermal expansion,
β = 1/(TfinK) = 1 /(137.5+ 273)= 2.4x 10-3K-1
GrashofNumber,
Gr = (gxβ x L3 x∆T) /γ2(HMT Data book,Pg:134)
8Gr = 8.35x10
Gr Pr = 5.71x108
SinceGr Pr < 109,flowislaminar.Gr Pr valueisinbetween
104and 109i.e.,104< Gr Pr < 109
(HMT Data book,Pg:135)
Q = hA (Tw–T∞ )= h xL W x(Tw–T∞ ) (Given,W = 1m)
Heat transfer,Q = 206.8W
So Nu = 0.59(GrPr)0.25
Nu = 91.21
Heat transfercoefficient,h = Nu k /L
h = 4.24W/m2K
Free Convection
2)A verticalplateof0.7m wideand 1.2m heightmaintained atatemperature of90oC ina
room at30oC.Calculatetheconvectiveheatloss.
Given:
Walltemperature,Tw = 90oC RoomWidth,W = 0.7m Height(or)Length,L = 1.2m
temperature,T∞ = 30oC
To find:Convectiveheatloss(Q )
Solution:
Velocity(U )isnotgiven.So
this isnatural convection
typeproblem.
FilmTemp, Tf = (Tw+ Tά) /2
Tf= 60oC
Properties of air at 60oC
(HMT Data book,Pg:33)
ρ = 1.060kg/m3
γ= 18.97x10-6m2/s
Pr= 0.696
k = 0.02896W/mK
Convectiveheattransfercoefficient,h = Nu k /L
h = 4.32W/m2K
Q = hA (Tw–T∞ )= h xL W x(Tw–T∞ )= 218.16
Convectiveheatloss,Q = 218.16W
Coefficientofthermal expansion,
β = 1/(TfinK) = 1 /(60+ 273)= 3 x 10-3K-1
Grashof Number, Gr = (gxβ x L3 x∆T) /γ2
Gr = 8.4x109
Gr Pr = 5.9x 109 SinceGr Pr > 109,flowisturbulent.
So Nu = 0.10(GrPr)0.333 (HMT Data book,Pg:135)
Nu = 179.3
Free Convection
3)A horizontalplateof800m m long,70m m wideismaintained ata temperature 140oC ina
largetankoffullofwaterat60oC.Determine thetotalheatlossfrom theplate.
Given:
Platetemperature,Tw = 140oCHorizontal platelength,L = 0.8m Wide,W = 0.070m
Fluidtemperature,T∞ = 60oC
To find:Totalheatlossfrom theplate.
Solution:
FilmTemp, Tf = (Tw+ T∞ )/2
Tf= 100oC
Propertiesofwaterat100oC
(HMT Data book,Pg:21)
ρ = 961kg/m3
γ= 0.293x10-6m2/s
Pr= 1.740
k = 0.6804W/mK
For horizontalplate,Lc –Characteristiclength= W /2 = 0.035m
(Pg:135)
βwater = 0.76 x 10-3 K-1
(HMT Data book,Pg:29)
cGrashof Number, Gr = (gx β xL 3 x∆T) /γ2 (Pg:134)
Gr = 0.297x109
Gr Pr = 0.518x109
Gr Pr valueisinbetween8x106and 1011
i.e.,8x106< Gr Pr < 1011
So,forhorizontalplate,uppersurfaceheated,
Nu = 0.15(GrPr)0.333
Nu = 119.66 Heat transfercoefficientforuppersurfaceheated,
hu = Nu k /Lc = 2326.19W/m2K
Free Convection
For horizontalplate,Lower surfaceheated,
Nu = 0.27[GrPr]0.25 (HMT Data book,Pg:136)
Nu = 40.73
Heat transfercoefficientforlowersurfaceheated,hl= Nu k /Lc
hl= 791.79W/m2K
Totalheattransfer,Q = (hu + hl)A ∆T
= (hu + hl)xL W x(Tw–T∞ )
Q = 13968.55W
Totalhealloss,Q = 13,968.55W
Free Convection
4)Airflowsthrougha longrectangular300 m m heightx 800 m m widthair-conditioningduct,
theouterduct surfacetemperature isat20oC. Iftheduct isuninsulatedand exposed toairat
40oC. Calculatetheheatgainedby theduct,assuming ducttobehorizontal.
Given:
Width,W = 0.8m Surfacetemperature,Tw = 20oCLength (or)Height,L = 0.3m
Fluidtemperature,T∞ = 40oC
To find:Rateofheatgained(Q)
Solution:
FilmTemp, Tf = (Tw+ T∞ )/2
Tf= 30oC
Properties of air at 30oC
(HMT Data book,Pg:33)
ρ = 1.165kg/m3
γ= 16x10-6m2/s
Pr= 0.701
k = 0.02675W/mK
β = 1/(TfinK)
β = 3.3x10-3K-1
Sincetheductislaidhorizontally,theheatgainisby free
convection from theverticaland thehorizontaltopand
bottomsides.
Free convection from the vertical sides:
Grashof Number, Gr = (gxβ x L3 x∆T) /γ2
