SlideShare a Scribd company logo
Formulas/transformations of vectors in three coordinates system
  Cartesian Coordinates System(X,Y,Z):
                                                   ∧                        ∧                ∧
  DIFFERENTIAL LENGTH VECTOR :        dl = dx a x + dy a y + dz a z
  DIFFERENTIAL VOLUME ELEMENT :       dV = dx dy dz −∞ < X < ∞, − ∞ < Y < ∞, − ∞ < Z < ∞
                                                        ∧
  DIFFERENTIAL SURFACE ELEMENTS:      dS x = dy dz a x                          − ∞ < Y < ∞, − ∞ < Z < ∞

                                                        ∧
                                      dS y = dx dz a y                          − ∞ < X < ∞, − ∞ < Z < ∞

                                                        ∧
                                       dS z = dy dz a x                          − ∞ < X < ∞, − ∞ < Y < ∞


  DISTANCE BETWEEN TWO POINTS:             [
                                      d = ( x1 − x 2 ) 2 + ( y1 − y 2 ) 2 + ( z1 − z 2 ) 2                    ]
                                                                                                              1/ 2



                                                   ∧   ∂V               ∧       ∂V           ∧       ∂V
  GRADIENT OF SCALAR V :               ∇ = ax
                                        V        +a y    +az
                                              ∂x      ∂y     ∂z
                                                   ∂Ax   ∂A y   ∂Az
 DIVERGENCE OF VECTOR A :             ∇• A =           +      +
                                                    ∂x    ∂y    ∂Z

                                                                                     ∧           ∧        ∧
                                                                                     ax ay az
                                               ∇ A
                                                ×
                                                                                         ∂ ∂ ∂
 CURL OF VECTOR   A:                                        =
                                                                                         ∂x ∂y ∂z
                                                                                         Ax A y Az
                                                        ∂2V                 ∂2V              ∂2V
 LAPLACIAN OF A SCALAR V:                      ∇2V =            2
                                                                        +            2
                                                                                         +
                                                        ∂x                      ∂y           ∂Z 2

A VECTOR A IS SAID TO BE SOLENOIDAL (OR DIVERGENCELESS ) if ∇ A =
                                                             •   0
A VECTOR A IS SAID TO BE IRROTATIONAL( OR POTENTIAL) IF ∇ A=
                                                          ×    0
  (BOTH STATEMENT ARE TRUE IN ALL THE COORDINATE SYSTEMS)


DIVERGENCE THEORM(GREEN'S THEORM) :            ∫A •ds =∫∇•A
                                               S                    V
                                                                                          dV


STOCK'S THEORM:                                ∫ A • dl
                                               L
                                                            =       ∫(∇×A ) •dS
                                                                        S


COMPUTATION FORMULAS ON GRADIENT:

  (a )   ∇ V +U ) =∇ +∇
          (         V  U
  (b)    ∇ UV ) =V∇ +U∇
          (        U    V
           V  U∇ −V∇
                  V   U
  (c )   ∇ =
          U      U2
  ( d ) ∇ n = nV n −1∇
         V            V
  where U and V are scalars and n is int eger
Cylindrical coordinates system                       ( ρ ,φ , z)


RELATIONSHIP BETWEEN (X,Y,Z) AND ( ( ρ , φ , z ) :

 X = ρ cos φ                         y
                          φ = tan −1  
.Y = ρ sin φ                         x                0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞
 Z =Z                     ρ=     2
                                x +y   2




DIFFERENTIAL LENGTH VECTOR :                dl = dρ aρ + ρ dφ aφ + dza z
                                                    ˆ         ˆ      ˆ

DIFFERENTIAL VOLUME ELEMENT :                     dv = ρ dρ dφ dz               0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞
DIFFERENTIAL SURFACE ELEMENTS :
                                           ds ρ = ρ dφ dz a ρ
                                                          ˆ                 0 ≤ φ < 2π , − ∞ < z < ∞
                                           dsφ = dρ dz aφ
                                                       ˆ                   0 ≤ ρ < ∞, −∞ < z < ∞
                                           ds z = ρ dφ dρ a z
                                                          ˆ                0 ≤ ρ < ∞ , 0 ≤ φ < 2π
DISTANCE BETWEEN TWO POINTS : d             2
                                                = ρ1
                                                   2
                                                        + ρ2
                                                           2
                                                                − 2 ρ1 ρ2 cos(φ1 −φ2 ) + ( z 2 − z1 ) 2


