SlideShare a Scribd company logo
1 of 23
EXTENDED SURFACES / FINS
Convection: Heat transfer between a solid surface and a moving
fluid is governed by the Newton’s cooling law: q = hA(Ts-T).
Therefore, to increase the convective heat transfer, one can
 Increase the temperature difference (Ts-T) between the
surface and the fluid.
 Increase the convection coefficient h. This can be
accomplished by increasing the fluid flow over the surface since
h is a function of the flow velocity and the higher the velocity,
the higher the h. Example: a cooling fan.
 Increase the contact surface area A. Example: a heat sink with
fins.
Extended Surface Analysis
x
Tb
q kA
dT
dx
x C
  q q
dq
dx
dx
x dx x
x
  
dq h dA T T
conv S
  
( )( ), where dA is the surface area of the element
S
AC is the cross-sectional area
Energy Balance:
if k, A are all constants.
x
C
q q dq q
dq
dx
dx hdA T T
kA
d T
dx
dx hP T T dx
x dx conv x
x
S
C
     
   
 

( )
( ) ,
2
2
0
P: the fin perimeter
Ac: the fin cross-sectional area
Extended Surface Analysis
(contd….)
d T
dx
hP
kA
T T
x T x T
d
dx
m
hP
kA
D m
x C e C e
C
C
mx mx
2
2
2
2
2 2 2
1 2
0
0 0
  

    
 



( ) ,
( ) ( ) ,
, , ( )
( )
,
A second - order, ordinary differential equation
Define a new variable = so that
where m
Characteristics equation with two real roots: + m & - m
The general solution is of the form
To evaluate the two constants C and C we need to specify
two boundary conditions:
The first one is obvious: the base temperature is known as T(0) = T
The second condition will depend on the end condition of the tip
2
1 2
b


 

Extended Surface Analysis (contd...)
For example: assume the tip is insulated and no heat transfer
d/dx(x=L)=0
The temperature distribution is given by
)
cosh(
)
(
cosh
)
(
mL
x
L
m
T
T
T
x
T
b
b









The fin heat transfer rate is given by
mL
M
mL
hPkA
x
dx
dT
kA
q C
C
f tan
tanh
)
0
( 




Temperature distribution for fins of
different configurations
Case Tip Condition Temp. Distribution Fin heat transfer
A Convection heat
transfer:
h(L)=-k(d/dx)x=L
mL
mk
h
mL
x
L
m
mk
h
x
L
m
sinh
)
(
cosh
)
(
sinh
)
(
)
(
cosh




M
mL
mk
h
mL
mL
mk
h
mL
o
sinh
)
(
cosh
cosh
)
(
sinh



B Adiabatic
(d/dx)x=L=0 mL
x
L
m
cosh
)
(
cosh  mL
M tanh
0

C Given temperature:
(L)=L
mL
x
L
m
x
L
m
b
L
sinh
)
(
sinh
)
(
sinh
)
( 




mL
mL
M b
L
sinh
)
(cosh
0




D Infinitely long fin
(L)=0
mx
e
M 0

b
C
b
b
C
hPkA
M
T
T
kA
hP
m
T
T













,
)
0
(
, 2
Example
An Aluminum pot is used to boil water as shown below. The
handle of the pot is 20-cm long, 3-cm wide, and 0.5-cm thick.
The pot is exposed to room air at 25C, and the convection
coefficient is 5 W/m2 C. Question: can you touch the handle
when the water is boiling? (k for aluminum is 237 W/m C)
100 C
T = 25 C
h = 5 W/ m2 C
x
Example (contd...)
We can model the pot handle as an extended surface. Assume that
there is no heat transfer at the free end of the handle. The condition
matches that specified in the fins Table, case B. Use the following
data:
h=5 W/ m2 C, P=2W+2t=2(0.03+0.005)=0.07(m), k=237 W/mC,
AC=Wt=0.00015(m2), L=0.2(m)
Therefore, m=(hP/kAC)1/2=3.138,
M=(hPkAC)(Tb-T)=0.111b=0.111(100-25)=8.325(W)
T x T
T T
m L x
mL
T x
T x x
b b
( ) cosh ( )
cosh
cosh[ . ( . )]
cosh( . * . )
,
( ) . * cosh[ . ( . )]
- 