Gr = 6.8x107
Gr Pr = 4.7x107
SinceGr Pr < 109,flowislaminar.
Gr Pr valueisinbetween104and 109i.e.,104< Gr Pr < 109
So,Nu = 0.59(Gr Pr)0.25 (HMT Data book,Pg:135)
Nu = 48.85
Free Convection
Average heattransfercoefficient,h = Nu k /L
hv= 4.35W/m2K
Heat transferfrom verticalside,Qv = hvA (T∞–Tw) = h xL W x (T∞–Tw) = 20.88W
Heat transferfrom bothsideofverticalsides,Qv = 2xQv = 41.76W
Heat transferfrom horizontalsides:
For horizontalplate,Characteristiclength,Lc = W /2 = 0.4
Grashof Number, Gr = (gxβ xLc
3 x∆T) /γ2
Gr = 1.6x108
Gr Pr = 1.13x108
For horizontalplate,uppersurfaceheated, 8 x 106< Gr Pr < 1011.
Nu = 0.15[GrPr]0.333= 72.17
Heat transfercoefficientforuppersurfaceheated, hhu = Nu k /Lc = 4.82W/m2K
For horizontalplate,lowersurfaceheated, 105< Gr Pr < 1011
Nu = 0.27[GrPr]0.25 = 27.8
Heat transfercoefficientforlowersurfaceheated,hhl= Nu k /Lc = 1.85W/m2K
Heat transferfrom horizontalplate,Q H = (hu + hl)A ∆T = (hu + hl)x L W x(T∞–Tw) = 32.05W
Totalheattransfer,Q = {Heat transferfrom verticalsides}+ {Heat transferfrom horizontalsides}
Q = 73.8W
5)A horizontalwireof3m m diameter ismaintained at100oC and isexposedtoairat20o
C. Calculatethefollowing:
1.Heat transfercoefficient,
2.Maximum current.Take resistanceofwireis7 ohm/m.
Free Convection
G iven:
Horizontalwirediameter,D = 3x10-3m
Airtemperature,T∞ = 20oC
Surface temperature, Tw = 100o C
Resistanceofthewire,R = 7ohm/m
To find:1.Heat transfercoefficient(h),2.Maximum current(I).
Solution:
FilmTemp, Tf = (Tw+ T∞) /2
Tf= 60oC
Propertiesofairat60oC
ρ = 1.060kg/m3
γ= 18.97x10-6m2/s
Pr= 0.696
k = 0.02896W/mK
(Pg:137)
(Pg:134)
β = 1/(TfinK)
β = 3 x10-3K-1
Grashoff Number, Gr = (gxβ xD3 x∆T) /γ2
Gr = 176.64
For horizontalcylinder,Nu = C [Gr Pr]m
Gr Pr = 122.9, CorrespondingC =0.85and m = 0.188
Nu = 2.1
Heat transfercoefficient,h = Nu k /D
h = 20.27W/m2K
Heat transfer,Q = h A (Tw–Tα) =h x π DL x(Tw–T∞ )= 15.2W/m
Heat transfer,Q = I2R
Maximum current,I= (Q/R)1/2= 1.47Amps /m
Free Convection
6)A Sphere ofdiameter 20 m m isat300oC isimmersed inairat25oC.Calculatetheconvective
heatloss.
Given:
Diameter ofsphere,D = 0.020m Surfacetemperature,Tw = 300oC Fluidtemp,T∞ = 25oC
To find:Convectiveheatloss,(Q )
Solution:
FilmTemp, Tf = (Tw+ T∞) /2
Tf= 162.5oC
Propertiesofairat
162.5oC ~ 160oC
ρ = 0.815kg/m3
γ= 30.09x10-6m2/s
Pr= 0.682
k = 0.03640W/mK
(Pg:137)
Heat transfercoefficient,h = Nu k /D
h = 14.51W/m2K
(Pg:134)
Heat transfer,Q =h A (Tw–T∞) =h x 4π r2x(Tw–T∞)
Convectiveheatloss,Q = 5.01W
β = 1/(TfinK)
β = 2.29x10-3K-1
Grashof Number, Gr = (gxβ xD3 x∆T) /γ2
Gr = 54,734.2
Gr Pr= 37,328.7
For sphere,[1< Gr Pr < 105]
Nu = 2+0.43[Gr Pr]0.25
Nu = 7.97
A vertical plate of 40 cm long ismaintained at 80 oC and isexposed to air at 22 oC.
Calculatethefollowing
i)Boundary layerthicknessatthetailingedgeoftheplate.
ii)The same plateisplacedina wind tunneland isblown overitata velocityof5
m/s. Calculatetheboundary layerthickness.
iii)Average heattransfercoefficientfornaturaland forcedconvectionfor
above mentioneddata.
A horizontal pipe of 15 cm diameter ismaintained at wall temperature of 200 oC and is
exposed toairat37 oC. Calculate the heat loss(including radiativeloss)per meter length
ifemissivityofpipeis0.92.
HOME W O R K