Transformation of A from cylindrical to cartesian coordinates system
 Aρ   cos φ − sin φ 0   Ax 
                        
 Aφ  =  sin φ cos φ 0   A y 
A   0           0    1   Az 
 z                      

Transformation of A from cartesian to cylinderical coordinates system
 Ax   cos φ sin φ 0   Aρ 
                              
 A y  =  − sin φ cos φ 0   Aφ 
A   0              0   1   Az 
 z                            

                                                 ∂ ∧
                                                  V     1 ∂ ∧
                                                           V      ∂V ∧
GRADIENT OF A SCALAR V:                 ∇ =
                                         V          aρ+      aφ +    az
                                                 ∂ρ     ρ ∂φ      ∂Z


                                                       1 ∂Aφ
DIVERGENCE OF A VECTOR A:        ∇• A =
                                           1 ∂
                                           ρ ∂ρ
                                                  (
                                                ρ Aρ +
                                                       ρ ∂φ
                                                            )+
                                                               ∂Az
                                                               ∂Z



                                           aρ ρ Aφ Az
                                         1∂ ∂ ∂
CURL OF A VECTOR A:               ∇ × A=
                                         ρ ∂ρ ∂φ ∂Z
                                           Aρ ρ Aφ Az
1 ∂  ∂V    1 ∂2V  ∂2V    
LAPLACIAN OF A SCALAR V:   ∇2V =        ρ   + 2    +        
                                   ρ ∂ρ  ∂ρ  ρ ∂φ 2  ∂z 2
                                                    
                                                               
                                                               
Spherical Coordinate System (r ,θ, φ)
                                                y
                                φ = tan −1       
   X = r sin θ cos φ                            x
  .Y = r sin θ sin φ             r =    x2 + y2 +z2                        0 ≤ r < ∞ , - π ≤ θ < π , 0 < φ < 2π
  Z =r cos θ
                                                      x2 +y 2
                                θ =tan −1
                                                z
  Differenial length vector :       dl = dr a r + r dθ aθ + r sin θ dφ aφ
                                            ˆ          ˆ               ˆ

  DIFFERENTIAL VOLUME ELEMENT :                                       dV = r 2 sin θ dr dθ dφ            0 ≤ r < ∞, - π ≤ θ < π , 0 < φ < 2
  dIFFERENTIAL SURFACE ELEMENT :
                                                                ds r      = r 2 sin θ dθ dφ a r
                                                                                             ˆ        - π ≤θ < π, 0 < φ < 2π
                                                                dsθ       = r sin θ dr dθ aφ
                                                                                          ˆ           0 ≤ r < ∞, 0 < φ < 2π
                                                                dsφ = r dr dθ aφ
                                                                              ˆ                       0 ≤ r < ∞, - π ≤ θ < π
  DISTANCE BETWEEN TWO POINTS :                                  d 2 = r12 + r2 + 2r1 r2 cos θ1 cos θ2 − 2 r1 r2 sin θ1 sin θ2 cos(θ1 −θ
                                                                               2


 Transformation of A from Cartesian to spherical coordinate system

   Ar   sin θ cos φ     sin θ sin φ         cos θ   Ax 
                                                          
   Aθ  =  cos θ cos φ   cos θ sin φ         − sin θ   A y 
  
   Aφ   − sin φ
  
       
                            cos φ               0   Az 
                                                             
 Transformation of A from spherical to cartesian coordinates system
  Ax   sin θ cos φ cos θ cos φ − sin φ   Ar 
                                             
  A y  =  sin θ sin φ cos θ sin φ cos φ   Aθ 
  A   sin θ                                   
  z                     − sin θ     0   Aφ 
                                                
