Formulas/transformations of vectors in three coordinates system
  Cartesian Coordinates System(X,Y,Z):
                                                   ∧                        ∧                ∧
  DIFFERENTIAL LENGTH VECTOR :        dl = dx a x + dy a y + dz a z
  DIFFERENTIAL VOLUME ELEMENT :       dV = dx dy dz −∞ < X < ∞, − ∞ < Y < ∞, − ∞ < Z < ∞
                                                        ∧
  DIFFERENTIAL SURFACE ELEMENTS:      dS x = dy dz a x                          − ∞ < Y < ∞, − ∞ < Z < ∞

                                                        ∧
                                      dS y = dx dz a y                          − ∞ < X < ∞, − ∞ < Z < ∞

                                                        ∧
                                       dS z = dy dz a x                          − ∞ < X < ∞, − ∞ < Y < ∞


  DISTANCE BETWEEN TWO POINTS:             [
                                      d = ( x1 − x 2 ) 2 + ( y1 − y 2 ) 2 + ( z1 − z 2 ) 2                    ]
                                                                                                              1/ 2



                                                   ∧   ∂V               ∧       ∂V           ∧       ∂V
  GRADIENT OF SCALAR V :               ∇ = ax
                                        V        +a y    +az
                                              ∂x      ∂y     ∂z
                                                   ∂Ax   ∂A y   ∂Az
 DIVERGENCE OF VECTOR A :             ∇• A =           +      +
                                                    ∂x    ∂y    ∂Z

                                                                                     ∧           ∧        ∧
                                                                                     ax ay az
                                               ∇ A
                                                ×
                                                                                         ∂ ∂ ∂
 CURL OF VECTOR   A:                                        =
                                                                                         ∂x ∂y ∂z
                                                                                         Ax A y Az
                                                        ∂2V                 ∂2V              ∂2V
 LAPLACIAN OF A SCALAR V:                      ∇2V =            2
                                                                        +            2
                                                                                         +
                                                        ∂x                      ∂y           ∂Z 2

A VECTOR A IS SAID TO BE SOLENOIDAL (OR DIVERGENCELESS ) if ∇ A =
                                                             •   0
A VECTOR A IS SAID TO BE IRROTATIONAL( OR POTENTIAL) IF ∇ A=
                                                          ×    0
  (BOTH STATEMENT ARE TRUE IN ALL THE COORDINATE SYSTEMS)


DIVERGENCE THEORM(GREEN'S THEORM) :            ∫A •ds =∫∇•A
                                               S                    V
                                                                                          dV


STOCK'S THEORM:                                ∫ A • dl
                                               L
                                                            =       ∫(∇×A ) •dS
                                                                        S


COMPUTATION FORMULAS ON GRADIENT:

  (a )   ∇ V +U ) =∇ +∇
          (         V  U
  (b)    ∇ UV ) =V∇ +U∇
          (        U    V
           V  U∇ −V∇
                  V   U
  (c )   ∇ =
          U      U2
  ( d ) ∇ n = nV n −1∇
         V            V
  where U and V are scalars and n is int eger
Cylindrical coordinates system                       ( ρ ,φ , z)


RELATIONSHIP BETWEEN (X,Y,Z) AND ( ( ρ , φ , z ) :

 X = ρ cos φ                         y
                          φ = tan −1  
.Y = ρ sin φ                         x                0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞
 Z =Z                     ρ=     2
                                x +y   2




DIFFERENTIAL LENGTH VECTOR :                dl = dρ aρ + ρ dφ aφ + dza z
                                                    ˆ         ˆ      ˆ

DIFFERENTIAL VOLUME ELEMENT :                     dv = ρ dρ dφ dz               0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞
DIFFERENTIAL SURFACE ELEMENTS :
                                           ds ρ = ρ dφ dz a ρ
                                                          ˆ                 0 ≤ φ < 2π , − ∞ < z < ∞
                                           dsφ = dρ dz aφ
                                                       ˆ                   0 ≤ ρ < ∞, −∞ < z < ∞
                                           ds z = ρ dφ dρ a z
                                                          ˆ                0 ≤ ρ < ∞ , 0 ≤ φ < 2π
DISTANCE BETWEEN TWO POINTS : d             2
                                                = ρ1
                                                   2
                                                        + ρ2
                                                           2
                                                                − 2 ρ1 ρ2 cos(φ1 −φ2 ) + ( z 2 − z1 ) 2


Transformation of A from cylindrical to cartesian coordinates system
 Aρ   cos φ − sin φ 0   Ax 
                        
 Aφ  =  sin φ cos φ 0   A y 
A   0           0    1   Az 
 z                      

Transformation of A from cartesian to cylinderical coordinates system
 Ax   cos φ sin φ 0   Aρ 
                              