More Related Content

What's hot

NATURAL/FREE CONVECTION
NATURAL/FREE CONVECTIONNATURAL/FREE CONVECTION
NATURAL/FREE CONVECTION
YugModi
 
2nd law of thermodynamic
2nd law of thermodynamic2nd law of thermodynamic
2nd law of thermodynamic
Manthan Kanani
 
Lecture Notes in Heat Transfer
Lecture Notes in Heat TransferLecture Notes in Heat Transfer
Lecture Notes in Heat Transfer
Barhm Mohamad
 
Gas mixtures
Gas mixturesGas mixtures
Gas mixtures
haider majeed
 
Condensation on vertical surface
Condensation on vertical surfaceCondensation on vertical surface
Condensation on vertical surface
Mostafa Ghadamyari
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangers
mohkab1
 
008 internal force convection
008 internal force convection008 internal force convection
008 internal force convection
Saranyu Pilai
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
abdulsamad alhamawande
 
Log mean temperature difference
Log mean temperature differenceLog mean temperature difference
Log mean temperature difference
Rupesh Datir
 
Dimensionless number
Dimensionless numberDimensionless number
Dimensionless number
anwesakar
 
Uppload chap 5 convection heat trasnfer
Uppload chap  5 convection heat trasnferUppload chap  5 convection heat trasnfer
Uppload chap 5 convection heat trasnfer
Debre Markos University
 
Steam Condenser performance and loss diagnostic
Steam Condenser performance and loss diagnosticSteam Condenser performance and loss diagnostic
Steam Condenser performance and loss diagnostic
Pichai Chaibamrung
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
Aree Salah
 
Heat Exchange
Heat Exchange Heat Exchange
Heat Exchange
Mahmudul Hasan
 
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILINGANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
Arun Sarasan
 
Classification of heat exchanger
Classification of heat exchangerClassification of heat exchanger
Classification of heat exchanger
Sonu Gupta
 
Engineering applications of thermodynamics
Engineering applications of thermodynamicsEngineering applications of thermodynamics
Engineering applications of thermodynamics
Nisarg Amin
 
Fundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignFundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger Design
Addisu Dagne Zegeye
 
Shell and tube heat exchanger design
Shell and tube heat exchanger designShell and tube heat exchanger design
Shell and tube heat exchanger design
hossie
 

What's hot (20)

NATURAL/FREE CONVECTION
NATURAL/FREE CONVECTIONNATURAL/FREE CONVECTION
NATURAL/FREE CONVECTION
 
2nd law of thermodynamic
2nd law of thermodynamic2nd law of thermodynamic
2nd law of thermodynamic
 
Lecture Notes in Heat Transfer
Lecture Notes in Heat TransferLecture Notes in Heat Transfer
Lecture Notes in Heat Transfer
 
Gas mixtures
Gas mixturesGas mixtures
Gas mixtures
 
Condensation on vertical surface
Condensation on vertical surfaceCondensation on vertical surface
Condensation on vertical surface
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangers
 
008 internal force convection
008 internal force convection008 internal force convection
008 internal force convection
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
 
Log mean temperature difference
Log mean temperature differenceLog mean temperature difference
Log mean temperature difference
 
Dimensionless number
Dimensionless numberDimensionless number
Dimensionless number
 
Uppload chap 5 convection heat trasnfer
Uppload chap  5 convection heat trasnferUppload chap  5 convection heat trasnfer
Uppload chap 5 convection heat trasnfer
 
Heat exchanger
Heat exchanger Heat exchanger
Heat exchanger
 
Steam Condenser performance and loss diagnostic
Steam Condenser performance and loss diagnosticSteam Condenser performance and loss diagnostic
Steam Condenser performance and loss diagnostic
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
 
