SlideShare a Scribd company logo
Figure: Fixed point iteration for the very simple case where g(x) is a linear function of x. In this figure the liney = g(x) has been chosen to have a positive slope less than one and its iteration started from the value x0. Similarly, the line  has been chosen to have a positive slope greater than one and its iteration started from the value . The convergent behavior of the g(x) fixed point iteration is quite different from that for which diverges away from the fixed point at xp. The divergence for  is caused solely by the fact that the slope of  is greater than the slope of the line y= x.<br />The conditions for which the fixed point iteration scheme is convergent can be understood by inspection on the figure 1. In this case we consider the determination of the zero of the simple function: <br />A straightforward choice for the function g(x) with which to do fixed point iteration is: <br />This example is particularly simple since we can solve f(x) = 0 analytically and find the fixed point of g(x), xp = ma/(m-1). It is easy to verify that g(xp) = xp, confirming that xp is indeed a fixed point. The fixed point iteration sequence is shown for two choices of the slope, m, both positive. The curve y = g(x) has m < 1 and the curve  has m > 1. It is clear that the m < 1 case results in monotonic convergence to the fixed point xp, so that the fixed point is strongly attractive in this case. The m > 1 case illustrates monotonic divergence away from the fixed point xp, so that the fixed point is strongly repellent in this case.<br />While this simple linear case may seem special, it displays the behaviour which applies in general to a continuous mapping function, g(x). In order to understand the reasons for the difference in behaviour for the two cases m < 1 and m > 1, we need to follow the iteration sequence in some detail. Once given the starting value x0, we compute g(x0), the corresponding point on the y = g(x) curve. We then move along the  line to intersect the y = x line, and there read the value ofx, and use this as the next iteration value for x. Examination of the m < 1 iteration sequence in the figure  shows that each motion along the arrows of the iteration sequence leads towards the intersection point of y = x and y = g(x), thus assuring convergence. A similar examination of the m > 1 case shows that each motion along the arrows of the iteration sequence leads away from the intersection point at xp, thus assuring divergence. While the point xp remains a fixed point of , it is an unstable fixed point in the sense that starting arbitrarily close to the fixed point still results in an iterative path that leads away from the fixed point. The termsattractor and repeller then naturally describe the fixed point xp for the maps associated with m < 1 and m > 1 respectively.<br />Figure 6.3: Fixed point iteration for a general function g(x) for the four cases of interest. Generalizations of the two cases of positive slope shown in  the figure 1 are shown on the left, and illustrate monotonic convergence and divergence. The cases where g(x) has negative slope are shown on the right, and illustrate oscillating convergence and divergence. The top pair of panels illustrate strong and weak attractors, while the bottom pair of panels illustrate strong and weak repellers.<br />We have considered iteration functions, like g(x), which have positive slopes in the neighborhood of the fixed point, and shown that these lead to either monotonic convergence or monotonic divergence. When g(x) has negative slope in the neighborhood of the fixed point, the result is oscillating convergence or divergence, with convergence requiring |m| < 1. The iteration sequences for all four cases are shown in the figure 1 for more general g(x). The conditions leading to convergence are unchanged from those derived for the linear case as long as the neighborhood of the fixed point considered is small enough.<br />
Fixedpoint
Fixedpoint

More Related Content

What's hot

L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
James Tagara
 
Advanced functions part ii
Advanced functions part iiAdvanced functions part ii
Advanced functions part iiwendyvazzy
 
Continuity Of Functions
Continuity Of FunctionsContinuity Of Functions
Continuity Of Functions
Yash Thakkar
 
Integracion y variables
Integracion y variablesIntegracion y variables
Integracion y variables
MauricioSilvaPrez
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
MD.ASHIQUZZAMAN KHONDAKER
 
3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs
smiller5
 
Limits
LimitsLimits
Limitssarcia
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
Juan Apolinario Reyes
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functionstschmucker
 
Continuous Random Variables
Continuous Random VariablesContinuous Random Variables
Continuous Random Variables
DataminingTools Inc
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
Muthulakshmilakshmi2
 
Limits
LimitsLimits
Limits
admercano101
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
Seyid Kadher
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
eteaching
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function
Vishvesh Jasani
 

What's hot (15)

L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
 
Advanced functions part ii
Advanced functions part iiAdvanced functions part ii
Advanced functions part ii
 
Continuity Of Functions
Continuity Of FunctionsContinuity Of Functions
Continuity Of Functions
 
Integracion y variables
Integracion y variablesIntegracion y variables
Integracion y variables
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
 