 A y  =  − sin φ cos φ 0   Aφ 
A   0              0   1   Az 
 z                            

                                                 ∂ ∧
                                                  V     1 ∂ ∧
                                                           V      ∂V ∧
GRADIENT OF A SCALAR V:                 ∇ =
                                         V          aρ+      aφ +    az
                                                 ∂ρ     ρ ∂φ      ∂Z


                                                       1 ∂Aφ
DIVERGENCE OF A VECTOR A:        ∇• A =
                                           1 ∂
                                           ρ ∂ρ
                                                  (
                                                ρ Aρ +
                                                       ρ ∂φ
                                                            )+
                                                               ∂Az
                                                               ∂Z



                                           aρ ρ Aφ Az
                                         1∂ ∂ ∂
CURL OF A VECTOR A:               ∇ × A=
                                         ρ ∂ρ ∂φ ∂Z
                                           Aρ ρ Aφ Az
1 ∂  ∂V    1 ∂2V  ∂2V    
LAPLACIAN OF A SCALAR V:   ∇2V =        ρ   + 2    +        
                                   ρ ∂ρ  ∂ρ  ρ ∂φ 2  ∂z 2
                                                    
                                                               
                                                               
Spherical Coordinate System (r ,θ, φ)
                                                y
                                φ = tan −1       
   X = r sin θ cos φ                            x
  .Y = r sin θ sin φ             r =    x2 + y2 +z2                        0 ≤ r < ∞ , - π ≤ θ < π , 0 < φ < 2π
  Z =r cos θ
                                                      x2 +y 2
                                θ =tan −1
                                                z
  Differenial length vector :       dl = dr a r + r dθ aθ + r sin θ dφ aφ
                                            ˆ          ˆ               ˆ

  DIFFERENTIAL VOLUME ELEMENT :                                       dV = r 2 sin θ dr dθ dφ            0 ≤ r < ∞, - π ≤ θ < π , 0 < φ < 2
  dIFFERENTIAL SURFACE ELEMENT :
                                                                ds r      = r 2 sin θ dθ dφ a r
                                                                                             ˆ        - π ≤θ < π, 0 < φ < 2π
                                                                dsθ       = r sin θ dr dθ aφ
                                                                                          ˆ           0 ≤ r < ∞, 0 < φ < 2π
                                                                dsφ = r dr dθ aφ
                                                                              ˆ                       0 ≤ r < ∞, - π ≤ θ < π
  DISTANCE BETWEEN TWO POINTS :                                  d 2 = r12 + r2 + 2r1 r2 cos θ1 cos θ2 − 2 r1 r2 sin θ1 sin θ2 cos(θ1 −θ
                                                                               2


 Transformation of A from Cartesian to spherical coordinate system

   Ar   sin θ cos φ     sin θ sin φ         cos θ   Ax 
                                                          
   Aθ  =  cos θ cos φ   cos θ sin φ         − sin θ   A y 
  
   Aφ   − sin φ
  
       
                            cos φ               0   Az 
                                                             
 Transformation of A from spherical to cartesian coordinates system
  Ax   sin θ cos φ cos θ cos φ − sin φ   Ar 
                                             
  A y  =  sin θ sin φ cos θ sin φ cos φ   Aθ 
  A   sin θ                                   
  z                     − sin θ     0   Aφ 
                                                
 Transformation of A from spherical to cylindrical coordinates system
  Aρ   sin θ  cos θ 0   Ar 
                                
   Aφ    = 0         0       1   Aθ 
  A       cos θ                   
   z              − sin θ    0   Aφ 
                                   
 Transformation of A from cylindrical to spherical coordinates system
  Ar   sin θ 0 cos θ   Aρ 
                              
  Aθ  =  cos θ 0 − sin θ   Aφ 
   
   Aφ   0                      A 
                  1     0      z 
                                                        ∂V ∧    1 ∂ ∧
                                                                   V         1    ∂ ∧
                                                                                   V
 GRADIENT OF A SCALAR V:                 ∇ =
                                          V                ar +      aθ +            aφ
                                                        ∂r      r ∂θ      r sin θ ∂φ

DIVERGENCE OF A VECTOR A:                ∇• A =
                                                           r
                                                            1 ∂ 2
                                                             2 ∂r
                                                                      (
                                                                  r Ar +
                                                                            1
                                                                             )    ∂
                                                                         r sin ϑ ∂ϑ
                                                                                    ( Aϑ Sin ϑ) + 1
                                                                                                         ∂Aφ
                                                                                                 r Sin ϑ ∂φ