Heat Exchange
Heat Exchange Heat Exchange
Heat Exchange
 
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILINGANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
 
Classification of heat exchanger
Classification of heat exchangerClassification of heat exchanger
Classification of heat exchanger
 
Engineering applications of thermodynamics
Engineering applications of thermodynamicsEngineering applications of thermodynamics
Engineering applications of thermodynamics
 
Fundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignFundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger Design
 
Shell and tube heat exchanger design
Shell and tube heat exchanger designShell and tube heat exchanger design
Shell and tube heat exchanger design
 

Similar to Free convection heat and mass transfer

2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
RaviShankar269655
 
Lectures on Extended surfaces ppt
Lectures on Extended surfaces        pptLectures on Extended surfaces        ppt
Lectures on Extended surfaces ppt
EngrKaisanMuhammadUs
 
Thermal diffusivity
Thermal diffusivityThermal diffusivity
Thermal diffusivity
Kushaji
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt
somnathmahapatra6
 
INTRODUCTION TO CONVECTION FOR MECH.pptx
INTRODUCTION TO CONVECTION FOR MECH.pptxINTRODUCTION TO CONVECTION FOR MECH.pptx
INTRODUCTION TO CONVECTION FOR MECH.pptx
HarishPanjagala1
 
thermal considerations in pipe flows.ppt
thermal considerations in pipe flows.pptthermal considerations in pipe flows.ppt
thermal considerations in pipe flows.ppt
trialaccountforme
 
2016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 52016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 5
Janet Leong
 
Experiment on single-mode feedback control of oscillatory thermocapillary con...
Experiment on single-mode feedback control of oscillatory thermocapillary con...Experiment on single-mode feedback control of oscillatory thermocapillary con...
Experiment on single-mode feedback control of oscillatory thermocapillary con...
IJERA Editor
 
Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...lynxcem
 
Manual tables all new
Manual tables all newManual tables all new
Manual tables all new
Awais Ali
 
All experiments 1
All experiments 1All experiments 1
All experiments 1
Khedija Ben Tourkia
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
Samandar Yuldoshev
 
Heat transfer(HT) lab manual
Heat transfer(HT) lab manualHeat transfer(HT) lab manual
Heat transfer(HT) lab manual
nmahi96
 
Effectiveness for Counterflow heat exchanger
Effectiveness for Counterflow heat exchangerEffectiveness for Counterflow heat exchanger
Effectiveness for Counterflow heat exchanger
Elesh Koshti
 
Heat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutionsHeat Convection by Latif M. Jiji - solutions
UNIT-1 CONDUCTION
UNIT-1 CONDUCTIONUNIT-1 CONDUCTION
UNIT-1 CONDUCTION
Ramesh Thiagarajan
 
HMT UNIT-II.pptx
HMT UNIT-II.pptxHMT UNIT-II.pptx
HMT UNIT-II.pptx
manishdas760890
 

Similar to Free convection heat and mass transfer (20)

S08 chap6 web
S08 chap6 webS08 chap6 web
S08 chap6 web
 
No 6 g3 solved problems
No 6 g3  solved problemsNo 6 g3  solved problems
No 6 g3 solved problems
 
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
 
Lectures on Extended surfaces ppt
Lectures on Extended surfaces        pptLectures on Extended surfaces        ppt
Lectures on Extended surfaces ppt
 
Thermal diffusivity
Thermal diffusivityThermal diffusivity
Thermal diffusivity
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt
 
INTRODUCTION TO CONVECTION FOR MECH.pptx
INTRODUCTION TO CONVECTION FOR MECH.pptxINTRODUCTION TO CONVECTION FOR MECH.pptx
INTRODUCTION TO CONVECTION FOR MECH.pptx
 
thermal considerations in pipe flows.ppt
thermal considerations in pipe flows.pptthermal considerations in pipe flows.ppt
thermal considerations in pipe flows.ppt
 
2016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 52016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 5
 
Experiment on single-mode feedback control of oscillatory thermocapillary con...
Experiment on single-mode feedback control of oscillatory thermocapillary con...Experiment on single-mode feedback control of oscillatory thermocapillary con...
Experiment on single-mode feedback control of oscillatory thermocapillary con...
 
Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...Long Term Performance Prediction of a Borehole and Determination of Optimal T...
Long Term Performance Prediction of a Borehole and Determination of Optimal T...
 
