SlideShare a Scribd company logo
Figure: Fixed point iteration for the very simple case where g(x) is a linear function of x. In this figure the liney = g(x) has been chosen to have a positive slope less than one and its iteration started from the value x0. Similarly, the line  has been chosen to have a positive slope greater than one and its iteration started from the value . The convergent behavior of the g(x) fixed point iteration is quite different from that for which diverges away from the fixed point at xp. The divergence for  is caused solely by the fact that the slope of  is greater than the slope of the line y= x.<br />The conditions for which the fixed point iteration scheme is convergent can be understood by inspection on the figure 1. In this case we consider the determination of the zero of the simple function: <br />A straightforward choice for the function g(x) with which to do fixed point iteration is: <br />This example is particularly simple since we can solve f(x) = 0 analytically and find the fixed point of g(x), xp = ma/(m-1). It is easy to verify that g(xp) = xp, confirming that xp is indeed a fixed point. The fixed point iteration sequence is shown for two choices of the slope, m, both positive. The curve y = g(x) has m < 1 and the curve  has m > 1. It is clear that the m < 1 case results in monotonic convergence to the fixed point xp, so that the fixed point is strongly attractive in this case. The m > 1 case illustrates monotonic divergence away from the fixed point xp, so that the fixed point is strongly repellent in this case.<br />While this simple linear case may seem special, it displays the behaviour which applies in general to a continuous mapping function, g(x). In order to understand the reasons for the difference in behaviour for the two cases m < 1 and m > 1, we need to follow the iteration sequence in some detail. Once given the starting value x0, we compute g(x0), the corresponding point on the y = g(x) curve. We then move along the  line to intersect the y = x line, and there read the value ofx, and use this as the next iteration value for x. Examination of the m < 1 iteration sequence in the figure  shows that each motion along the arrows of the iteration sequence leads towards the intersection point of y = x and y = g(x), thus assuring convergence. A similar examination of the m > 1 case shows that each motion along the arrows of the iteration sequence leads away from the intersection point at xp, thus assuring divergence. While the point xp remains a fixed point of , it is an unstable fixed point in the sense that starting arbitrarily close to the fixed point still results in an iterative path that leads away from the fixed point. The termsattractor and repeller then naturally describe the fixed point xp for the maps associated with m < 1 and m > 1 respectively.<br />Figure 6.3: Fixed point iteration for a general function g(x) for the four cases of interest. Generalizations of the two cases of positive slope shown in  the figure 1 are shown on the left, and illustrate monotonic convergence and divergence. The cases where g(x) has negative slope are shown on the right, and illustrate oscillating convergence and divergence. The top pair of panels illustrate strong and weak attractors, while the bottom pair of panels illustrate strong and weak repellers.<br />We have considered iteration functions, like g(x), which have positive slopes in the neighborhood of the fixed point, and shown that these lead to either monotonic convergence or monotonic divergence. When g(x) has negative slope in the neighborhood of the fixed point, the result is oscillating convergence or divergence, with convergence requiring |m| < 1. The iteration sequences for all four cases are shown in the figure 1 for more general g(x). The conditions leading to convergence are unchanged from those derived for the linear case as long as the neighborhood of the fixed point considered is small enough.<br />
Fixedpoint
Fixedpoint

More Related Content

What's hot

L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
James Tagara
 
Advanced functions part ii
Advanced functions part iiAdvanced functions part ii
Advanced functions part iiwendyvazzy
 
Continuity Of Functions
Continuity Of FunctionsContinuity Of Functions
Continuity Of Functions
Yash Thakkar
 
Integracion y variables
Integracion y variablesIntegracion y variables
Integracion y variables
MauricioSilvaPrez
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
MD.ASHIQUZZAMAN KHONDAKER
 
3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs
smiller5
 
Limits
LimitsLimits
Limitssarcia
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
Juan Apolinario Reyes
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functionstschmucker
 
