Stock Available Demand Occurs (units withdrawn) Determine Stock Position (on hand + on order - backorders) Is Stock Position     Reorder Point ? Issue Replenishment Order   stock  receipt FIXED ORDER SIZE SYSTEM no yes
TYPICAL INVENTORY CYCLE TIME QUANTITY
CLASSICAL INVENTORY MODEL a  b  c  d  e  f TIME Q = lot size , B = reorder point,  ab = cd = ef = lead time INVENTORY B   Q
TOTAL ANNUAL COST =  PURCHASE + ORDER + HOLDING   2 HQ Q CR PR (Q)  =  TC + + 0 2 H Q CR dQ ) Q ( dTC 2 = + - = PF CR 2 H CR 2 * Q = = =  EOQ
ANNUAL INVENTORY COST ORDER QUANTITY (Q)  Q* COST TC(Q) HQ/2 PR CR/Q
2 HQ Q CR PR ) Q ( TC    OPTIMUM  TOTAL  ANNUAL  COST 2 * HQ 2 * HQ PR    2 * HQ H / CR 2 * CRQ PR    2 * HQ * Q * Q * CRQ PR    2 * HQ * Q CR PR *) Q ( TC    If Q = Q*,  then :  * HQ PR   *) Q ( TC
INVENTORY STOCK POSITION (B > Q) QUANTITY TIME Q - B - L T stock on-hand stock on-hand + on-order
Q  SENSITIVITY OF C, R, & H H CR 2 * Q  * Q * Q X X X * Q * Q * Q Q H R C    X X X * Q X X X H CR 2 Q H R C H R C   =  order quantity error fraction 1   H R C X X X
TVC(Q) SENSITIVITY OF C, R, AND  H * HQ PR *) Q ( TC 2 HQ Q CR PR ) Q ( TC      2 *) Q ( TVC 2 * HQ * Q CR   * HQ *) Q ( TVC 2 HQ Q CR ) Q ( TVC    H R C H H R C X X X X * Q X X X H CR 2 Q           H CR 2 * Q 
*) Q ( TVC *) Q ( TVC X X X *) Q ( TVC *) Q ( TVC *) Q ( TVC ) Q ( TVC H R C    H R C X X X *) Q ( TVC  H R C X X X 2 * HQ * Q CR         2 HQ Q CR ) Q ( TVC   H H R C H H R C H R C X 2 X X X * Q HX X X X * Q X X CRX   fraction error TVC 1 X X X H R C   
TVC(Q) SENSITIVITY OF Q  * HQ *) Q ( TVC                           Q 2 Q Q Q X 1 X 2 *) Q ( TVC X X 1 2 *) Q ( TVC     Q Q 2 X * HQ X * Q CR 2 HQ Q CR ) Q ( TVC   Q factor error EOQ EOQ actual EOQ estimated X   2 *) Q ( TVC 2 * HQ * Q CR
*) Q ( TVC *) Q ( TVC X 1 X 2 *) Q ( TVC *) Q ( TVC *) Q ( TVC ) Q ( TVC Q 2 Q             X 2 1 X 2 X Q Q 2 Q    1 X 2 1 X Q 2 Q    fraction error TVC X 2 ) 1 X ( Q 2 Q   
EOQ SENSITIVITY Order quantity Q - Q*  X C , X R , X H  X C X R Q*   X H    Total variable cost TVC(Q) – TVC(Q*)  X C , X R , X H    X C X R  X H  -  1 TVC(Q*)   Total variable cost TVC(Q) – TVC(Q*)  X Q  (X Q   –  1) 2 TVC(Q*)   2 X Q   Error Fraction  Error Factor  Formula -  1
BACKORDERING INVENTORY MODEL INVENTORY LEVEL TIME Q t 2 t 3 t 1 J 0
  TC(Q, J)  =  Purchase + Order + Holding + Backordering R J t and R J Q t KJt t J Q H C PQ Q R 2 2 ) ( 2 1 2 1               Q KJ Q HJ HJ HQ Q CR PR 2 2 2 2 2       Q KJ Q J JQ Q H Q CR PR 2 2 ) 2 ( 2 2 2       Q KJ Q J Q H Q CR PR 2 2 ) ( 2 2      R KJ R J Q H C PQ Q R 2 2 ) ( 2 2             
Q KJ Q HJ H Q CR Q J Q TC        2 2 2 ) , ( 2 2 2 2 2 K H HQ J   * J J Q TC    Q J K H H Q KJ Q HJ H         0 ) ( ) , ( H J K H H CR Q    ) ( 2 * 2 2 J K H CR Q H              0 2 ) ( 1 2 2 2 K K H H CR Q   2 * B = RL   -   J * Q *   - J *   =   KQ * H + K