Manual tables all new
Manual tables all newManual tables all new
Manual tables all new
 
All experiments 1
All experiments 1All experiments 1
All experiments 1
 
Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237Chm3410hwk02 soln.252145237
Chm3410hwk02 soln.252145237
 
Heat transfer(HT) lab manual
Heat transfer(HT) lab manualHeat transfer(HT) lab manual
Heat transfer(HT) lab manual
 
Effectiveness for Counterflow heat exchanger
Effectiveness for Counterflow heat exchangerEffectiveness for Counterflow heat exchanger
Effectiveness for Counterflow heat exchanger
 
Chapter 8a
Chapter 8aChapter 8a
Chapter 8a
 
Heat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutionsHeat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutions
 
UNIT-1 CONDUCTION
UNIT-1 CONDUCTIONUNIT-1 CONDUCTION
UNIT-1 CONDUCTION
 
HMT UNIT-II.pptx
HMT UNIT-II.pptxHMT UNIT-II.pptx
HMT UNIT-II.pptx
 

Recently uploaded

Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
frank0071
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
pablovgd
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
IshaGoswami9
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
RASHMI M G
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
 

Recently uploaded (20)

Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
 

Free convection heat and mass transfer

  • 2. Forced Convection – Internalflow – Home work Air at2 bar pressure and 60oC isheated asitflowsthrough a tube ofdiameter 25 m m ata velocityof15 m/s.Ifthewalltemperature ismaintained at100oC, findtheheattransferper unitlength ofthe tube.How much would be the bulk temperature increase over one meter lengthofthetube.. Given: Pressure,p = 2x 105N/m2 Velocity,U = 15m/s Diameter,D = 0.025m Inletairtemperature,Tmi = 60oC Length,L = 1 m Walltemp = 100oC To find: i)Heat transferrate(Q ) ii)Riseinbulktemperature (ΔT) Solution: Given pressureisabove patm. So ρ and γvarieswithpressure. (ValueofPr,k,Cp willremain same) γ= γatm x(patm/pgiven) γ= 9.485x10-6m2/s ρ = (p /RT) ρ = 2.092kg/m3 Propertiesofairat60oC ρ = 1.060kg/m3 γ= 18.97x10-6m2/s Pr= 0.696 k = 0.02896W/mK Re = (UD/γ)= 3.95x 104 SinceRe > 2300,flowisturbulent. Re > 10000and Pr valueisinbetween 0.6and 160. So, Nu =0.023(Re)0.8(Pr)n The processinvolvedisheating,hence n = 0.4 Nu = 94.7 Heat transfercoefficient,h = Nu k /D h = 109.7W/m2K
  • 3. Forced Convection – Internalflow – Home work Mass flowrate,m = ρAU m = 0.015kg /s Heat transfer,Q = m Cp ∆T Q = m Cp (Tmo -Tmi) = 0.015x1005x (Tmo –60) (Cp forairis1005J/kgK) Heat transfer,Q = hA ∆T = h πDL (Tw-Tm) Q = 109.7xπ x0.025x1 x(100–Tm) Q = 109.7xπ x0.025x1 x(100–[Tmi + Tmo) /2]) Q = 109.7xπ x0.025x1 x(100–[60+ Tmo) /2]) EquatingtheequationsforQ and solvingforTmo, we getTmo = 77.78oC Riseinbulktemperature (ΔT) = (Tmo –Tmi) ΔT = 17.78oC Heat transfer,Q = m Cp ∆T = m Cp (Tmo -Tmi) Q = 268.03W
  • 4. Free convection Free convection – If the fluid motion is produced due to change in density resulting from temperature gradients, the mode of heat transfer issaid to be freeornaturalconvection. Exam ples: Heatingofrooms by useofradiators Cooling of transmission lines,electric transformers and rectifiers Wallofairconditioninghouse,Condenser ofsome refrigerationunits. The rateofheattransferiscalculatedusingthegeneralconvectionlaw Q = hA (Tw–T∞) Where Q = heattransferrateinWatts A =Areainm2 Tw = SurfacetemperatureinoC T∞ = FluidtemperatureinoC