 Transformation of A from spherical to cylindrical coordinates system
  Aρ   sin θ  cos θ 0   Ar 
                                
   Aφ    = 0         0       1   Aθ 
  A       cos θ                   
   z              − sin θ    0   Aφ 
                                   
 Transformation of A from cylindrical to spherical coordinates system
  Ar   sin θ 0 cos θ   Aρ 
                              
  Aθ  =  cos θ 0 − sin θ   Aφ 
   
   Aφ   0                      A 
                  1     0      z 
                                                        ∂V ∧    1 ∂ ∧
                                                                   V         1    ∂ ∧
                                                                                   V
 GRADIENT OF A SCALAR V:                 ∇ =
                                          V                ar +      aθ +            aφ
                                                        ∂r      r ∂θ      r sin θ ∂φ

DIVERGENCE OF A VECTOR A:                ∇• A =
                                                           r
                                                            1 ∂ 2
                                                             2 ∂r
                                                                      (
                                                                  r Ar +
                                                                            1
                                                                             )    ∂
                                                                         r sin ϑ ∂ϑ
                                                                                    ( Aϑ Sin ϑ) + 1
                                                                                                         ∂Aφ
                                                                                                 r Sin ϑ ∂φ

                                                            ∧     ∧          ∧
                                                            a r r aϑ r Sinϑ aφ
                                                           1 ∂ ∂ ∂
 CURL OF A VECTOR A:                         ∇ × A=
                                                      r 2 Sinϑ ∂ r ∂ ϑ ∂ φ
                                                               Ar rAφ r Sinϑ Aφ
LAPLACIAN OF A SCALER FIELD, V:
        1 ∂  ∂V       1      ∂       ∂V       1         ∂2V    
∇2V =        ρ   +             sin θ    +                      
        ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ 
                                      ∂θ  r 2 sin 2 θ    ∂φ 2
                                                           
                                                                    
                                                                    
LAPLACIAN OF A SCALER FIELD, V:
        1 ∂  ∂V       1      ∂       ∂V       1         ∂2V    
∇2V =        ρ   +             sin θ    +                      
        ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ 
                                      ∂θ  r 2 sin 2 θ    ∂φ 2
                                                           
                                                                    
                                                                    

More Related Content

What's hot

Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
Matthew Leingang
 
Differential equation
Differential equation Differential equation
Differential equation azyanmdzahri
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)
Sanre Tambunan
 
Lesson31 Higher Dimensional First Order Difference Equations Slides
Lesson31   Higher Dimensional First Order Difference Equations SlidesLesson31   Higher Dimensional First Order Difference Equations Slides
Lesson31 Higher Dimensional First Order Difference Equations Slides
Matthew Leingang
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
Semana1 cal integral diferencial
Semana1 cal integral diferencialSemana1 cal integral diferencial
Semana1 cal integral diferencial
Universidad Peruana Unión Lima Perú
 
Sistem pertidaksamaan kuadrat 2 variabel
Sistem pertidaksamaan kuadrat 2 variabelSistem pertidaksamaan kuadrat 2 variabel
Sistem pertidaksamaan kuadrat 2 variabel
Alya Titania Annisaa
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2Breno Costa
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
Lesson30 First Order Difference Equations Handout
Lesson30   First Order Difference Equations HandoutLesson30   First Order Difference Equations Handout
Lesson30 First Order Difference Equations Handout
Matthew Leingang
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)Dabe Milli
 
Lesson30 First Order Difference Equations Slides
Lesson30   First Order Difference Equations SlidesLesson30   First Order Difference Equations Slides
Lesson30 First Order Difference Equations Slides
Matthew Leingang
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
Matthew Leingang
 
Properties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFsProperties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFs
Ahmad Gomaa
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
guestf32826
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010akabaka12
 

What's hot (20)

Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Differential equation
Differential equation Differential equation
Differential equation
 
14257017 metode-frobenius (1)
14257017 metode-frobenius (1)14257017 metode-frobenius (1)
14257017 metode-frobenius (1)
 