 





  


25
100 25
3138 0 2
3138 0 2
25 62 32 3138 0 2
Example (contd…)
Plot the temperature distribution along the pot handle
0 0.05 0.1 0.15 0.2
85
90
95
100
T( )
x
x
As shown in the figure, temperature drops off but not very steeply.
This is because k of aluminium is fairly high.
At the midpoint, T(0.1)=90.4C. At the end T(0.2)=87.3C.
Therefore, it should not be safe to touch the end of the handle.
The end condition is insulated, hence the gradient is zero.
Example (contd...)
The total heat transfer through the handle can be calculated
also. qf=Mtanh(mL)=8.325tanh[(3.138)(0.2)]=4.632 W
If a stainless steel handle is used instead, what will happen?
For a stainless steel, the thermal conductivity k=15 W/m°C,
which is much less compared to aluminium.
Using the same process parameter as before:
0281
.
0
,
47
.
12
2
/
1











 C
C
hPkA
M
kA
hP
m
Example (contd...)
)]
(
47
.
12
cosh[
3
.
12
25
)
(
cosh
)
(
cosh
)
(
x
L
x
T
mL
x
L
m
T
T
T
x
T
b









0 0.05 0.1 0.15 0.2
0
25
50
75
100
T x
( )
x
Temperature at the handle (x=0.2 m) is only 37.3 °C, not hot at
all. This example illustrates the important role of the thermal
conductivity of the material in the temperature distribution in a
fin.
Fin Design
Total heat loss: qf=Mtanh(mL) for an
adiabatic fin, or qf=Mtanh(mLC) if there is
convective heat transfer at the tip
C C
C
,
,
hP
where = , and M= hPkA hPkA ( )
Use the thermal resistance concept:
( )
hPkA tanh( )( )
where is the thermal resistance of the fin.
For a fin with an adiabatic tip, the fin
b b
c
b
f b
t f
t f
m T T
kA
T T
q mL T T
R
R
 


 

  
,
C
resistance can be expressed as
( ) 1
hPkA [tanh( )]
b
t f
f
T T
R
q mL


 
Tb
T
Fin Effectiveness
How effective a fin can enhance heat transfer is characterized by the
fin effectiveness f: Ratio of fin heat transfer and the heat transfer
without the fin. For an adiabatic fin:
C
hPkA tanh( )
tanh( )
( )
If the fin is long enough, mL>2, tanh(mL) 1,
it can be considered an infinite fin (case D of table3.4)
In order to enhance heat tra
f f
f
C b C C
f
C C
q q mL kP
mL
q hA T T hA hA
kP k P
hA h A



   


 
   
 
nsfer, 1.
However, 2 will be considered justifiable
If <1 then we have an insulator instead of a heat fin
f
f
f





Fin Effectiveness
(contd...)
 To increase f, the fin’s material should have higher thermal
conductivity, k.
 It seems to be counterintuitive that the lower convection
coefficient, h, the higher f. But it is not because if h is very high,
it is not necessary to enhance heat transfer by adding heat fins.
Therefore, heat fins are more effective if h is low. Observation: If
fins are to be used on surfaces separating gas and liquid. Fins are
usually placed on the gas side. (Why?)
f
C C
kP k P
hA h A

 
   
 
 P/AC should be as high as possible. Use a square fin with
a dimension of W by W as an example: P=4W, AC=W2,
P/AC=(4/W). The smaller W, the higher the P/AC, and the
higher f.
 Conclusion: It is preferred to use thin and closely spaced
(to increase the total number) fins.
Fin Effectiveness
(contd...)
Fin Effectiveness (contd...)
, ,
, ,
The effectiveness of a fin can also be characterized as
( )/
( ) ( )/
It is a ratio of the thermal resistance due to convection to
the thermal resistance of a fin
f f b t f t h
f
C b b t h t f
q q T T R R
q hA T T T T R R
 
 

   
 