  • 5. 1. Film temperature,Tf= (Tw+ T∞) /2, whereTw– Surfacetemperature inoC and T∞– Fluidtemperature inoC 2. Coefficientofthermal expansion β = 1/Tf (TfinK) 3. NusseltNumber, Nu = hL/k, where h – Heat transfercoefficient,W/m2K L –Length,m, k –Thermal conductivity,W/mK 4. Grashof Number forverticalplate,Gr = (gxβ x L3 x ∆T) /γ2 (HMT Data book,Pg:134) where L – Lengthoftheplate, ∆T –(Tw–T∞) γ– Kinematic viscosity,m2/s, β –Coefficientofthermal expansion 5. IfGrPr valueislessthan109,flowislaminar.IfGrPr valueisgreaterthan109,flowis turbulent. i.e.,Gr Pr < 109,->Laminar flow Gr Pr > 109,->Turbulentflow Formula used forFree Convection
  • 6. 6. Forlaminarflow(Verticalplate): NusseltNumber, Nu = 0.59(GrPr)0.25 Thisexpressionisvalidfor,104< Gr Pr < 109 (HMT Data book,Pg:135) 7. Forturbulentflow(Verticalplate): NusseltNumber, Nu = 0.10[GrPr]0.333 (HMT Databook,Pg:135) 8. Heat transfer(Verticalplate):Q = hA (Tw–T∞) 9. Grashof Number forHorizontalplate:Gr = (gx β x Lc 3 x ∆T) /γ2 where,Lc –Characteristiclength= W /2, W –Width oftheplate (HMT Data book,Pg:135) 10. Forhorizontalplate,upper surfaceheated, NusseltNumber, Nu = 0.54[Gr Pr]0.25 Thisexpressionisvalidfor,2x104< Gr Pr < 8x106 (HMT Databook,Pg:135) NusseltNumber, Nu = 0.15[GrPr]0.333 Thisexpressionisvalidfor,8x106< Gr Pr < 1011 (HMT Data book,Pg:135) 11. Forhorizontalplate,lowersurfaceheated, NusseltNumber, Nu = 0.27[GrPr]0.25 Thisexpressionisvalidfor,105< Gr Pr < 1011 (HMT Data book,Pg:136) Formula used forFree Convection
  • 7. Formula used forFree Convection 12. Heat transfer(Horizontalplate),Q = (hu + hl)xA x (Tw–T∞) where hu –Upper surfaceheated,heattransfercoefficientW/m2K, hl–Lower surfaceheated,heattransfercoefficientW/m2K 13. Forhorizontalcylinder,Nu = C [Gr Pr ]m (HMT Data book,Pg:137) 14. Forhorizontalcylinder, Heat transfer,Q = hA (Tw–T∞) whereA = π D L • (HMT Data book,Pg:137)For sphere,NusseltNumber, Nu = 2+ 0.43[Gr Pr]0.25 Heat transfer,Q = h xA x(Tw–T∞) whereA = 4π r2 GrDPr C m 10-10 to 10-2 0.675 0.058 10-2 to 102 1.02 0.148 102 to 104 0.85 0.188 104 to 107 0.48 0.25 107 to 1012 0.125 0.333
  • 8. Formula used forFree Convection 16. Boundary layerthickness δx= [3.93x(Pr)-0.5(0.952+ Pr)0.25x(Gr)-0.25] (HMT Data book,Pg:134) 17. Maximum velocity, umax = 0.766x γx (0.952+ Pr)-1/2x[{gβ (Tw–T∞)} /γ2]1/2 x χ1/2
  • 9. Free Convection 1)A verticalplateof0.75m heightisat170oC and isexposedtoairatatemperature of 105oC and one atmosphere. Calculate: (i)Mean heattransfercoefficient, (ii)Rate ofheattransferperunitwidthoftheplate Given: Length,L = 0.75m Wall temperature,Tw = 170oC Fluidtemperature,T∞ = 105oC To find:1.Heat transfercoefficient,(h )2.Heat transfer(Q )perunitwidth Solution: Velocity(U )isnotgiven.So this isnatural convection typeproblem. FilmTemp, Tf = (Tw+ T∞) /2 Tf= 137.5oC Propertiesofairat 137.5oC ~ 140oC (HMT Data book,Pg:33) ρ = 0.854kg/m3 γ= 27.80x10-6m2/s Pr= 0.684 k = 0.03489W/mK Coefficientofthermal expansion, β = 1/(TfinK) = 1 /(137.5+ 273)= 2.4x 10-3K-1 GrashofNumber, Gr = (gxβ x L3 x∆T) /γ2(HMT Data book,Pg:134) 8Gr = 8.35x10 Gr Pr = 5.71x108 SinceGr Pr < 109,flowislaminar.Gr Pr valueisinbetween 104and 109i.e.,104< Gr Pr < 109 (HMT Data book,Pg:135) Q = hA (Tw–T∞ )= h xL W x(Tw–T∞ ) (Given,W = 1m) Heat transfer,Q = 206.8W So Nu = 0.59(GrPr)0.25 Nu = 91.21 Heat transfercoefficient,h = Nu k /L h = 4.24W/m2K
