Scotty: Efficient Window Aggregation with
General Stream Slicing
Berlin, October 7-9, 2019
Philipp M. Grulich
Research Associate (TU Berlin)
Jonas Traub
Research Associate (TU Berlin)
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Aggregations in Stream Processing Pipelines
A stream processing pipeline is a series of concurrently running operators.
2
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Aggregations in Stream Processing Pipelines
A stream processing pipeline is a series of concurrently running operators.
Window
Aggregation
2
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Aggregations in Stream Processing Pipelines
A stream processing pipeline is a series of concurrently running operators.
Window
Aggregation
53
2
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Aggregations in Stream Processing Pipelines
A stream processing pipeline is a series of concurrently running operators.
Window
Aggregation
8
2
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Motivation
3
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Motivation
3
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Research Background
Cutty: Aggregate Sharing for User-Defined Windows
P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl
ACM International on Conference on Information and Knowledge Management (CIKM2016)
4
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Research Background
Cutty: Aggregate Sharing for User-Defined Windows
P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl
ACM International on Conference on Information and Knowledge Management (CIKM2016)
Scotty: Efficient Window Aggregation for out-of-order Stream Processing
J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl
IEEE International Conference on Data Engineering (ICDE 2018)
4
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Research Background
Cutty: Aggregate Sharing for User-Defined Windows
P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl
ACM International on Conference on Information and Knowledge Management (CIKM2016)
Scotty: Efficient Window Aggregation for out-of-order Stream Processing
J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl
IEEE International Conference on Data Engineering (ICDE 2018)
Efficient Window Aggregation with General Stream Slicing
J. Traub, P. M. Grulich, AR. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl
International Conference on Extending Database Technology (EDBT 2019; Best Paper Award)
4
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Research Background
Cutty: Aggregate Sharing for User-Defined Windows
P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl
ACM International on Conference on Information and Knowledge Management (CIKM2016)
Scotty: Efficient Window Aggregation for out-of-order Stream Processing
J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl
IEEE International Conference on Data Engineering (ICDE 2018)
Efficient Window Aggregation with General Stream Slicing
J. Traub, P. M. Grulich, AR. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl
International Conference on Extending Database Technology (EDBT 2019; Best Paper Award)
Scotty Window Processor:
Efficent Window Aggregations for Flink, Beam, and Storm
https://github.com/TU-Berlin-DIMA/scotty-window-processor
4
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
5
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
The number of slices depends on the workload.
6
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
7
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
8
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
9
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
10
We store partial aggregates instead of all tuples. => Small memory footprint.
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
11
We assign each tuple to exactly one slice. => O(1) per-tuple complexity.
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
12
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Stream Slicing Example
We require just a few computation steps to calculate final aggregates. => Low latency.
13
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
General Stream Slicing
14
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
General Stream Slicing
Workload
Characteristics
14
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
General Stream Slicing
Workload
Characteristics
Aggregation
Functions
distributive
algebraic
holistic
associativity
cummutativity
invertibility
14
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
General Stream Slicing
Workload
Characteristics
Window
Types
Context Free
Forward Context Free
Forward Context Aware
Aggregation
Functions
distributive
algebraic
holistic
associativity
cummutativity
invertibility
14
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
General Stream Slicing
Workload
Characteristics
Window
Types
Context Free
Forward Context Free
Forward Context Aware
Window
Measures
time
tuple count
arbitrary
Aggregation
Functions
distributive
algebraic
holistic
associativity
cummutativity
invertibility
14
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
General Stream Slicing
Workload
Characteristics
Window
Types
Context Free
Forward Context Free
Forward Context Aware
Stream
Order
in-order
out-of-order
Window
Measures
time
tuple count
arbitrary
Aggregation
Functions
distributive
algebraic
holistic
associativity
cummutativity
invertibility
14
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
General Stream Slicing
Workload
Characteristics
Window
Types
Context Free
Forward Context Free
Forward Context Aware
Stream
Order
in-order
out-of-order
Window
Measures
time
tuple count
arbitrary
Aggregation
Functions
distributive
algebraic
holistic
associativity
cummutativity
invertibility
General Stream Slicing combines generality and efficiency in a single solution.
14
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
Count-based tumbling
window with a length of 5
tuples.
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Count-based tumbling
window with a length of 5
tuples.
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Count-based tumbling
window with a length of 5
tuples.
11 13 12
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
11 13 12
What if the stream is out-of-order?
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
What if the stream is out-of-order?
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
What if the stream is out-of-order?
5
49
Out-of-order Tuple
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
What if the stream is out-of-order?
5
49
Out-of-order Tuple
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
What if the stream is out-of-order?
5
49
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
What if the stream is out-of-order?