. In order to enhance heat transfer,
the fin's resistance should be lower than that of the resistance
due only to convection.
Fin Efficiency
Define Fin efficiency:
where represents an idealized situation such that the fin is made up
of material with infinite thermal conductivity. Therefore, the fin should
be at the same temperature as the temperature of the base.
f
 
  
q
q
q
q hA T T
f
f b
max
max
max ( )
T(x)<Tb for heat transfer
to take place
Total fin heat transfer qf
Real situation Ideal situation
For infinite k
T(x)=Tb, the heat transfer
is maximum
Ideal heat transfer qmax
Tb
x x
Fin Efficiency
(contd…)
Fin Efficiency (cont.)
Use an adiabatic rectangular fin as an example:
max
f
max
,
,
( ) tanh
tanh
( ) ( )
tanh tanh
(see Table 3.5 for of common fins)
The fin heat transfer: ( )
, where
1/( )
f c b
f
f b b
c
f f f f b
b b
f t f
f f t f
q hPkA T T mL
M mL
q hA T T hPL T T
mL mL
mL
hP
L
kA
q q hA T T
T T T T
q R
hA R


 


 

 

  
 
 
  
 
 
,
, , b
1
Thermal resistance for a single fin.
1
As compared to convective heat transfer:
In order to have a lower resistance as that is required to
enhance heat transfer: or A
f f
t b
b
t b t f f f
hA
R
hA
R R A




 
Overall Fin Efficiency
Overall fin efficiency for an array of fins:
Define terms: Ab: base area exposed to coolant
Af: surface area of a single fin
At: total area including base area and total
finned surface, At=Ab+NAf
N: total number of fins
qb
qf
Overall Fin Efficiency
(contd…)
( ) ( )
[( ) ]( ) [ (1 )]( )
[1 (1 )]( ) ( )
Define overall fin efficiency: 1 (1 )
t b f b b f f b
t f f f b t f f b
f
t f b O t b
t
f
O f
t
q q Nq hA T T N hA T T
h A NA N A T T h A NA T T
NA
hA T T hA T T
A
NA
A

 
 
 
 
 
 
     
       
     
  
Heat Transfer from a Fin
Array
,
,
,
,
1
( ) where
Compare to heat transfer without fins
1
( ) ( )( )
where is the base area (unexposed) for the fin
To enhance heat transfer
Th
b
t t O b t O
t O t O
b b b f b
b f
t O
T T
q hA T T R
R hA
q hA T T h A NA T T
hA
A
A A





 

   
     

O
at is, to increase the effective area .
t
A

Thermal Resistance Concept
T1
T
Tb
T2
T1 T
Tb
T2
L1 t
R1=L1/(k1A)
Rb=t/(kbA)
)
/(
1
, O
t
O
t hA
R 

1 1
1 ,
b t O
T T T T
q
R R R R
 
 
 
 

A=Ab+NAb,f

More Related Content

Similar to Lectures on Extended surfaces ppt

427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
KajalMIshra63
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
056JatinGavel
 
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
RaviShankar269655
 
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17
Luis Acuña
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
YaredAssefa10
 

Similar to Lectures on Extended surfaces ppt (20)

Heat exchanger
Heat exchangerHeat exchanger
Heat exchanger
 
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
427962671-HT3-Unsteady-State-Heat-Transfer-f-pptx-Lipika-Mam-Ppt.pptx
 
Tutorial.pptx
Tutorial.pptxTutorial.pptx
Tutorial.pptx
 
Lecture 10 temperature. thermometers. thermal expansion.
Lecture 10   temperature. thermometers. thermal expansion.Lecture 10   temperature. thermometers. thermal expansion.
Lecture 10 temperature. thermometers. thermal expansion.
 