  • 10. Free Convection 2)A verticalplateof0.7m wideand 1.2m heightmaintained atatemperature of90oC ina room at30oC.Calculatetheconvectiveheatloss. Given: Walltemperature,Tw = 90oC RoomWidth,W = 0.7m Height(or)Length,L = 1.2m temperature,T∞ = 30oC To find:Convectiveheatloss(Q ) Solution: Velocity(U )isnotgiven.So this isnatural convection typeproblem. FilmTemp, Tf = (Tw+ Tά) /2 Tf= 60oC Properties of air at 60oC (HMT Data book,Pg:33) ρ = 1.060kg/m3 γ= 18.97x10-6m2/s Pr= 0.696 k = 0.02896W/mK Convectiveheattransfercoefficient,h = Nu k /L h = 4.32W/m2K Q = hA (Tw–T∞ )= h xL W x(Tw–T∞ )= 218.16 Convectiveheatloss,Q = 218.16W Coefficientofthermal expansion, β = 1/(TfinK) = 1 /(60+ 273)= 3 x 10-3K-1 Grashof Number, Gr = (gxβ x L3 x∆T) /γ2 Gr = 8.4x109 Gr Pr = 5.9x 109 SinceGr Pr > 109,flowisturbulent. So Nu = 0.10(GrPr)0.333 (HMT Data book,Pg:135) Nu = 179.3
  • 11. Free Convection 3)A horizontalplateof800m m long,70m m wideismaintained ata temperature 140oC ina largetankoffullofwaterat60oC.Determine thetotalheatlossfrom theplate. Given: Platetemperature,Tw = 140oCHorizontal platelength,L = 0.8m Wide,W = 0.070m Fluidtemperature,T∞ = 60oC To find:Totalheatlossfrom theplate. Solution: FilmTemp, Tf = (Tw+ T∞ )/2 Tf= 100oC Propertiesofwaterat100oC (HMT Data book,Pg:21) ρ = 961kg/m3 γ= 0.293x10-6m2/s Pr= 1.740 k = 0.6804W/mK For horizontalplate,Lc –Characteristiclength= W /2 = 0.035m (Pg:135) βwater = 0.76 x 10-3 K-1 (HMT Data book,Pg:29) cGrashof Number, Gr = (gx β xL 3 x∆T) /γ2 (Pg:134) Gr = 0.297x109 Gr Pr = 0.518x109 Gr Pr valueisinbetween8x106and 1011 i.e.,8x106< Gr Pr < 1011 So,forhorizontalplate,uppersurfaceheated, Nu = 0.15(GrPr)0.333 Nu = 119.66 Heat transfercoefficientforuppersurfaceheated, hu = Nu k /Lc = 2326.19W/m2K
  • 12. Free Convection For horizontalplate,Lower surfaceheated, Nu = 0.27[GrPr]0.25 (HMT Data book,Pg:136) Nu = 40.73 Heat transfercoefficientforlowersurfaceheated,hl= Nu k /Lc hl= 791.79W/m2K Totalheattransfer,Q = (hu + hl)A ∆T = (hu + hl)xL W x(Tw–T∞ ) Q = 13968.55W Totalhealloss,Q = 13,968.55W
  • 13. Free Convection 4)Airflowsthrougha longrectangular300 m m heightx 800 m m widthair-conditioningduct, theouterduct surfacetemperature isat20oC. Iftheduct isuninsulatedand exposed toairat 40oC. Calculatetheheatgainedby theduct,assuming ducttobehorizontal. Given: Width,W = 0.8m Surfacetemperature,Tw = 20oCLength (or)Height,L = 0.3m Fluidtemperature,T∞ = 40oC To find:Rateofheatgained(Q) Solution: FilmTemp, Tf = (Tw+ T∞ )/2 Tf= 30oC Properties of air at 30oC (HMT Data book,Pg:33) ρ = 1.165kg/m3 γ= 16x10-6m2/s Pr= 0.701 k = 0.02675W/mK β = 1/(TfinK) β = 3.3x10-3K-1 Sincetheductislaidhorizontally,theheatgainisby free convection from theverticaland thehorizontaltopand bottomsides. Free convection from the vertical sides: Grashof Number, Gr = (gxβ x L3 x∆T) /γ2 Gr = 6.8x107 Gr Pr = 4.7x107 SinceGr Pr < 109,flowislaminar. Gr Pr valueisinbetween104and 109i.e.,104< Gr Pr < 109 So,Nu = 0.59(Gr Pr)0.25 (HMT Data book,Pg:135) Nu = 48.85