5
49
13 12
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
What if the stream is out-of-order?
5
49
13 12
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
What if the stream is out-of-order?
5
49
13 12
5
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
What if the stream is out-of-order?
5
49
13 125 + - 3
5
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
What if the stream is out-of-order?
5
49
13 123 1+ -5 + - 3
5
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Impact of Workload Characteristics
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tuple Count
15
Event Time
5 12 13 20 35 37 42 46 48 51 52 57 63 64 65
11 13 12
1 2 1 4 3 1 5 2 2 3 6 1 2 2 1
What if the stream is out-of-order?
5
49
13 123 1+ -5 + - 3
5
What if the aggregation function is not invertible?
15
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Scotty Window Processor:
Efficent Window Aggregations
for Flink, Beam, and Storm
https://github.com/TU-Berlin-DIMA/scotty-window-processor
16
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Key-Facts
Features:
17
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Key-Facts
Features:
● One window operator for many systems.
17
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Key-Facts
Features:
● One window operator for many systems.
● High performance window aggregations with stream slicing.
17
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Key-Facts
Features:
● One window operator for many systems.
● High performance window aggregations with stream slicing.
● Scales to thousands of concurrent windows.
17
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Key-Facts
Features:
● One window operator for many systems.
● High performance window aggregations with stream slicing.
● Scales to thousands of concurrent windows.
● Aggregate sharing among multiple window queries.
17
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Key-Facts
Features:
● One window operator for many systems.
● High performance window aggregations with stream slicing.
● Scales to thousands of concurrent windows.
● Aggregate sharing among multiple window queries.
● Adapts to workload characteristics:
○ Window Types
○ Aggregation Functions
○ Window Measures
○ Stream Order
17
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Key-Facts
Features:
● One window operator for many systems.
● High performance window aggregations with stream slicing.
● Scales to thousands of concurrent windows.
● Aggregate sharing among multiple window queries.
● Adapts to workload characteristics:
○ Window Types
○ Aggregation Functions
○ Window Measures
○ Stream Order
Connectors:
…more coming soon…
17
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Scotty Core
18
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Scotty Core
18
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Scotty Core
18
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Scotty Core
18
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Scotty Core
Scotty adapts to work load characteristics
and combines generality and efficiency in a single solution.
18
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Benchmark
Concurrent Windows with Built-in Window Operator:
● Flink performs well
with a single window
(no overlap; one
bucket at a time)
0
500.000
1.000.000
1.500.000
2.000.000
2.500.000
1 10 20 50 100 500 1000
Flink Storm Flink on Beam
Throughput(Tuples/sec.)
Number of Councurrent Windows
19
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Benchmark
Concurrent Windows with Built-in Window Operator:
● Flink performs well
with a single window
(no overlap; one
bucket at a time)
0
500.000
1.000.000
1.500.000
2.000.000
2.500.000
1 10 20 50 100 500 1000
Flink Storm Flink on Beam
● With overlapping
concurrent windows,
the throughput drops
drastically.
Throughput(Tuples/sec.)
Number of Councurrent Windows
19
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
0
500.000
1.000.000
1.500.000
2.000.000
2.500.000
1 10 20 50 100 500 1000
Flink+Scotty Storm+Scotty Beam+Flink+Scotty
Benchmark
Concurrent Windows with Scotty:
● With Scotty, the throughput
is independent of the
number of concurrent
windows.
20
Throughput(Tuples/sec.)
Number of Councurrent Windows
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Using Scotty on Flink
1. Clone Scotty and install to maven
21
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Using Scotty on Flink
1. Clone Scotty and install to maven
2. Add Scotty to your Flink Project:
21
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Using Scotty on Flink
1. Initialize Scotty Window Operator
22
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Using Scotty on Flink
1. Initialize Scotty Window Operator
2. Add Window Definitions
22
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Using Scotty on Flink
1. Initialize Scotty Window Operator
3. Add Scotty to your Flink Job
2. Add Window Definitions
22
Jonas Traub (TU Berlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing
Acknowledgements: This talk is supported by the Berlin Big Data Center (01IS14013A), the Berlin Center for Machine Learning (01IS18037A), and Software Campus (1-3000473-18TP).
Scotty Window Processor
Scotty Features:
● One window operator for many systems.
● High performance with stream slicing.
● Scales to thousands of concurrent windows.
● Aggregate sharing among multiple window queries.
● Adapts to workload characteristics
tu-berlin-dima.github.io/
scotty-window-processor
Open Source Repository:
23

FlinkForward Berlin 2019 - Scotty: Efficient Window Aggregation with General Stream Slicing

  • 1.