PROOF:  TC(Q*, J*)  =  PR +  KJ* 2 2 2 * * * * * 2 * 2 2 ) ( ) , ( K H KQ J Q K H HQ J K K H H CR Q Q kJ Q J Q H Q CR PR J Q TC             2 2 2 2 ) ( 2 * ) ( 2 * ) ( 2 * K H KQ H K H Q HK K K H H CR CRQ PR        2 2 * * 2 * * 2 * * * *) *, ( K H HQ Q K K H KQ Q H Q Q Q CR PR J Q TC                          
TC(Q*, J*) * ) ( 2 ) ( 2 2 2 2 Q K H K H HK K H HK PR             H K 2 * K H HKQ PR    ) ( * ) ( * ) ( 2 2 2 K H Q K H HK PR Q K H HK PR               * ) ( 2 2 2 2 2 2 Q K H K H HK HK K H PR             * KJ PR   TC(Q*, J*) * * K H HQ J  
Lower unit cost  Higher holding costs Lower ordering costs  Larger inventory  investment Fewer stockouts  Older stock Price increase hedge  Slow inventory turnover QUANTITY DISCOUNTS Advantages   Disadvantages
ALL - UNITS  QUANTITY  DISCOUNTS j j j j j i P P P U U U where U Q U for P U Q U for P U Q U for P P                         1 0 2 1 1 2 1 1 1 0 0 : breakpoints = unit purchase cost =
ORDER QUANTITY (Q)   COST INVENTORY COSTS: ALL-UNITS QUANTITY DISCOUNTS U 1 U 2 TC(Q) PFQ 2 PR CR Q
ALL-UNITS QUANTITY DISCOUNTS CASE 1 CASE 2 CASE 3 U 1 U 1 U 1 QUANTITY TOTAL COST Decision Rule : Order the quantity with the lowest cost. Case 1: Order  >  U 1 Case 2: Order  =  U 1 Case 3: Order  <  U 1
ALL-UNITS QUANTITY DISCOUNT LOGIC Calculate the EOQ for the lowest unit cost Is the EOQ valid ? Calculate the total cost for the valid EOQ and all larger price-break quantities Calculate the EOQ for the next higher unit cost Is the EOQ valid ? Select the EOQ as the order quantity Select the order quantity with the lowest total cost  Start No No Yes Yes
KNOWN PRICE INCREASE q Q ^ Q* Q* t a   t 1   t 2   t 3  TIME QUANTITY a Special Order No Special Order
KNOWN PRICE INCREASE l .  SPECIAL ORDER OF Q  FOR TIME PERIOD (Q+q) / R Total Cost  =  Purchase  +  Holding  +  Order ˆ ˆ C R 2 PFq R 2 Q ˆ PF R Q ˆ PFq Q ˆ P TC 2 2 s      C R q PF 2 q R Q ˆ PF 2 Q ˆ R q PF Q ˆ Q ˆ P TC s      holding  cost of Q from t 2  to t 3 holding  cost of q from t 1  to t 2 holding  cost of   Q from t 1  to t 2 ˆ ˆ
II.  NO SPECIAL ORDER     R PFq R Q ˆ * FQ k P Q ˆ k P TC 2 a n          * Q Q ˆ C R q PF 2 q R Q ˆ F k P 2 * Q Q ˆ k P TC a a n           * Q Q ˆ C R 2 PFq R 2 Q ˆ * FQ k P Q ˆ k P a 2 a Q       holding cost of q from t 1  to t 2 holding cost of Q* from t 2  to t 3 a C       R 2 Q ˆ a * FQ k P F k P CR / 2 a * Q Q ˆ 2 a * Q a * Q ˆ C a * Q Q ˆ C     
KNOWN PRICE INCREASE    Savings Cost TC TC g s n *       0 ˆ ) ( ˆ R Q PF R PFq R FQ k P k Q d dg a             2 ˆ ˆ * ) ( 2 C R Q PF Q R PFq R FQ k P k g a    2 2 ˆ 2 2 C R PFq R Q PF ˆ        ˆ ˆ 2 * ) ( ˆ ) ( 2 R Q PFq Q P R PFq R Q FQ k P Q k P a     * ) ( * ˆ q P Q k P PF kR Q a =  optimum special order quantity 1               * * ˆ * 2 Q Q C g     =  optimum cost savings of special order
KNOWN PRICE INCREASE: DERIVATION OF g* C R Q PF Q R PFq R FQ k P k g R Q PF R PFq R FQ k P k q P Q k P PF kR Q a a a                       2 ˆ ˆ ) ( * ˆ ) ( ) ( * ˆ 2 * * *  *) ( 2 2 Q C R PF                   1 * * ˆ * 2 Q Q C g   *) ( *) ˆ ( 2 2 C Q Q C C R Q PF R Q PF g    2 *) ˆ ( *) ˆ ( * 2 2 C R Q PF   2 *) ˆ ( 2