Tutorial#2.pptx
Tutorial#2.pptxTutorial#2.pptx
Tutorial#2.pptx
 
Free convection
Free convectionFree convection
Free convection
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
2- C?>,cllblm,cvblkjbvclkbjlcjblkjlbkjcvlkbjonduction.pdf
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 01 Solutions
 
No 6 g3 solved problems
No 6 g3  solved problemsNo 6 g3  solved problems
No 6 g3 solved problems
 
Heat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutionsHeat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutions
 
HMT UNIT-II.pptx
HMT UNIT-II.pptxHMT UNIT-II.pptx
HMT UNIT-II.pptx
 
Biofluid Chapter 3.6.pdf
Biofluid Chapter 3.6.pdfBiofluid Chapter 3.6.pdf
Biofluid Chapter 3.6.pdf
 
HT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptxHT3_Unsteady State Heat Transfer_f.pptx
HT3_Unsteady State Heat Transfer_f.pptx
 
Fins equation & lumped heat capacity system
Fins equation & lumped heat capacity systemFins equation & lumped heat capacity system
Fins equation & lumped heat capacity system
 
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17Fisica para ingenieria y ciencias  Bauer Vol I - solucioario capitulo 17
Fisica para ingenieria y ciencias Bauer Vol I - solucioario capitulo 17
 
Conduction equation cartesian, Cylindrical, spherical (7).pptx
Conduction equation  cartesian, Cylindrical, spherical (7).pptxConduction equation  cartesian, Cylindrical, spherical (7).pptx
Conduction equation cartesian, Cylindrical, spherical (7).pptx
 
Thermal diffusivity
Thermal diffusivityThermal diffusivity
Thermal diffusivity
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transfer
 

More from EngrKaisanMuhammadUs (6)

Convective Heat Transfer Lectures ppt
Convective Heat Transfer Lectures       pptConvective Heat Transfer Lectures       ppt
Convective Heat Transfer Lectures ppt
 
Introduction to Heat_Transfer_ppt.ppt
Introduction to    Heat_Transfer_ppt.pptIntroduction to    Heat_Transfer_ppt.ppt
Introduction to Heat_Transfer_ppt.ppt
 
2 dimentional steady state conduction.pdf
2 dimentional steady state conduction.pdf2 dimentional steady state conduction.pdf
2 dimentional steady state conduction.pdf
 
Introduction to suspension-system-in-automobiles
Introduction to suspension-system-in-automobilesIntroduction to suspension-system-in-automobiles
Introduction to suspension-system-in-automobiles
 
lecture11.3.ppt
lecture11.3.pptlecture11.3.ppt
lecture11.3.ppt
 
Chapter13 (1).ppt
Chapter13 (1).pptChapter13 (1).ppt
Chapter13 (1).ppt
 

Recently uploaded

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 

Recently uploaded (20)

NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 

Lectures on Extended surfaces ppt

  • 1.
  • 2. EXTENDED SURFACES / FINS Convection: Heat transfer between a solid surface and a moving fluid is governed by the Newton’s cooling law: q = hA(Ts-T). Therefore, to increase the convective heat transfer, one can  Increase the temperature difference (Ts-T) between the surface and the fluid.  Increase the convection coefficient h. This can be accomplished by increasing the fluid flow over the surface since h is a function of the flow velocity and the higher the velocity, the higher the h. Example: a cooling fan.  Increase the contact surface area A. Example: a heat sink with fins.
  • 3. Extended Surface Analysis x Tb q kA dT dx x C   q q dq dx dx x dx x x    dq h dA T T conv S    ( )( ), where dA is the surface area of the element S AC is the cross-sectional area Energy Balance: if k, A are all constants. x C q q dq q dq dx dx hdA T T kA d T dx dx hP T T dx x dx conv x x S C              ( ) ( ) , 2 2 0 P: the fin perimeter Ac: the fin cross-sectional area
  • 4. Extended Surface Analysis (contd….) d T dx hP kA T T x T x T d dx m hP kA D m x C e C e C C mx mx 2 2 2 2 2 2 2 1 2 0 0 0               ( ) , ( ) ( ) , , , ( ) ( ) , A second - order, ordinary differential equation Define a new variable = so that where m Characteristics equation with two real roots: + m & - m The general solution is of the form To evaluate the two constants C and C we need to specify two boundary conditions: The first one is obvious: the base temperature is known as T(0) = T The second condition will depend on the end condition of the tip 2 1 2 b     
  • 5. Extended Surface Analysis (contd...) For example: assume the tip is insulated and no heat transfer d/dx(x=L)=0 The temperature distribution is given by ) cosh( ) ( cosh ) ( mL x L m T T T x T b b          The fin heat transfer rate is given by mL M mL hPkA x dx dT kA q C C f tan tanh ) 0 (     
  • 6. Temperature distribution for fins of different configurations Case Tip Condition Temp. Distribution Fin heat transfer A Convection heat transfer: h(L)=-k(d/dx)x=L mL mk h mL x L m mk h x L m sinh ) ( cosh ) ( sinh ) ( ) ( cosh     M mL mk h mL mL mk h mL o sinh ) ( cosh cosh ) ( sinh    B Adiabatic (d/dx)x=L=0 mL x L m cosh ) ( cosh  mL M tanh 0  C Given temperature: (L)=L mL x L m x L m b L sinh ) ( sinh ) ( sinh ) (      mL mL M b L sinh ) (cosh 0     D Infinitely long fin (L)=0 mx e M 0  b C b b C hPkA M T T kA hP m T T              , ) 0 ( , 2
  • 7. Example An Aluminum pot is used to boil water as shown below. The handle of the pot is 20-cm long, 3-cm wide, and 0.5-cm thick. The pot is exposed to room air at 25C, and the convection coefficient is 5 W/m2 C. Question: can you touch the handle when the water is boiling? (k for aluminum is 237 W/m C) 100 C T = 25 C h = 5 W/ m2 C x
  • 8. Example (contd...) We can model the pot handle as an extended surface. Assume that there is no heat transfer at the free end of the handle. The condition matches that specified in the fins Table, case B. Use the following data: h=5 W/ m2 C, P=2W+2t=2(0.03+0.005)=0.07(m), k=237 W/mC, AC=Wt=0.00015(m2), L=0.2(m) Therefore, m=(hP/kAC)1/2=3.138, M=(hPkAC)(Tb-T)=0.111b=0.111(100-25)=8.325(W) T x T T T m L x mL T x T x x b b ( ) cosh ( ) cosh cosh[ . ( . )] cosh( . * . ) , ( ) . * cosh[ . ( . )] -                25 100 25 3138 0 2 3138 0 2 25 62 32 3138 0 2
  • 9. Example (contd…) Plot the temperature distribution along the pot handle 0 0.05 0.1 0.15 0.2 85 90 95 100 T( ) x x As shown in the figure, temperature drops off but not very steeply. This is because k of aluminium is fairly high. At the midpoint, T(0.1)=90.4C. At the end T(0.2)=87.3C. Therefore, it should not be safe to touch the end of the handle. The end condition is insulated, hence the gradient is zero.
  • 10. Example (contd...) The total heat transfer through the handle can be calculated also. qf=Mtanh(mL)=8.325tanh[(3.138)(0.2)]=4.632 W If a stainless steel handle is used instead, what will happen? For a stainless steel, the thermal conductivity k=15 W/m°C, which is much less compared to aluminium. Using the same process parameter as before: 0281 . 0 , 47 . 12 2 / 1             C C hPkA M kA hP m
  • 11. Example (contd...) )] ( 47 . 12 cosh[ 3 . 12 25 ) ( cosh ) ( cosh ) ( x L x T mL x L m T T T x T b          0 0.05 0.1 0.15 0.2 0 25 50 75 100 T x ( ) x Temperature at the handle (x=0.2 m) is only 37.3 °C, not hot at all. This example illustrates the important role of the thermal conductivity of the material in the temperature distribution in a fin.