    Scotty: Efficient WindowAggregation with General Stream Slicing Berlin, October 7-9, 2019 Philipp M. Grulich Research Associate (TU Berlin) Jonas Traub Research Associate (TU Berlin)
  • 2.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Aggregations in Stream Processing Pipelines A stream processing pipeline is a series of concurrently running operators. 2
  • 3.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Aggregations in Stream Processing Pipelines A stream processing pipeline is a series of concurrently running operators. Window Aggregation 2
  • 4.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Aggregations in Stream Processing Pipelines A stream processing pipeline is a series of concurrently running operators. Window Aggregation 53 2
  • 5.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Aggregations in Stream Processing Pipelines A stream processing pipeline is a series of concurrently running operators. Window Aggregation 8 2
  • 6.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Motivation 3
  • 7.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Motivation 3
  • 8.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Research Background Cutty: Aggregate Sharing for User-Defined Windows P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl ACM International on Conference on Information and Knowledge Management (CIKM2016) 4
  • 9.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Research Background Cutty: Aggregate Sharing for User-Defined Windows P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl ACM International on Conference on Information and Knowledge Management (CIKM2016) Scotty: Efficient Window Aggregation for out-of-order Stream Processing J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl IEEE International Conference on Data Engineering (ICDE 2018) 4
  • 10.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Research Background Cutty: Aggregate Sharing for User-Defined Windows P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl ACM International on Conference on Information and Knowledge Management (CIKM2016) Scotty: Efficient Window Aggregation for out-of-order Stream Processing J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl IEEE International Conference on Data Engineering (ICDE 2018) Efficient Window Aggregation with General Stream Slicing J. Traub, P. M. Grulich, AR. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl International Conference on Extending Database Technology (EDBT 2019; Best Paper Award) 4
  • 11.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Research Background Cutty: Aggregate Sharing for User-Defined Windows P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl ACM International on Conference on Information and Knowledge Management (CIKM2016) Scotty: Efficient Window Aggregation for out-of-order Stream Processing J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl IEEE International Conference on Data Engineering (ICDE 2018) Efficient Window Aggregation with General Stream Slicing J. Traub, P. M. Grulich, AR. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, V. Markl International Conference on Extending Database Technology (EDBT 2019; Best Paper Award) Scotty Window Processor: Efficent Window Aggregations for Flink, Beam, and Storm https://github.com/TU-Berlin-DIMA/scotty-window-processor 4
  • 12.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example 5
  • 13.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example The number of slices depends on the workload. 6
  • 14.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example 7
  • 15.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example 8
  • 16.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example 9
  • 17.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example 10 We store partial aggregates instead of all tuples. => Small memory footprint.
  • 18.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example 11 We assign each tuple to exactly one slice. => O(1) per-tuple complexity.
  • 19.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example 12
  • 20.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Stream Slicing Example We require just a few computation steps to calculate final aggregates. => Low latency. 13
  • 21.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing General Stream Slicing 14
  • 22.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing General Stream Slicing Workload Characteristics 14
  • 23.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing General Stream Slicing Workload Characteristics Aggregation Functions distributive algebraic holistic associativity cummutativity invertibility 14
  • 24.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing General Stream Slicing Workload Characteristics Window Types Context Free Forward Context Free Forward Context Aware Aggregation Functions distributive algebraic holistic associativity cummutativity invertibility 14
  • 25.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing General Stream Slicing Workload Characteristics Window Types Context Free Forward Context Free Forward Context Aware Window Measures time tuple count arbitrary Aggregation Functions distributive algebraic holistic associativity cummutativity invertibility 14
  • 26.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing General Stream Slicing Workload Characteristics Window Types Context Free Forward Context Free Forward Context Aware Stream Order in-order out-of-order Window Measures time tuple count arbitrary Aggregation Functions distributive algebraic holistic associativity cummutativity invertibility 14
  • 27.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing General Stream Slicing Workload Characteristics Window Types Context Free Forward Context Free Forward Context Aware Stream Order in-order out-of-order Window Measures time tuple count arbitrary Aggregation Functions distributive algebraic holistic associativity cummutativity invertibility General Stream Slicing combines generality and efficiency in a single solution. 14
  • 28.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 15
  • 29.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 15
  • 30.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 Count-based tumbling window with a length of 5 tuples. 15
  • 31.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Count-based tumbling window with a length of 5 tuples. 15