                                1 * * ˆ 1 * * ˆ * ) ( ) ( ) ( * ˆ 2 2 * * Q Q C Q Q C g B q P Q k P PF kR P Q k P PF kR Q a a KNOWN PRICE INCREASE OPTIMIZATION During Regular Replenishment  Before Regular Replenishment
PRODUCTION ORDER QUANTITY Q 1 Q B 0 t p L t 1 TIME QUANTITY (Q)   - r p p - r
EPQ - SINGLE ITEM p r p Q r p t p ) ( ) (     MAX. INV. t p  = Q/p   p r p Q CR dQ Q dTC 0 2 ) H ( ) ( 2      p H r p Q Q CR PR 2 ) (     HOLDING SETUP PRODUCTION Q TC ) (    r p H CRp Q ) ( 2 *   =  EPQ p HQ r p PR Q TC * ) ( *) (   
EPQ  WITH  BACKORDERING ) ( 2 * K K H r p H CRp Q    * J N RL B   ) ( ) ( * * p K H r p HQ J    ) ( ) ( * *) *, ( p K H r p K HQ PR J Q TC     * KJ PR  
MAKE / BUY INFLUENCING FACTORS Idle plant capacity In-house capabilities Personnel Equipment Future capabilities Economic Advantage  Incremental cost Allocation of overhead  Reliability of Supply Trade Relations (reciprocity) Employment stabilization Alternative resource uses
EPQ - MULTIPLE ITEMS Q i  =  R i /m* = lot size for item i R i   =  annual demand  for item i m*  =  optimum number of runs (cycles) per year N  =  operating days per year n  =  number of products or items Q i  / p i   =  run time in days per cycle for item i p i   =  production rate for item i in units per day N/m*  =  run (cycle) time in days N m* 1 2 3 4 5 1 Q 1 p 1 Q 2 p 2 Q 3 Q 4 Q 5 p 3 p 4 p 5 slack time slack time     0  n   i i i p Q 1 /
EPQ - MULTIPLE ITEMS m / R i t pi p i m p i / R i t pi = = = Q i Holding Setup oduction Pr ) m ( TC + + = m p i ) r i ( R i ) r i p i ( t pi - = - = MAX INV for item i p i   = = = - = n 1 i n 1 i year per runs of . no optimal C i 2 p i ) r i p i ( R i H i m * p i ) r i p i ( R i H i m 2 1 C i m R i P i n 1 i n 1 i n 1 i - + + =    = = = 0 p i ) r i p i ( R i H i m  2 2 1 C i dm ) m ( dTC n 1 i n 1 i = - - =   = =
 i i * m / R Q *     n 1 i i i p / Q * m N Cycle / Time Slack     n 1 i i i p R N Time Demand Time Supply       n 1 i i n 1 i i i C * m 2 R P *) m ( TC
FIXED ORDER INTERVAL SYSTEM Backorder/Lost Sale Issue Replenishment Order Determine Stock Position (on hand + on order - backorders) Compute Order Quantity (max. stock - stock position) Stock  Available Demand Occurs Has Review Period Arrived ? Is Stock > Demand?  no yes yes no no
FIXED ORDER INTERVAL SYSTEM QUANTITY TIME E 0 T L T L T L L
EOI - SINGLE ITEM TOTAL ANNUAL COST =  PURCHASE + ORDER + HOLDING  ) ( L T R E  = 2 ) ( RFPT T C PR T TC   = 2 ) ( 2 RFP T C dT T dTC   = =  0 2 * RFP C T = Q *  = RT *  = R  2C PFR = 2CR PF TC(T * ) = PR + HRT *
ANNUAL INVENTORY  COSTS ORDER INTERVAL (T)   T* COST TC(T) PFRT PR C 2 T
EOI - MULTIPLE ITEMS TOTAL ANNUAL COST =  PURCHASE + ORDER + HOLDING  ) ( L T R E i i   0 2 ) ( ) ( 1 2 P R F T nc C dT T dTC n i i i        2 ) ( ) ( 1 1 P R TF T nc C P R T TC n i i i n i i i          = n 1 i i i R P TC(T*) = ( 1 + FT*) ) ( 2 * 1 P R F nc C T n i i i     =  EOI

Fixed order size system

  • 1.