Continuous Random Variables
Continuous Random VariablesContinuous Random Variables
Continuous Random Variables
DataminingTools Inc
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
Muthulakshmilakshmi2
 
Limits
LimitsLimits
Limits
admercano101
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
Seyid Kadher
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
eteaching
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function
Vishvesh Jasani
 

What's hot (15)

L4 one sided limits limits at infinity
L4 one sided limits limits at infinityL4 one sided limits limits at infinity
L4 one sided limits limits at infinity
 
Advanced functions part ii
Advanced functions part iiAdvanced functions part ii
Advanced functions part ii
 
Continuity Of Functions
Continuity Of FunctionsContinuity Of Functions
Continuity Of Functions
 
Integracion y variables
Integracion y variablesIntegracion y variables
Integracion y variables
 
Application of derivatives
Application of derivativesApplication of derivatives
Application of derivatives
 
3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs
 
Limits
LimitsLimits
Limits
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Continuous Random Variables
Continuous Random VariablesContinuous Random Variables
Continuous Random Variables
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Limits
LimitsLimits
Limits
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
application of partial differentiation
application of partial differentiationapplication of partial differentiation
application of partial differentiation
 
Continuity of a Function
Continuity of a Function Continuity of a Function
Continuity of a Function
 

Viewers also liked

%Ba%b7%b7%d5%e8 2
%Ba%b7%b7%d5%e8 2%Ba%b7%b7%d5%e8 2
%Ba%b7%b7%d5%e8 2
Harid Nattapong
 
Programació de la 5a Setmana.
Programació de la 5a Setmana.Programació de la 5a Setmana.
Programació de la 5a Setmana.
genescacr
 
Dokumen yang Memanaskan Jakarta
Dokumen yang Memanaskan JakartaDokumen yang Memanaskan Jakarta
Dokumen yang Memanaskan Jakarta
Federation of Independent Media Workers Union
 
Setelah Insiden Jim Foley
Setelah Insiden Jim FoleySetelah Insiden Jim Foley
Cucaruba!
Cucaruba!Cucaruba!
Cucaruba!
Matt Yoho
 
OSS Project Quality & management
OSS Project Quality & managementOSS Project Quality & management
A2 co eu28e
A2 co eu28eA2 co eu28e
A2 co eu28eseraphy
 
Simulationroundtablept1
Simulationroundtablept1Simulationroundtablept1
Simulationroundtablept1
Catherine Haight
 
как стать партнером Swb
как стать партнером Swbкак стать партнером Swb
как стать партнером Swbpanipan
 
Hy solution 2012년05월펀드변경관련안내
Hy solution 2012년05월펀드변경관련안내Hy solution 2012년05월펀드변경관련안내
Hy solution 2012년05월펀드변경관련안내
valuasset
 
Plume Project
Plume ProjectPlume Project
Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객valuasset
 
The 7 Habits of Highly Effective Search Engine Marketing
The 7 Habits of Highly Effective Search Engine MarketingThe 7 Habits of Highly Effective Search Engine Marketing
The 7 Habits of Highly Effective Search Engine Marketing
dogpatchlabs
 
IDEA Colombia 3.0 Games Industry Keynote - September 2015
IDEA Colombia 3.0 Games Industry Keynote - September 2015IDEA Colombia 3.0 Games Industry Keynote - September 2015
IDEA Colombia 3.0 Games Industry Keynote - September 2015
International Digital Entertainment Agency (IDEA)
 
Kruskal
KruskalKruskal
KruskalJorge
 
哲学问题的科学解
哲学问题的科学解哲学问题的科学解
哲学问题的科学解
pluschen
 
Greener Greater Building Plan Overview
Greener Greater Building Plan Overview Greener Greater Building Plan Overview
Greener Greater Building Plan Overview
REBNY
 
Hku mmg 2011_presentatie_meeting01
Hku mmg 2011_presentatie_meeting01Hku mmg 2011_presentatie_meeting01
Hku mmg 2011_presentatie_meeting01zesvoetvier
 

Viewers also liked (20)

%Ba%b7%b7%d5%e8 2
%Ba%b7%b7%d5%e8 2%Ba%b7%b7%d5%e8 2
%Ba%b7%b7%d5%e8 2
 
Programació de la 5a Setmana.
Programació de la 5a Setmana.Programació de la 5a Setmana.
Programació de la 5a Setmana.
 