  • 12. Fin Design Total heat loss: qf=Mtanh(mL) for an adiabatic fin, or qf=Mtanh(mLC) if there is convective heat transfer at the tip C C C , , hP where = , and M= hPkA hPkA ( ) Use the thermal resistance concept: ( ) hPkA tanh( )( ) where is the thermal resistance of the fin. For a fin with an adiabatic tip, the fin b b c b f b t f t f m T T kA T T q mL T T R R           , C resistance can be expressed as ( ) 1 hPkA [tanh( )] b t f f T T R q mL     Tb T
  • 13. Fin Effectiveness How effective a fin can enhance heat transfer is characterized by the fin effectiveness f: Ratio of fin heat transfer and the heat transfer without the fin. For an adiabatic fin: C hPkA tanh( ) tanh( ) ( ) If the fin is long enough, mL>2, tanh(mL) 1, it can be considered an infinite fin (case D of table3.4) In order to enhance heat tra f f f C b C C f C C q q mL kP mL q hA T T hA hA kP k P hA h A                  nsfer, 1. However, 2 will be considered justifiable If <1 then we have an insulator instead of a heat fin f f f     
  • 14. Fin Effectiveness (contd...)  To increase f, the fin’s material should have higher thermal conductivity, k.  It seems to be counterintuitive that the lower convection coefficient, h, the higher f. But it is not because if h is very high, it is not necessary to enhance heat transfer by adding heat fins. Therefore, heat fins are more effective if h is low. Observation: If fins are to be used on surfaces separating gas and liquid. Fins are usually placed on the gas side. (Why?) f C C kP k P hA h A         
  • 15.  P/AC should be as high as possible. Use a square fin with a dimension of W by W as an example: P=4W, AC=W2, P/AC=(4/W). The smaller W, the higher the P/AC, and the higher f.  Conclusion: It is preferred to use thin and closely spaced (to increase the total number) fins. Fin Effectiveness (contd...)
  • 16. Fin Effectiveness (contd...) , , , , The effectiveness of a fin can also be characterized as ( )/ ( ) ( )/ It is a ratio of the thermal resistance due to convection to the thermal resistance of a fin f f b t f t h f C b b t h t f q q T T R R q hA T T T T R R            . In order to enhance heat transfer, the fin's resistance should be lower than that of the resistance due only to convection.
  • 17. Fin Efficiency Define Fin efficiency: where represents an idealized situation such that the fin is made up of material with infinite thermal conductivity. Therefore, the fin should be at the same temperature as the temperature of the base. f      q q q q hA T T f f b max max max ( )
  • 18. T(x)<Tb for heat transfer to take place Total fin heat transfer qf Real situation Ideal situation For infinite k T(x)=Tb, the heat transfer is maximum Ideal heat transfer qmax Tb x x Fin Efficiency (contd…)
  • 19. Fin Efficiency (cont.) Use an adiabatic rectangular fin as an example: max f max , , ( ) tanh tanh ( ) ( ) tanh tanh (see Table 3.5 for of common fins) The fin heat transfer: ( ) , where 1/( ) f c b f f b b c f f f f b b b f t f f f t f q hPkA T T mL M mL q hA T T hPL T T mL mL mL hP L kA q q hA T T T T T T q R hA R                           , , , b 1 Thermal resistance for a single fin. 1 As compared to convective heat transfer: In order to have a lower resistance as that is required to enhance heat transfer: or A f f t b b t b t f f f hA R hA R R A      
  • 20. Overall Fin Efficiency Overall fin efficiency for an array of fins: Define terms: Ab: base area exposed to coolant Af: surface area of a single fin At: total area including base area and total finned surface, At=Ab+NAf N: total number of fins qb qf
  • 21. Overall Fin Efficiency (contd…) ( ) ( ) [( ) ]( ) [ (1 )]( ) [1 (1 )]( ) ( ) Define overall fin efficiency: 1 (1 ) t b f b b f f b t f f f b t f f b f t f b O t b t f O f t q q Nq hA T T N hA T T h A NA N A T T h A NA T T NA hA T T hA T T A NA A                                    
  • 22. Heat Transfer from a Fin Array , , , , 1 ( ) where Compare to heat transfer without fins 1 ( ) ( )( ) where is the base area (unexposed) for the fin To enhance heat transfer Th b t t O b t O t O t O b b b f b b f t O T T q hA T T R R hA q hA T T h A NA T T hA A A A                    O at is, to increase the effective area . t A 
  • 23. Thermal Resistance Concept T1 T Tb T2 T1 T Tb T2 L1 t R1=L1/(k1A) Rb=t/(kbA) ) /( 1 , O t O t hA R   1 1 1 , b t O T T T T q R R R R          A=Ab+NAb,f