3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs
 
Limits
LimitsLimits
Limits
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Continuous Random Variables
Continuous Random VariablesContinuous Random Variables
Continuous Random Variables
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Limits
LimitsLimits
Limits
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function
 

Viewers also liked

Tanushri wahi resume + portfolio
Tanushri wahi resume + portfolioTanushri wahi resume + portfolio
Tanushri wahi resume + portfoliotanushriwahi
 
Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객valuasset
 
Find Me Somebody to Love!
Find Me Somebody to Love!Find Me Somebody to Love!
Find Me Somebody to Love!gaitlady
 
Laporan Tahunan AJI 2011 - Menjelang sinyal merah
Laporan Tahunan AJI 2011 - Menjelang sinyal merahLaporan Tahunan AJI 2011 - Menjelang sinyal merah
Laporan Tahunan AJI 2011 - Menjelang sinyal merah
Federation of Independent Media Workers Union
 
TIPS for Managing Tech and Workflow Changes in Libraries
TIPS for Managing Tech and Workflow Changes in LibrariesTIPS for Managing Tech and Workflow Changes in Libraries
TIPS for Managing Tech and Workflow Changes in Libraries
Colleen Harris
 
Reputation matters - what's yours?
Reputation matters - what's yours?Reputation matters - what's yours?
Reputation matters - what's yours?
Sara Shailer
 
Community over code - fossa2010
Community over code - fossa2010Community over code - fossa2010
OWF2013 INTERNET OF THINGS
OWF2013 INTERNET OF THINGSOWF2013 INTERNET OF THINGS
Colonel转码集群
Colonel转码集群Colonel转码集群
Colonel转码集群pluschen
 
HASNAINN
HASNAINNHASNAINN
HASNAINN
shahhmurad
 
Disney Effects: Building web/mobile castle in OpenGL 2D & 3D
Disney Effects: Building web/mobile castle in OpenGL 2D & 3DDisney Effects: Building web/mobile castle in OpenGL 2D & 3D
Disney Effects: Building web/mobile castle in OpenGL 2D & 3DSVWB
 
Iterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsIterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsNORAIMA
 
Hy solution사례(10)연금보험 연금저축사업비 비교
Hy solution사례(10)연금보험 연금저축사업비 비교Hy solution사례(10)연금보험 연금저축사업비 비교
Hy solution사례(10)연금보험 연금저축사업비 비교
valuasset
 
码率选择之殇
码率选择之殇码率选择之殇
码率选择之殇
pluschen
 

Viewers also liked (20)

Numerical method
Numerical methodNumerical method
Numerical method
 
Tanushri wahi resume + portfolio
Tanushri wahi resume + portfolioTanushri wahi resume + portfolio
Tanushri wahi resume + portfolio
 
Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객
 
Post 99
Post 99Post 99
Post 99
 
Find Me Somebody to Love!
Find Me Somebody to Love!Find Me Somebody to Love!
Find Me Somebody to Love!
 
Laporan Tahunan AJI 2011 - Menjelang sinyal merah
Laporan Tahunan AJI 2011 - Menjelang sinyal merahLaporan Tahunan AJI 2011 - Menjelang sinyal merah
Laporan Tahunan AJI 2011 - Menjelang sinyal merah
 
TIPS for Managing Tech and Workflow Changes in Libraries
TIPS for Managing Tech and Workflow Changes in LibrariesTIPS for Managing Tech and Workflow Changes in Libraries
TIPS for Managing Tech and Workflow Changes in Libraries
 
CloudSpurt customer
CloudSpurt customerCloudSpurt customer
CloudSpurt customer
 
Reputation matters - what's yours?
Reputation matters - what's yours?Reputation matters - what's yours?
Reputation matters - what's yours?
 
Community over code - fossa2010
Community over code - fossa2010Community over code - fossa2010
Community over code - fossa2010
 
Power of one
Power of onePower of one
Power of one
 
OWF2013 INTERNET OF THINGS
OWF2013 INTERNET OF THINGSOWF2013 INTERNET OF THINGS
OWF2013 INTERNET OF THINGS
 
Colonel转码集群
Colonel转码集群Colonel转码集群
Colonel转码集群
 
HASNAINN
HASNAINNHASNAINN
HASNAINN
 
Disney Effects: Building web/mobile castle in OpenGL 2D & 3D
Disney Effects: Building web/mobile castle in OpenGL 2D & 3DDisney Effects: Building web/mobile castle in OpenGL 2D & 3D
Disney Effects: Building web/mobile castle in OpenGL 2D & 3D
 
Iterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equationsIterative methods for the solution of systems of linear equations
Iterative methods for the solution of systems of linear equations
 
Potret pers jakarta 2013
Potret pers jakarta 2013Potret pers jakarta 2013
Potret pers jakarta 2013
 
FurnitureNYC
FurnitureNYCFurnitureNYC
FurnitureNYC
 
Hy solution사례(10)연금보험 연금저축사업비 비교
Hy solution사례(10)연금보험 연금저축사업비 비교Hy solution사례(10)연금보험 연금저축사업비 비교
Hy solution사례(10)연금보험 연금저축사업비 비교
 
码率选择之殇
码率选择之殇码率选择之殇
码率选择之殇
 

Similar to Fixedpoint

MC0082 –Theory of Computer Science
MC0082 –Theory of Computer ScienceMC0082 –Theory of Computer Science
MC0082 –Theory of Computer Science
Aravind NC
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functions
James Tagara
 
Interpolation
InterpolationInterpolation
Interpolation
CAALAAA
 
Calculus Final Review Joshua Conyers
Calculus Final Review Joshua ConyersCalculus Final Review Joshua Conyers
Calculus Final Review Joshua Conyersjcon44
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentation
kdoha825
 
Machine learning (9)
Machine learning (9)Machine learning (9)
Machine learning (9)NYversity
 
Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘 Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘
Jungkyu Lee
 
Cs229 notes8
Cs229 notes8Cs229 notes8
Cs229 notes8
VuTran231
 
Derivative rules.docx
Derivative rules.docxDerivative rules.docx
Derivative rules.docx
Rose Mary Tania Arini
 
ML-UNIT-IV complete notes download here
ML-UNIT-IV  complete notes download hereML-UNIT-IV  complete notes download here
ML-UNIT-IV complete notes download here
keerthanakshatriya20
 
Variational Principle
Variational PrincipleVariational Principle
Variational Principle
AmeenSoomro1
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphs
Palash Dey
 
2.7 Graphing Techniques
2.7 Graphing Techniques2.7 Graphing Techniques
2.7 Graphing Techniques
smiller5
 
Week 6
Week 6Week 6
Week 6
EasyStudy3
 
A bit about мcmc
A bit about мcmcA bit about мcmc
A bit about мcmc
Alexander Favorov
 

Similar to Fixedpoint (20)

MC0082 –Theory of Computer Science
MC0082 –Theory of Computer ScienceMC0082 –Theory of Computer Science
MC0082 –Theory of Computer Science
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functions
 
Calc 3.5
Calc 3.5Calc 3.5
Calc 3.5
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Interpolation
InterpolationInterpolation
Interpolation
 
Calculus Final Review Joshua Conyers
Calculus Final Review Joshua ConyersCalculus Final Review Joshua Conyers
Calculus Final Review Joshua Conyers
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentation
 
Machine learning (9)
Machine learning (9)Machine learning (9)
Machine learning (9)
 
Calc 3.5
Calc 3.5Calc 3.5
Calc 3.5
 
Calc 3.5
Calc 3.5Calc 3.5
Calc 3.5
 
Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘 Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘
 
Cs229 notes8
Cs229 notes8Cs229 notes8
Cs229 notes8
 
Derivative rules.docx
Derivative rules.docxDerivative rules.docx
Derivative rules.docx
 
ML-UNIT-IV complete notes download here
ML-UNIT-IV  complete notes download hereML-UNIT-IV  complete notes download here
ML-UNIT-IV complete notes download here
 
Variational Principle
Variational PrincipleVariational Principle
Variational Principle
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphs
 
2.7 Graphing Techniques
2.7 Graphing Techniques2.7 Graphing Techniques
2.7 Graphing Techniques
 
Calc 2.1
Calc 2.1Calc 2.1
Calc 2.1
 
Week 6
Week 6Week 6
Week 6
 
A bit about мcmc
A bit about мcmcA bit about мcmc
A bit about мcmc
 

More from uis

Raicesdeecuaciones
RaicesdeecuacionesRaicesdeecuaciones
Raicesdeecuacionesuis
 
Taller refuerzo
Taller refuerzoTaller refuerzo
Taller refuerzouis
 
Secant method
Secant methodSecant method
Secant methoduis
 
Fixedpoint
FixedpointFixedpoint
Fixedpointuis
 
Fixedpoint
FixedpointFixedpoint
Fixedpointuis
 
False position
False positionFalse position
False positionuis
 
Bisection method
Bisection methodBisection method
Bisection methoduis
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsoruis
 