Dokumen yang Memanaskan Jakarta
Dokumen yang Memanaskan JakartaDokumen yang Memanaskan Jakarta
Dokumen yang Memanaskan Jakarta
 
Setelah Insiden Jim Foley
Setelah Insiden Jim FoleySetelah Insiden Jim Foley
Setelah Insiden Jim Foley
 
Cucaruba!
Cucaruba!Cucaruba!
Cucaruba!
 
OSS Project Quality & management
OSS Project Quality & managementOSS Project Quality & management
OSS Project Quality & management
 
A2 co eu28e
A2 co eu28eA2 co eu28e
A2 co eu28e
 
Amigos
AmigosAmigos
Amigos
 
Simulationroundtablept1
Simulationroundtablept1Simulationroundtablept1
Simulationroundtablept1
 
Power point
Power pointPower point
Power point
 
как стать партнером Swb
как стать партнером Swbкак стать партнером Swb
как стать партнером Swb
 
Hy solution 2012년05월펀드변경관련안내
Hy solution 2012년05월펀드변경관련안내Hy solution 2012년05월펀드변경관련안내
Hy solution 2012년05월펀드변경관련안내
 
Plume Project
Plume ProjectPlume Project
Plume Project
 
Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객Hy solution사례(5)저축보험가입고객
Hy solution사례(5)저축보험가입고객
 
The 7 Habits of Highly Effective Search Engine Marketing
The 7 Habits of Highly Effective Search Engine MarketingThe 7 Habits of Highly Effective Search Engine Marketing
The 7 Habits of Highly Effective Search Engine Marketing
 
IDEA Colombia 3.0 Games Industry Keynote - September 2015
IDEA Colombia 3.0 Games Industry Keynote - September 2015IDEA Colombia 3.0 Games Industry Keynote - September 2015
IDEA Colombia 3.0 Games Industry Keynote - September 2015
 
Kruskal
KruskalKruskal
Kruskal
 
哲学问题的科学解
哲学问题的科学解哲学问题的科学解
哲学问题的科学解
 
Greener Greater Building Plan Overview
Greener Greater Building Plan Overview Greener Greater Building Plan Overview
Greener Greater Building Plan Overview
 
Hku mmg 2011_presentatie_meeting01
Hku mmg 2011_presentatie_meeting01Hku mmg 2011_presentatie_meeting01
Hku mmg 2011_presentatie_meeting01
 

Similar to Fixedpoint

MC0082 –Theory of Computer Science
MC0082 –Theory of Computer ScienceMC0082 –Theory of Computer Science
MC0082 –Theory of Computer Science
Aravind NC
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functions
James Tagara
 
Interpolation
InterpolationInterpolation
Interpolation
CAALAAA
 
Calculus Final Review Joshua Conyers
Calculus Final Review Joshua ConyersCalculus Final Review Joshua Conyers
Calculus Final Review Joshua Conyersjcon44
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentation
kdoha825
 
Machine learning (9)
Machine learning (9)Machine learning (9)
Machine learning (9)NYversity
 
Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘 Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘
Jungkyu Lee
 
Cs229 notes8
Cs229 notes8Cs229 notes8
Cs229 notes8
VuTran231
 
Derivative rules.docx
Derivative rules.docxDerivative rules.docx
Derivative rules.docx
Rose Mary Tania Arini
 
ML-UNIT-IV complete notes download here
ML-UNIT-IV  complete notes download hereML-UNIT-IV  complete notes download here
ML-UNIT-IV complete notes download here
keerthanakshatriya20
 