                                                            ∧     ∧          ∧
                                                            a r r aϑ r Sinϑ aφ
                                                           1 ∂ ∂ ∂
 CURL OF A VECTOR A:                         ∇ × A=
                                                      r 2 Sinϑ ∂ r ∂ ϑ ∂ φ
                                                               Ar rAφ r Sinϑ Aφ
LAPLACIAN OF A SCALER FIELD, V:
        1 ∂  ∂V       1      ∂       ∂V       1         ∂2V    
∇2V =        ρ   +             sin θ    +                      
        ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ 
                                      ∂θ  r 2 sin 2 θ    ∂φ 2
                                                           
                                                                    
                                                                    
LAPLACIAN OF A SCALER FIELD, V:
        1 ∂  ∂V       1      ∂       ∂V       1         ∂2V    
∇2V =        ρ   +             sin θ    +                      
        ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ 
                                      ∂θ  r 2 sin 2 θ    ∂φ 2
                                                           
                                                                    
                                                                    

Formulation

  • 1.
    Formulas/transformations of vectorsin three coordinates system Cartesian Coordinates System(X,Y,Z): ∧ ∧ ∧ DIFFERENTIAL LENGTH VECTOR : dl = dx a x + dy a y + dz a z DIFFERENTIAL VOLUME ELEMENT : dV = dx dy dz −∞ < X < ∞, − ∞ < Y < ∞, − ∞ < Z < ∞ ∧ DIFFERENTIAL SURFACE ELEMENTS: dS x = dy dz a x − ∞ < Y < ∞, − ∞ < Z < ∞ ∧ dS y = dx dz a y − ∞ < X < ∞, − ∞ < Z < ∞ ∧ dS z = dy dz a x − ∞ < X < ∞, − ∞ < Y < ∞ DISTANCE BETWEEN TWO POINTS: [ d = ( x1 − x 2 ) 2 + ( y1 − y 2 ) 2 + ( z1 − z 2 ) 2 ] 1/ 2 ∧ ∂V ∧ ∂V ∧ ∂V GRADIENT OF SCALAR V : ∇ = ax V +a y +az ∂x ∂y ∂z ∂Ax ∂A y ∂Az DIVERGENCE OF VECTOR A : ∇• A = + + ∂x ∂y ∂Z ∧ ∧ ∧ ax ay az ∇ A × ∂ ∂ ∂ CURL OF VECTOR A: = ∂x ∂y ∂z Ax A y Az ∂2V ∂2V ∂2V LAPLACIAN OF A SCALAR V: ∇2V = 2 + 2 + ∂x ∂y ∂Z 2 A VECTOR A IS SAID TO BE SOLENOIDAL (OR DIVERGENCELESS ) if ∇ A = • 0 A VECTOR A IS SAID TO BE IRROTATIONAL( OR POTENTIAL) IF ∇ A= × 0 (BOTH STATEMENT ARE TRUE IN ALL THE COORDINATE SYSTEMS) DIVERGENCE THEORM(GREEN'S THEORM) : ∫A •ds =∫∇•A S V dV STOCK'S THEORM: ∫ A • dl L = ∫(∇×A ) •dS S COMPUTATION FORMULAS ON GRADIENT: (a ) ∇ V +U ) =∇ +∇ ( V U (b) ∇ UV ) =V∇ +U∇ ( U V  V  U∇ −V∇ V U (c ) ∇ = U  U2 ( d ) ∇ n = nV n −1∇ V V where U and V are scalars and n is int eger
  • 2.