Guia edo todas
Guia edo todasGuia edo todas
Guia edo todas
 
Lesson31 Higher Dimensional First Order Difference Equations Slides
Lesson31   Higher Dimensional First Order Difference Equations SlidesLesson31   Higher Dimensional First Order Difference Equations Slides
Lesson31 Higher Dimensional First Order Difference Equations Slides
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Nts
NtsNts
Nts
 
Ch07 3
Ch07 3Ch07 3
Ch07 3
 
Semana1 cal integral diferencial
Semana1 cal integral diferencialSemana1 cal integral diferencial
Semana1 cal integral diferencial
 
Sistem pertidaksamaan kuadrat 2 variabel
Sistem pertidaksamaan kuadrat 2 variabelSistem pertidaksamaan kuadrat 2 variabel
Sistem pertidaksamaan kuadrat 2 variabel
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Lesson30 First Order Difference Equations Handout
Lesson30   First Order Difference Equations HandoutLesson30   First Order Difference Equations Handout
Lesson30 First Order Difference Equations Handout
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
 
Lesson30 First Order Difference Equations Slides
Lesson30   First Order Difference Equations SlidesLesson30   First Order Difference Equations Slides
Lesson30 First Order Difference Equations Slides
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 
Properties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFsProperties of bivariate and conditional Gaussian PDFs
Properties of bivariate and conditional Gaussian PDFs
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
 

Similar to Formulation

Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsTarun Gehlot
 
Tensor operations
Tensor operationsTensor operations
Tensor operations
Uzma Nadeem
 
Kinematics of a fluid element
Kinematics of a fluid elementKinematics of a fluid element
Kinematics of a fluid elementMohamed Yaser
 
Kinematics of a fluid element
Kinematics of a fluid elementKinematics of a fluid element
Kinematics of a fluid elementMohamed Yaser
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsmolmodbasics
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)Marc Buitenhuis
 
Calculus ppt on "Partial Differentiation"#2
Calculus ppt on "Partial Differentiation"#2Calculus ppt on "Partial Differentiation"#2
Calculus ppt on "Partial Differentiation"#2
L.D College of Engineering
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
SEENET-MTP
 
Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...
Leonardo Uieda
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 

Similar to Formulation (20)

Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanics
 
Tensor operations
Tensor operationsTensor operations
Tensor operations
 
Kinematics of a fluid element
Kinematics of a fluid elementKinematics of a fluid element
Kinematics of a fluid element
 
Kinematics of a fluid element
Kinematics of a fluid elementKinematics of a fluid element
Kinematics of a fluid element
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Legendre
LegendreLegendre
Legendre
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)
 
Calculus ppt on "Partial Differentiation"#2
Calculus ppt on "Partial Differentiation"#2Calculus ppt on "Partial Differentiation"#2
Calculus ppt on "Partial Differentiation"#2
 
Ch02s
Ch02sCh02s
Ch02s
 
Lecture notes 06
Lecture notes 06Lecture notes 06
Lecture notes 06
 
Inse
InseInse
Inse
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...Computation of the gravity gradient tensor due to topographic masses using te...
Computation of the gravity gradient tensor due to topographic masses using te...
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 

More from Kumar

Graphics devices
Graphics devicesGraphics devices
Graphics devices
Kumar
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithms
Kumar
 
region-filling
region-fillingregion-filling
region-filling
Kumar
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivation
Kumar
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons derication
Kumar
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xslt
Kumar
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xml
Kumar
 
Xml basics
Xml basicsXml basics
Xml basics
Kumar
 
XML Schema
XML SchemaXML Schema
XML Schema
Kumar
 
Publishing xml
Publishing xmlPublishing xml
Publishing xml
Kumar
 
DTD
DTDDTD
DTD
Kumar
 
Applying xml
Applying xmlApplying xml
Applying xml
Kumar
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XML
Kumar
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee application
Kumar
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XML
Kumar
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB Fundmentals
Kumar
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programming
Kumar
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programming
Kumar
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC Drivers
Kumar
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EE
Kumar
 

More from Kumar (20)