Variational Principle
Variational PrincipleVariational Principle
Variational Principle
AmeenSoomro1
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphs
Palash Dey
 
2.7 Graphing Techniques
2.7 Graphing Techniques2.7 Graphing Techniques
2.7 Graphing Techniques
smiller5
 
Week 6
Week 6Week 6
Week 6
EasyStudy3
 
A bit about мcmc
A bit about мcmcA bit about мcmc
A bit about мcmc
Alexander Favorov
 

Similar to Fixedpoint (20)

MC0082 –Theory of Computer Science
MC0082 –Theory of Computer ScienceMC0082 –Theory of Computer Science
MC0082 –Theory of Computer Science
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functions
 
Calc 3.5
Calc 3.5Calc 3.5
Calc 3.5
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Interpolation
InterpolationInterpolation
Interpolation
 
Calculus Final Review Joshua Conyers
Calculus Final Review Joshua ConyersCalculus Final Review Joshua Conyers
Calculus Final Review Joshua Conyers
 
CALCULUS chapter number one presentation
CALCULUS chapter number one presentationCALCULUS chapter number one presentation
CALCULUS chapter number one presentation
 
Machine learning (9)
Machine learning (9)Machine learning (9)
Machine learning (9)
 
Calc 3.5
Calc 3.5Calc 3.5
Calc 3.5
 
Calc 3.5
Calc 3.5Calc 3.5
Calc 3.5
 
Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘 Jensen's inequality, EM 알고리즘
Jensen's inequality, EM 알고리즘
 
Cs229 notes8
Cs229 notes8Cs229 notes8
Cs229 notes8
 
Derivative rules.docx
Derivative rules.docxDerivative rules.docx
Derivative rules.docx
 
ML-UNIT-IV complete notes download here
ML-UNIT-IV  complete notes download hereML-UNIT-IV  complete notes download here
ML-UNIT-IV complete notes download here
 
Variational Principle
Variational PrincipleVariational Principle
Variational Principle
 
Equations of graphs
Equations of graphsEquations of graphs
Equations of graphs
 
2.7 Graphing Techniques
2.7 Graphing Techniques2.7 Graphing Techniques
2.7 Graphing Techniques
 
Calc 2.1
Calc 2.1Calc 2.1
Calc 2.1
 
Week 6
Week 6Week 6
Week 6
 
A bit about мcmc
A bit about мcmcA bit about мcmc
A bit about мcmc
 

More from uis

Raicesdeecuaciones
RaicesdeecuacionesRaicesdeecuaciones
Raicesdeecuacionesuis
 
Taller refuerzo
Taller refuerzoTaller refuerzo
Taller refuerzouis
 
Secant method
Secant methodSecant method
Secant methoduis
 
Fixedpoint
FixedpointFixedpoint
Fixedpointuis
 
Fixedpoint
FixedpointFixedpoint
Fixedpointuis
 
False position
False positionFalse position
False positionuis
 
Bisection method
Bisection methodBisection method
Bisection methoduis
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsoruis
 
Gaussseidel
GaussseidelGaussseidel
Gaussseideluis
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en claseuis
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en claseuis
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en claseuis
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethoduis
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethoduis
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordanuis
 
Gauss jordan elimination through pivoting
Gauss jordan elimination through pivotingGauss jordan elimination through pivoting
Gauss jordan elimination through pivotinguis
 
L2 darcys law
L2 darcys lawL2 darcys law
L2 darcys lawuis
 

More from uis (17)

Raicesdeecuaciones
RaicesdeecuacionesRaicesdeecuaciones
Raicesdeecuaciones
 
Taller refuerzo
Taller refuerzoTaller refuerzo
Taller refuerzo
 
Secant method
Secant methodSecant method
Secant method
 
Fixedpoint
FixedpointFixedpoint
Fixedpoint
 
Fixedpoint
FixedpointFixedpoint
Fixedpoint
 
False position
False positionFalse position
False position
 
Bisection method
Bisection methodBisection method
Bisection method
 
Gaussseidelsor
GaussseidelsorGaussseidelsor
Gaussseidelsor
 
Gaussseidel
GaussseidelGaussseidel
Gaussseidel
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en clase
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en clase
 