    Stock Available DemandOccurs (units withdrawn) Determine Stock Position (on hand + on order - backorders) Is Stock Position  Reorder Point ? Issue Replenishment Order stock receipt FIXED ORDER SIZE SYSTEM no yes
  • 2.
  • 3.
    CLASSICAL INVENTORY MODELa b c d e f TIME Q = lot size , B = reorder point, ab = cd = ef = lead time INVENTORY B Q
  • 4.
    TOTAL ANNUAL COST= PURCHASE + ORDER + HOLDING 2 HQ Q CR PR (Q) = TC + + 0 2 H Q CR dQ ) Q ( dTC 2 = + - = PF CR 2 H CR 2 * Q = = = EOQ
  • 5.
    ANNUAL INVENTORY COSTORDER QUANTITY (Q) Q* COST TC(Q) HQ/2 PR CR/Q
  • 6.
    2 HQ QCR PR ) Q ( TC    OPTIMUM TOTAL ANNUAL COST 2 * HQ 2 * HQ PR    2 * HQ H / CR 2 * CRQ PR    2 * HQ * Q * Q * CRQ PR    2 * HQ * Q CR PR *) Q ( TC    If Q = Q*, then : * HQ PR   *) Q ( TC
  • 7.
    INVENTORY STOCK POSITION(B > Q) QUANTITY TIME Q - B - L T stock on-hand stock on-hand + on-order
  • 8.
    Q SENSITIVITYOF C, R, & H H CR 2 * Q  * Q * Q X X X * Q * Q * Q Q H R C    X X X * Q X X X H CR 2 Q H R C H R C   = order quantity error fraction 1   H R C X X X
  • 9.
    TVC(Q) SENSITIVITY OFC, R, AND H * HQ PR *) Q ( TC 2 HQ Q CR PR ) Q ( TC      2 *) Q ( TVC 2 * HQ * Q CR   * HQ *) Q ( TVC 2 HQ Q CR ) Q ( TVC    H R C H H R C X X X X * Q X X X H CR 2 Q           H CR 2 * Q 
  • 10.
    *) Q (TVC *) Q ( TVC X X X *) Q ( TVC *) Q ( TVC *) Q ( TVC ) Q ( TVC H R C    H R C X X X *) Q ( TVC  H R C X X X 2 * HQ * Q CR         2 HQ Q CR ) Q ( TVC   H H R C H H R C H R C X 2 X X X * Q HX X X X * Q X X CRX   fraction error TVC 1 X X X H R C   
  • 11.
    TVC(Q) SENSITIVITY OFQ  * HQ *) Q ( TVC                           Q 2 Q Q Q X 1 X 2 *) Q ( TVC X X 1 2 *) Q ( TVC     Q Q 2 X * HQ X * Q CR 2 HQ Q CR ) Q ( TVC   Q factor error EOQ EOQ actual EOQ estimated X   2 *) Q ( TVC 2 * HQ * Q CR
  • 12.
    *) Q (TVC *) Q ( TVC X 1 X 2 *) Q ( TVC *) Q ( TVC *) Q ( TVC ) Q ( TVC Q 2 Q             X 2 1 X 2 X Q Q 2 Q    1 X 2 1 X Q 2 Q    fraction error TVC X 2 ) 1 X ( Q 2 Q   
  • 13.
    EOQ SENSITIVITY Orderquantity Q - Q* X C , X R , X H X C X R Q* X H Total variable cost TVC(Q) – TVC(Q*) X C , X R , X H  X C X R X H - 1 TVC(Q*) Total variable cost TVC(Q) – TVC(Q*) X Q (X Q – 1) 2 TVC(Q*) 2 X Q Error Fraction Error Factor Formula - 1
  • 14.
    BACKORDERING INVENTORY MODELINVENTORY LEVEL TIME Q t 2 t 3 t 1 J 0
  • 15.
    TC(Q,J) = Purchase + Order + Holding + Backordering R J t and R J Q t KJt t J Q H C PQ Q R 2 2 ) ( 2 1 2 1               Q KJ Q HJ HJ HQ Q CR PR 2 2 2 2 2       Q KJ Q J JQ Q H Q CR PR 2 2 ) 2 ( 2 2 2       Q KJ Q J Q H Q CR PR 2 2 ) ( 2 2      R KJ R J Q H C PQ Q R 2 2 ) ( 2 2             
  • 16.