Graphics devices
Graphics devicesGraphics devices
Graphics devices
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithms
 
region-filling
region-fillingregion-filling
region-filling
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivation
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons derication
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xslt
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xml
 
Xml basics
Xml basicsXml basics
Xml basics
 
XML Schema
XML SchemaXML Schema
XML Schema
 
Publishing xml
Publishing xmlPublishing xml
Publishing xml
 
DTD
DTDDTD
DTD
 
Applying xml
Applying xmlApplying xml
Applying xml
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XML
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee application
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XML
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB Fundmentals
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programming
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programming
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC Drivers
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EE
 

Recently uploaded

POST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its managementPOST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its management
touseefaziz1
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Prof. Marcus Renato de Carvalho
 
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptxTriangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptxPharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
micro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdfmicro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdf
Anurag Sharma
 
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
bkling
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
Dr. Rabia Inam Gandapore
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
Dr. Vinay Pareek
 
Prix Galien International 2024 Forum Program
Prix Galien International 2024 Forum ProgramPrix Galien International 2024 Forum Program
Prix Galien International 2024 Forum Program
Levi Shapiro
 
Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
Shweta
 
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
Swetaba Besh
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
MedicoseAcademics
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
Dr. Rabia Inam Gandapore
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Dr Jeenal Mistry
 
The Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of IIThe Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of II
MedicoseAcademics
 
Are There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdfAre There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdf
Little Cross Family Clinic
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
FFragrant
 
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
i3 Health
 
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdfARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
Anujkumaranit
 
Physiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdfPhysiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdf
MedicoseAcademics
 

Recently uploaded (20)

POST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its managementPOST OPERATIVE OLIGURIA and its management
POST OPERATIVE OLIGURIA and its management
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
 
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptxTriangles of Neck and Clinical Correlation by Dr. RIG.pptx
Triangles of Neck and Clinical Correlation by Dr. RIG.pptx
 
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptxPharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
Pharynx and Clinical Correlations BY Dr.Rabia Inam Gandapore.pptx
 
micro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdfmicro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdf
 
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
Report Back from SGO 2024: What’s the Latest in Cervical Cancer?
 
Superficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptxSuperficial & Deep Fascia of the NECK.pptx
Superficial & Deep Fascia of the NECK.pptx
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
 
Prix Galien International 2024 Forum Program
Prix Galien International 2024 Forum ProgramPrix Galien International 2024 Forum Program
Prix Galien International 2024 Forum Program
 
Evaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animalsEvaluation of antidepressant activity of clitoris ternatea in animals
Evaluation of antidepressant activity of clitoris ternatea in animals
 
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
 
Cervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptxCervical & Brachial Plexus By Dr. RIG.pptx
Cervical & Brachial Plexus By Dr. RIG.pptx
 
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdfAlcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
Alcohol_Dr. Jeenal Mistry MD Pharmacology.pdf
 
The Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of IIThe Normal Electrocardiogram - Part I of II
The Normal Electrocardiogram - Part I of II
 
Are There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdfAre There Any Natural Remedies To Treat Syphilis.pdf
Are There Any Natural Remedies To Treat Syphilis.pdf
 
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptxHow STIs Influence the Development of Pelvic Inflammatory Disease.pptx
How STIs Influence the Development of Pelvic Inflammatory Disease.pptx
 
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
New Directions in Targeted Therapeutic Approaches for Older Adults With Mantl...
 
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdfARTIFICIAL INTELLIGENCE IN  HEALTHCARE.pdf
ARTIFICIAL INTELLIGENCE IN HEALTHCARE.pdf
 
Physiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdfPhysiology of Chemical Sensation of smell.pdf
Physiology of Chemical Sensation of smell.pdf
 