Metodos especiales ejercicio en clase
Metodos especiales ejercicio en claseMetodos especiales ejercicio en clase
Metodos especiales ejercicio en clase
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethod
 
Choleskymethod
CholeskymethodCholeskymethod
Choleskymethod
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
Gauss jordan elimination through pivoting
Gauss jordan elimination through pivotingGauss jordan elimination through pivoting
Gauss jordan elimination through pivoting
 
L2 darcys law
L2 darcys lawL2 darcys law
L2 darcys law
 

Fixedpoint

  • 1. Figure: Fixed point iteration for the very simple case where g(x) is a linear function of x. In this figure the liney = g(x) has been chosen to have a positive slope less than one and its iteration started from the value x0. Similarly, the line  has been chosen to have a positive slope greater than one and its iteration started from the value . The convergent behavior of the g(x) fixed point iteration is quite different from that for which diverges away from the fixed point at xp. The divergence for  is caused solely by the fact that the slope of  is greater than the slope of the line y= x.<br />The conditions for which the fixed point iteration scheme is convergent can be understood by inspection on the figure 1. In this case we consider the determination of the zero of the simple function: <br />A straightforward choice for the function g(x) with which to do fixed point iteration is: <br />This example is particularly simple since we can solve f(x) = 0 analytically and find the fixed point of g(x), xp = ma/(m-1). It is easy to verify that g(xp) = xp, confirming that xp is indeed a fixed point. The fixed point iteration sequence is shown for two choices of the slope, m, both positive. The curve y = g(x) has m < 1 and the curve  has m > 1. It is clear that the m < 1 case results in monotonic convergence to the fixed point xp, so that the fixed point is strongly attractive in this case. The m > 1 case illustrates monotonic divergence away from the fixed point xp, so that the fixed point is strongly repellent in this case.<br />While this simple linear case may seem special, it displays the behaviour which applies in general to a continuous mapping function, g(x). In order to understand the reasons for the difference in behaviour for the two cases m < 1 and m > 1, we need to follow the iteration sequence in some detail. Once given the starting value x0, we compute g(x0), the corresponding point on the y = g(x) curve. We then move along the  line to intersect the y = x line, and there read the value ofx, and use this as the next iteration value for x. Examination of the m < 1 iteration sequence in the figure  shows that each motion along the arrows of the iteration sequence leads towards the intersection point of y = x and y = g(x), thus assuring convergence. A similar examination of the m > 1 case shows that each motion along the arrows of the iteration sequence leads away from the intersection point at xp, thus assuring divergence. While the point xp remains a fixed point of , it is an unstable fixed point in the sense that starting arbitrarily close to the fixed point still results in an iterative path that leads away from the fixed point. The termsattractor and repeller then naturally describe the fixed point xp for the maps associated with m < 1 and m > 1 respectively.<br />Figure 6.3: Fixed point iteration for a general function g(x) for the four cases of interest. Generalizations of the two cases of positive slope shown in the figure 1 are shown on the left, and illustrate monotonic convergence and divergence. The cases where g(x) has negative slope are shown on the right, and illustrate oscillating convergence and divergence. The top pair of panels illustrate strong and weak attractors, while the bottom pair of panels illustrate strong and weak repellers.<br />We have considered iteration functions, like g(x), which have positive slopes in the neighborhood of the fixed point, and shown that these lead to either monotonic convergence or monotonic divergence. When g(x) has negative slope in the neighborhood of the fixed point, the result is oscillating convergence or divergence, with convergence requiring |m| < 1. The iteration sequences for all four cases are shown in the figure 1 for more general g(x). The conditions leading to convergence are unchanged from those derived for the linear case as long as the neighborhood of the fixed point considered is small enough.<br />