    Cylindrical coordinates system ( ρ ,φ , z) RELATIONSHIP BETWEEN (X,Y,Z) AND ( ( ρ , φ , z ) : X = ρ cos φ y φ = tan −1   .Y = ρ sin φ x 0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞ Z =Z ρ= 2 x +y 2 DIFFERENTIAL LENGTH VECTOR : dl = dρ aρ + ρ dφ aφ + dza z ˆ ˆ ˆ DIFFERENTIAL VOLUME ELEMENT : dv = ρ dρ dφ dz 0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞ DIFFERENTIAL SURFACE ELEMENTS : ds ρ = ρ dφ dz a ρ ˆ 0 ≤ φ < 2π , − ∞ < z < ∞ dsφ = dρ dz aφ ˆ 0 ≤ ρ < ∞, −∞ < z < ∞ ds z = ρ dφ dρ a z ˆ 0 ≤ ρ < ∞ , 0 ≤ φ < 2π DISTANCE BETWEEN TWO POINTS : d 2 = ρ1 2 + ρ2 2 − 2 ρ1 ρ2 cos(φ1 −φ2 ) + ( z 2 − z1 ) 2 Transformation of A from cylindrical to cartesian coordinates system  Aρ   cos φ − sin φ 0   Ax        Aφ  =  sin φ cos φ 0   A y  A   0 0 1   Az   z    Transformation of A from cartesian to cylinderical coordinates system  Ax   cos φ sin φ 0   Aρ        A y  =  − sin φ cos φ 0   Aφ  A   0 0 1   Az   z    ∂ ∧ V 1 ∂ ∧ V ∂V ∧ GRADIENT OF A SCALAR V: ∇ = V aρ+ aφ + az ∂ρ ρ ∂φ ∂Z 1 ∂Aφ DIVERGENCE OF A VECTOR A: ∇• A = 1 ∂ ρ ∂ρ ( ρ Aρ + ρ ∂φ )+ ∂Az ∂Z aρ ρ Aφ Az 1∂ ∂ ∂ CURL OF A VECTOR A: ∇ × A= ρ ∂ρ ∂φ ∂Z Aρ ρ Aφ Az
  • 3.
    1 ∂ ∂V  1 ∂2V  ∂2V  LAPLACIAN OF A SCALAR V: ∇2V = ρ + 2 +  ρ ∂ρ  ∂ρ  ρ ∂φ 2  ∂z 2     
  • 4.
    Spherical Coordinate System(r ,θ, φ) y φ = tan −1   X = r sin θ cos φ x .Y = r sin θ sin φ r = x2 + y2 +z2 0 ≤ r < ∞ , - π ≤ θ < π , 0 < φ < 2π Z =r cos θ x2 +y 2 θ =tan −1 z Differenial length vector : dl = dr a r + r dθ aθ + r sin θ dφ aφ ˆ ˆ ˆ DIFFERENTIAL VOLUME ELEMENT : dV = r 2 sin θ dr dθ dφ 0 ≤ r < ∞, - π ≤ θ < π , 0 < φ < 2 dIFFERENTIAL SURFACE ELEMENT : ds r = r 2 sin θ dθ dφ a r ˆ - π ≤θ < π, 0 < φ < 2π dsθ = r sin θ dr dθ aφ ˆ 0 ≤ r < ∞, 0 < φ < 2π dsφ = r dr dθ aφ ˆ 0 ≤ r < ∞, - π ≤ θ < π DISTANCE BETWEEN TWO POINTS : d 2 = r12 + r2 + 2r1 r2 cos θ1 cos θ2 − 2 r1 r2 sin θ1 sin θ2 cos(θ1 −θ 2 Transformation of A from Cartesian to spherical coordinate system  Ar   sin θ cos φ sin θ sin φ cos θ   Ax        Aθ  =  cos θ cos φ cos θ sin φ − sin θ   A y    Aφ   − sin φ     cos φ 0   Az    Transformation of A from spherical to cartesian coordinates system  Ax   sin θ cos φ cos θ cos φ − sin φ   Ar        A y  =  sin θ sin φ cos θ sin φ cos φ   Aθ   A   sin θ    z  − sin θ 0   Aφ    Transformation of A from spherical to cylindrical coordinates system  Aρ   sin θ cos θ 0   Ar        Aφ  = 0 0 1   Aθ  A   cos θ    z   − sin θ 0   Aφ    Transformation of A from cylindrical to spherical coordinates system  Ar   sin θ 0 cos θ   Aρ        Aθ  =  cos θ 0 − sin θ   Aφ     Aφ   0  A     1 0  z  ∂V ∧ 1 ∂ ∧ V 1 ∂ ∧ V GRADIENT OF A SCALAR V: ∇ = V ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ DIVERGENCE OF A VECTOR A: ∇• A = r 1 ∂ 2 2 ∂r ( r Ar + 1 ) ∂ r sin ϑ ∂ϑ ( Aϑ Sin ϑ) + 1 ∂Aφ r Sin ϑ ∂φ ∧ ∧ ∧ a r r aϑ r Sinϑ aφ 1 ∂ ∂ ∂ CURL OF A VECTOR A: ∇ × A= r 2 Sinϑ ∂ r ∂ ϑ ∂ φ Ar rAφ r Sinϑ Aφ
  • 5.
    LAPLACIAN OF ASCALER FIELD, V: 1 ∂  ∂V  1 ∂  ∂V  1  ∂2V  ∇2V = ρ + sin θ +   ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ    ∂θ  r 2 sin 2 θ  ∂φ 2   
  • 6.
    LAPLACIAN OF ASCALER FIELD, V: 1 ∂  ∂V  1 ∂  ∂V  1  ∂2V  ∇2V = ρ + sin θ +   ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ    ∂θ  r 2 sin 2 θ  ∂φ 2   