Formulation

  • 1. Formulas/transformations of vectors in three coordinates system Cartesian Coordinates System(X,Y,Z): ∧ ∧ ∧ DIFFERENTIAL LENGTH VECTOR : dl = dx a x + dy a y + dz a z DIFFERENTIAL VOLUME ELEMENT : dV = dx dy dz −∞ < X < ∞, − ∞ < Y < ∞, − ∞ < Z < ∞ ∧ DIFFERENTIAL SURFACE ELEMENTS: dS x = dy dz a x − ∞ < Y < ∞, − ∞ < Z < ∞ ∧ dS y = dx dz a y − ∞ < X < ∞, − ∞ < Z < ∞ ∧ dS z = dy dz a x − ∞ < X < ∞, − ∞ < Y < ∞ DISTANCE BETWEEN TWO POINTS: [ d = ( x1 − x 2 ) 2 + ( y1 − y 2 ) 2 + ( z1 − z 2 ) 2 ] 1/ 2 ∧ ∂V ∧ ∂V ∧ ∂V GRADIENT OF SCALAR V : ∇ = ax V +a y +az ∂x ∂y ∂z ∂Ax ∂A y ∂Az DIVERGENCE OF VECTOR A : ∇• A = + + ∂x ∂y ∂Z ∧ ∧ ∧ ax ay az ∇ A × ∂ ∂ ∂ CURL OF VECTOR A: = ∂x ∂y ∂z Ax A y Az ∂2V ∂2V ∂2V LAPLACIAN OF A SCALAR V: ∇2V = 2 + 2 + ∂x ∂y ∂Z 2 A VECTOR A IS SAID TO BE SOLENOIDAL (OR DIVERGENCELESS ) if ∇ A = • 0 A VECTOR A IS SAID TO BE IRROTATIONAL( OR POTENTIAL) IF ∇ A= × 0 (BOTH STATEMENT ARE TRUE IN ALL THE COORDINATE SYSTEMS) DIVERGENCE THEORM(GREEN'S THEORM) : ∫A •ds =∫∇•A S V dV STOCK'S THEORM: ∫ A • dl L = ∫(∇×A ) •dS S COMPUTATION FORMULAS ON GRADIENT: (a ) ∇ V +U ) =∇ +∇ ( V U (b) ∇ UV ) =V∇ +U∇ ( U V  V  U∇ −V∇ V U (c ) ∇ = U  U2 ( d ) ∇ n = nV n −1∇ V V where U and V are scalars and n is int eger
  • 2. Cylindrical coordinates system ( ρ ,φ , z) RELATIONSHIP BETWEEN (X,Y,Z) AND ( ( ρ , φ , z ) : X = ρ cos φ y φ = tan −1   .Y = ρ sin φ x 0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞ Z =Z ρ= 2 x +y 2 DIFFERENTIAL LENGTH VECTOR : dl = dρ aρ + ρ dφ aφ + dza z ˆ ˆ ˆ DIFFERENTIAL VOLUME ELEMENT : dv = ρ dρ dφ dz 0 ≤ ρ < ∞ , 0 ≤ φ < 2π , − ∞ < z < ∞ DIFFERENTIAL SURFACE ELEMENTS : ds ρ = ρ dφ dz a ρ ˆ 0 ≤ φ < 2π , − ∞ < z < ∞ dsφ = dρ dz aφ ˆ 0 ≤ ρ < ∞, −∞ < z < ∞ ds z = ρ dφ dρ a z ˆ 0 ≤ ρ < ∞ , 0 ≤ φ < 2π DISTANCE BETWEEN TWO POINTS : d 2 = ρ1 2 + ρ2 2 − 2 ρ1 ρ2 cos(φ1 −φ2 ) + ( z 2 − z1 ) 2 Transformation of A from cylindrical to cartesian coordinates system  Aρ   cos φ − sin φ 0   Ax        Aφ  =  sin φ cos φ 0   A y  A   0 0 1   Az   z    Transformation of A from cartesian to cylinderical coordinates system  Ax   cos φ sin φ 0   Aρ        A y  =  − sin φ cos φ 0   Aφ  A   0 0 1   Az   z    ∂ ∧ V 1 ∂ ∧ V ∂V ∧ GRADIENT OF A SCALAR V: ∇ = V aρ+ aφ + az ∂ρ ρ ∂φ ∂Z 1 ∂Aφ DIVERGENCE OF A VECTOR A: ∇• A = 1 ∂ ρ ∂ρ ( ρ Aρ + ρ ∂φ )+ ∂Az ∂Z aρ ρ Aφ Az 1∂ ∂ ∂ CURL OF A VECTOR A: ∇ × A= ρ ∂ρ ∂φ ∂Z Aρ ρ Aφ Az