  • 32.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Count-based tumbling window with a length of 5 tuples. 11 13 12 15
  • 33.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 11 13 12 What if the stream is out-of-order? 15
  • 34.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 What if the stream is out-of-order? 15
  • 35.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 What if the stream is out-of-order? 5 49 Out-of-order Tuple 15
  • 36.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 What if the stream is out-of-order? 5 49 Out-of-order Tuple 15
  • 37.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 What if the stream is out-of-order? 5 49 15
  • 38.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 What if the stream is out-of-order? 5 49 13 12 15
  • 39.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 What if the stream is out-of-order? 5 49 13 12 15
  • 40.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 What if the stream is out-of-order? 5 49 13 12 5 15
  • 41.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 What if the stream is out-of-order? 5 49 13 125 + - 3 5 15
  • 42.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 What if the stream is out-of-order? 5 49 13 123 1+ -5 + - 3 5 15
  • 43.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Impact of Workload Characteristics 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tuple Count 15 Event Time 5 12 13 20 35 37 42 46 48 51 52 57 63 64 65 11 13 12 1 2 1 4 3 1 5 2 2 3 6 1 2 2 1 What if the stream is out-of-order? 5 49 13 123 1+ -5 + - 3 5 What if the aggregation function is not invertible? 15
  • 44.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Scotty Window Processor: Efficent Window Aggregations for Flink, Beam, and Storm https://github.com/TU-Berlin-DIMA/scotty-window-processor 16
  • 45.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Key-Facts Features: 17
  • 46.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Key-Facts Features: ● One window operator for many systems. 17
  • 47.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Key-Facts Features: ● One window operator for many systems. ● High performance window aggregations with stream slicing. 17
  • 48.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Key-Facts Features: ● One window operator for many systems. ● High performance window aggregations with stream slicing. ● Scales to thousands of concurrent windows. 17
  • 49.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Key-Facts Features: ● One window operator for many systems. ● High performance window aggregations with stream slicing. ● Scales to thousands of concurrent windows. ● Aggregate sharing among multiple window queries. 17
  • 50.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Key-Facts Features: ● One window operator for many systems. ● High performance window aggregations with stream slicing. ● Scales to thousands of concurrent windows. ● Aggregate sharing among multiple window queries. ● Adapts to workload characteristics: ○ Window Types ○ Aggregation Functions ○ Window Measures ○ Stream Order 17
  • 51.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Key-Facts Features: ● One window operator for many systems. ● High performance window aggregations with stream slicing. ● Scales to thousands of concurrent windows. ● Aggregate sharing among multiple window queries. ● Adapts to workload characteristics: ○ Window Types ○ Aggregation Functions ○ Window Measures ○ Stream Order Connectors: …more coming soon… 17
  • 52.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Scotty Core 18
  • 53.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Scotty Core 18
  • 54.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Scotty Core 18
  • 55.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Scotty Core 18
  • 56.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Scotty Core Scotty adapts to work load characteristics and combines generality and efficiency in a single solution. 18
  • 57.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Benchmark Concurrent Windows with Built-in Window Operator: ● Flink performs well with a single window (no overlap; one bucket at a time) 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 1 10 20 50 100 500 1000 Flink Storm Flink on Beam Throughput(Tuples/sec.) Number of Councurrent Windows 19
  • 58.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Benchmark Concurrent Windows with Built-in Window Operator: ● Flink performs well with a single window (no overlap; one bucket at a time) 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 1 10 20 50 100 500 1000 Flink Storm Flink on Beam ● With overlapping concurrent windows, the throughput drops drastically. Throughput(Tuples/sec.) Number of Councurrent Windows 19
  • 59.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 1 10 20 50 100 500 1000 Flink+Scotty Storm+Scotty Beam+Flink+Scotty Benchmark Concurrent Windows with Scotty: ● With Scotty, the throughput is independent of the number of concurrent windows. 20 Throughput(Tuples/sec.) Number of Councurrent Windows
  • 60.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Using Scotty on Flink 1. Clone Scotty and install to maven 21
  • 61.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Using Scotty on Flink 1. Clone Scotty and install to maven 2. Add Scotty to your Flink Project: 21
  • 62.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Using Scotty on Flink 1. Initialize Scotty Window Operator 22
  • 63.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Using Scotty on Flink 1. Initialize Scotty Window Operator 2. Add Window Definitions 22
  • 64.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Using Scotty on Flink 1. Initialize Scotty Window Operator 3. Add Scotty to your Flink Job 2. Add Window Definitions 22
  • 65.
    Jonas Traub (TUBerlin), Philipp M. Grulich (TU Berlin) - Efficient Window Aggregation with Stream Slicing Acknowledgements: This talk is supported by the Berlin Big Data Center (01IS14013A), the Berlin Center for Machine Learning (01IS18037A), and Software Campus (1-3000473-18TP). Scotty Window Processor Scotty Features: ● One window operator for many systems. ● High performance with stream slicing. ● Scales to thousands of concurrent windows. ● Aggregate sharing among multiple window queries. ● Adapts to workload characteristics tu-berlin-dima.github.io/ scotty-window-processor Open Source Repository: 23