Gaussseidel
GaussseidelGaussseidel
Gaussseideluis
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en claseuis
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en claseuis
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en claseuis
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethoduis
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethoduis
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordanuis
 
Gauss jordan elimination through pivoting
Gauss jordan elimination through pivotingGauss jordan elimination through pivoting
Gauss jordan elimination through pivotinguis
 
L2 darcys law
L2 darcys lawL2 darcys law
L2 darcys lawuis
 

More from uis (17)

Raicesdeecuaciones
RaicesdeecuacionesRaicesdeecuaciones
Raicesdeecuaciones
 
Taller refuerzo
Taller refuerzoTaller refuerzo
Taller refuerzo
 
Secant method
Secant methodSecant method
Secant method
 
Fixedpoint
FixedpointFixedpoint
Fixedpoint
 
Fixedpoint
FixedpointFixedpoint
Fixedpoint
 
False position
False positionFalse position
False position
 
Bisection method
Bisection methodBisection method
Bisection method
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsor
 
Gaussseidel
GaussseidelGaussseidel
Gaussseidel
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en clase
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en clase
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en clase
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethod
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethod
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
Gauss jordan elimination through pivoting
Gauss jordan elimination through pivotingGauss jordan elimination through pivoting
Gauss jordan elimination through pivoting
 
L2 darcys law
L2 darcys lawL2 darcys law
L2 darcys law
 

Fixedpoint

  • 1. Figure: Fixed point iteration for the very simple case where g(x) is a linear function of x. In this figure the liney = g(x) has been chosen to have a positive slope less than one and its iteration started from the value x0. Similarly, the line  has been chosen to have a positive slope greater than one and its iteration started from the value . The convergent behavior of the g(x) fixed point iteration is quite different from that for which diverges away from the fixed point at xp. The divergence for  is caused solely by the fact that the slope of  is greater than the slope of the line y= x.<br />The conditions for which the fixed point iteration scheme is convergent can be understood by inspection on the figure 1. In this case we consider the determination of the zero of the simple function: <br />A straightforward choice for the function g(x) with which to do fixed point iteration is: <br />This example is particularly simple since we can solve f(x) = 0 analytically and find the fixed point of g(x), xp = ma/(m-1). It is easy to verify that g(xp) = xp, confirming that xp is indeed a fixed point. The fixed point iteration sequence is shown for two choices of the slope, m, both positive. The curve y = g(x) has m < 1 and the curve  has m > 1. It is clear that the m < 1 case results in monotonic convergence to the fixed point xp, so that the fixed point is strongly attractive in this case. The m > 1 case illustrates monotonic divergence away from the fixed point xp, so that the fixed point is strongly repellent in this case.<br />While this simple linear case may seem special, it displays the behaviour which applies in general to a continuous mapping function, g(x). In order to understand the reasons for the difference in behaviour for the two cases m < 1 and m > 1, we need to follow the iteration sequence in some detail. Once given the starting value x0, we compute g(x0), the corresponding point on the y = g(x) curve. We then move along the  line to intersect the y = x line, and there read the value ofx, and use this as the next iteration value for x. Examination of the m < 1 iteration sequence in the figure  shows that each motion along the arrows of the iteration sequence leads towards the intersection point of y = x and y = g(x), thus assuring convergence. A similar examination of the m > 1 case shows that each motion along the arrows of the iteration sequence leads away from the intersection point at xp, thus assuring divergence. While the point xp remains a fixed point of , it is an unstable fixed point in the sense that starting arbitrarily close to the fixed point still results in an iterative path that leads away from the fixed point. The termsattractor and repeller then naturally describe the fixed point xp for the maps associated with m < 1 and m > 1 respectively.<br />Figure 6.3: Fixed point iteration for a general function g(x) for the four cases of interest. Generalizations of the two cases of positive slope shown in the figure 1 are shown on the left, and illustrate monotonic convergence and divergence. The cases where g(x) has negative slope are shown on the right, and illustrate oscillating convergence and divergence. The top pair of panels illustrate strong and weak attractors, while the bottom pair of panels illustrate strong and weak repellers.<br />We have considered iteration functions, like g(x), which have positive slopes in the neighborhood of the fixed point, and shown that these lead to either monotonic convergence or monotonic divergence. When g(x) has negative slope in the neighborhood of the fixed point, the result is oscillating convergence or divergence, with convergence requiring |m| < 1. The iteration sequences for all four cases are shown in the figure 1 for more general g(x). The conditions leading to convergence are unchanged from those derived for the linear case as long as the neighborhood of the fixed point considered is small enough.<br />