  • 14. Free Convection Average heattransfercoefficient,h = Nu k /L hv= 4.35W/m2K Heat transferfrom verticalside,Qv = hvA (T∞–Tw) = h xL W x (T∞–Tw) = 20.88W Heat transferfrom bothsideofverticalsides,Qv = 2xQv = 41.76W Heat transferfrom horizontalsides: For horizontalplate,Characteristiclength,Lc = W /2 = 0.4 Grashof Number, Gr = (gxβ xLc 3 x∆T) /γ2 Gr = 1.6x108 Gr Pr = 1.13x108 For horizontalplate,uppersurfaceheated, 8 x 106< Gr Pr < 1011. Nu = 0.15[GrPr]0.333= 72.17 Heat transfercoefficientforuppersurfaceheated, hhu = Nu k /Lc = 4.82W/m2K For horizontalplate,lowersurfaceheated, 105< Gr Pr < 1011 Nu = 0.27[GrPr]0.25 = 27.8 Heat transfercoefficientforlowersurfaceheated,hhl= Nu k /Lc = 1.85W/m2K Heat transferfrom horizontalplate,Q H = (hu + hl)A ∆T = (hu + hl)x L W x(T∞–Tw) = 32.05W Totalheattransfer,Q = {Heat transferfrom verticalsides}+ {Heat transferfrom horizontalsides} Q = 73.8W
  • 15. 5)A horizontalwireof3m m diameter ismaintained at100oC and isexposedtoairat20o C. Calculatethefollowing: 1.Heat transfercoefficient, 2.Maximum current.Take resistanceofwireis7 ohm/m. Free Convection G iven: Horizontalwirediameter,D = 3x10-3m Airtemperature,T∞ = 20oC Surface temperature, Tw = 100o C Resistanceofthewire,R = 7ohm/m To find:1.Heat transfercoefficient(h),2.Maximum current(I). Solution: FilmTemp, Tf = (Tw+ T∞) /2 Tf= 60oC Propertiesofairat60oC ρ = 1.060kg/m3 γ= 18.97x10-6m2/s Pr= 0.696 k = 0.02896W/mK (Pg:137) (Pg:134) β = 1/(TfinK) β = 3 x10-3K-1 Grashoff Number, Gr = (gxβ xD3 x∆T) /γ2 Gr = 176.64 For horizontalcylinder,Nu = C [Gr Pr]m Gr Pr = 122.9, CorrespondingC =0.85and m = 0.188 Nu = 2.1 Heat transfercoefficient,h = Nu k /D h = 20.27W/m2K Heat transfer,Q = h A (Tw–Tα) =h x π DL x(Tw–T∞ )= 15.2W/m Heat transfer,Q = I2R Maximum current,I= (Q/R)1/2= 1.47Amps /m
  • 16. Free Convection 6)A Sphere ofdiameter 20 m m isat300oC isimmersed inairat25oC.Calculatetheconvective heatloss. Given: Diameter ofsphere,D = 0.020m Surfacetemperature,Tw = 300oC Fluidtemp,T∞ = 25oC To find:Convectiveheatloss,(Q ) Solution: FilmTemp, Tf = (Tw+ T∞) /2 Tf= 162.5oC Propertiesofairat 162.5oC ~ 160oC ρ = 0.815kg/m3 γ= 30.09x10-6m2/s Pr= 0.682 k = 0.03640W/mK (Pg:137) Heat transfercoefficient,h = Nu k /D h = 14.51W/m2K (Pg:134) Heat transfer,Q =h A (Tw–T∞) =h x 4π r2x(Tw–T∞) Convectiveheatloss,Q = 5.01W β = 1/(TfinK) β = 2.29x10-3K-1 Grashof Number, Gr = (gxβ xD3 x∆T) /γ2 Gr = 54,734.2 Gr Pr= 37,328.7 For sphere,[1< Gr Pr < 105] Nu = 2+0.43[Gr Pr]0.25 Nu = 7.97
  • 17. A vertical plate of 40 cm long ismaintained at 80 oC and isexposed to air at 22 oC. Calculatethefollowing i)Boundary layerthicknessatthetailingedgeoftheplate. ii)The same plateisplacedina wind tunneland isblown overitata velocityof5 m/s. Calculatetheboundary layerthickness. iii)Average heattransfercoefficientfornaturaland forcedconvectionfor above mentioneddata. A horizontal pipe of 15 cm diameter ismaintained at wall temperature of 200 oC and is exposed toairat37 oC. Calculate the heat loss(including radiativeloss)per meter length ifemissivityofpipeis0.92. HOME W O R K