  • 3. 1 ∂  ∂V  1 ∂2V  ∂2V  LAPLACIAN OF A SCALAR V: ∇2V = ρ + 2 +  ρ ∂ρ  ∂ρ  ρ ∂φ 2  ∂z 2     
  • 4. Spherical Coordinate System (r ,θ, φ) y φ = tan −1   X = r sin θ cos φ x .Y = r sin θ sin φ r = x2 + y2 +z2 0 ≤ r < ∞ , - π ≤ θ < π , 0 < φ < 2π Z =r cos θ x2 +y 2 θ =tan −1 z Differenial length vector : dl = dr a r + r dθ aθ + r sin θ dφ aφ ˆ ˆ ˆ DIFFERENTIAL VOLUME ELEMENT : dV = r 2 sin θ dr dθ dφ 0 ≤ r < ∞, - π ≤ θ < π , 0 < φ < 2 dIFFERENTIAL SURFACE ELEMENT : ds r = r 2 sin θ dθ dφ a r ˆ - π ≤θ < π, 0 < φ < 2π dsθ = r sin θ dr dθ aφ ˆ 0 ≤ r < ∞, 0 < φ < 2π dsφ = r dr dθ aφ ˆ 0 ≤ r < ∞, - π ≤ θ < π DISTANCE BETWEEN TWO POINTS : d 2 = r12 + r2 + 2r1 r2 cos θ1 cos θ2 − 2 r1 r2 sin θ1 sin θ2 cos(θ1 −θ 2 Transformation of A from Cartesian to spherical coordinate system  Ar   sin θ cos φ sin θ sin φ cos θ   Ax        Aθ  =  cos θ cos φ cos θ sin φ − sin θ   A y    Aφ   − sin φ     cos φ 0   Az    Transformation of A from spherical to cartesian coordinates system  Ax   sin θ cos φ cos θ cos φ − sin φ   Ar        A y  =  sin θ sin φ cos θ sin φ cos φ   Aθ   A   sin θ    z  − sin θ 0   Aφ    Transformation of A from spherical to cylindrical coordinates system  Aρ   sin θ cos θ 0   Ar        Aφ  = 0 0 1   Aθ  A   cos θ    z   − sin θ 0   Aφ    Transformation of A from cylindrical to spherical coordinates system  Ar   sin θ 0 cos θ   Aρ        Aθ  =  cos θ 0 − sin θ   Aφ     Aφ   0  A     1 0  z  ∂V ∧ 1 ∂ ∧ V 1 ∂ ∧ V GRADIENT OF A SCALAR V: ∇ = V ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ DIVERGENCE OF A VECTOR A: ∇• A = r 1 ∂ 2 2 ∂r ( r Ar + 1 ) ∂ r sin ϑ ∂ϑ ( Aϑ Sin ϑ) + 1 ∂Aφ r Sin ϑ ∂φ ∧ ∧ ∧ a r r aϑ r Sinϑ aφ 1 ∂ ∂ ∂ CURL OF A VECTOR A: ∇ × A= r 2 Sinϑ ∂ r ∂ ϑ ∂ φ Ar rAφ r Sinϑ Aφ
  • 5. LAPLACIAN OF A SCALER FIELD, V: 1 ∂  ∂V  1 ∂  ∂V  1  ∂2V  ∇2V = ρ + sin θ +   ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ    ∂θ  r 2 sin 2 θ  ∂φ 2   
  • 6. LAPLACIAN OF A SCALER FIELD, V: 1 ∂  ∂V  1 ∂  ∂V  1  ∂2V  ∇2V = ρ + sin θ +   ρ ∂ρ  ∂ρ  r 2 sin θ ∂θ    ∂θ  r 2 sin 2 θ  ∂φ 2   