    Q KJ QHJ H Q CR Q J Q TC        2 2 2 ) , ( 2 2 2 2 2 K H HQ J   * J J Q TC    Q J K H H Q KJ Q HJ H         0 ) ( ) , ( H J K H H CR Q    ) ( 2 * 2 2 J K H CR Q H              0 2 ) ( 1 2 2 2 K K H H CR Q   2 * B = RL - J * Q * - J * = KQ * H + K
  • 17.
    PROOF: TC(Q*,J*) = PR + KJ* 2 2 2 * * * * * 2 * 2 2 ) ( ) , ( K H KQ J Q K H HQ J K K H H CR Q Q kJ Q J Q H Q CR PR J Q TC             2 2 2 2 ) ( 2 * ) ( 2 * ) ( 2 * K H KQ H K H Q HK K K H H CR CRQ PR        2 2 * * 2 * * 2 * * * *) *, ( K H HQ Q K K H KQ Q H Q Q Q CR PR J Q TC                          
  • 18.
    TC(Q*, J*) *) ( 2 ) ( 2 2 2 2 Q K H K H HK K H HK PR             H K 2 * K H HKQ PR    ) ( * ) ( * ) ( 2 2 2 K H Q K H HK PR Q K H HK PR               * ) ( 2 2 2 2 2 2 Q K H K H HK HK K H PR             * KJ PR   TC(Q*, J*) * * K H HQ J  
  • 19.
    Lower unit cost Higher holding costs Lower ordering costs Larger inventory investment Fewer stockouts Older stock Price increase hedge Slow inventory turnover QUANTITY DISCOUNTS Advantages Disadvantages
  • 20.
    ALL - UNITS QUANTITY DISCOUNTS j j j j j i P P P U U U where U Q U for P U Q U for P U Q U for P P                         1 0 2 1 1 2 1 1 1 0 0 : breakpoints = unit purchase cost =
  • 21.
    ORDER QUANTITY (Q) COST INVENTORY COSTS: ALL-UNITS QUANTITY DISCOUNTS U 1 U 2 TC(Q) PFQ 2 PR CR Q
  • 22.
    ALL-UNITS QUANTITY DISCOUNTSCASE 1 CASE 2 CASE 3 U 1 U 1 U 1 QUANTITY TOTAL COST Decision Rule : Order the quantity with the lowest cost. Case 1: Order > U 1 Case 2: Order = U 1 Case 3: Order < U 1
  • 23.
    ALL-UNITS QUANTITY DISCOUNTLOGIC Calculate the EOQ for the lowest unit cost Is the EOQ valid ? Calculate the total cost for the valid EOQ and all larger price-break quantities Calculate the EOQ for the next higher unit cost Is the EOQ valid ? Select the EOQ as the order quantity Select the order quantity with the lowest total cost Start No No Yes Yes
  • 24.
    KNOWN PRICE INCREASEq Q ^ Q* Q* t a t 1 t 2 t 3 TIME QUANTITY a Special Order No Special Order
  • 25.
    KNOWN PRICE INCREASEl . SPECIAL ORDER OF Q FOR TIME PERIOD (Q+q) / R Total Cost = Purchase + Holding + Order ˆ ˆ C R 2 PFq R 2 Q ˆ PF R Q ˆ PFq Q ˆ P TC 2 2 s      C R q PF 2 q R Q ˆ PF 2 Q ˆ R q PF Q ˆ Q ˆ P TC s      holding cost of Q from t 2 to t 3 holding cost of q from t 1 to t 2 holding cost of Q from t 1 to t 2 ˆ ˆ
  • 26.
    II. NOSPECIAL ORDER     R PFq R Q ˆ * FQ k P Q ˆ k P TC 2 a n          * Q Q ˆ C R q PF 2 q R Q ˆ F k P 2 * Q Q ˆ k P TC a a n           * Q Q ˆ C R 2 PFq R 2 Q ˆ * FQ k P Q ˆ k P a 2 a Q       holding cost of q from t 1 to t 2 holding cost of Q* from t 2 to t 3 a C       R 2 Q ˆ a * FQ k P F k P CR / 2 a * Q Q ˆ 2 a * Q a * Q ˆ C a * Q Q ˆ C     
  • 27.
    KNOWN PRICE INCREASE   Savings Cost TC TC g s n *       0 ˆ ) ( ˆ R Q PF R PFq R FQ k P k Q d dg a             2 ˆ ˆ * ) ( 2 C R Q PF Q R PFq R FQ k P k g a    2 2 ˆ 2 2 C R PFq R Q PF ˆ        ˆ ˆ 2 * ) ( ˆ ) ( 2 R Q PFq Q P R PFq R Q FQ k P Q k P a     * ) ( * ˆ q P Q k P PF kR Q a = optimum special order quantity 1               * * ˆ * 2 Q Q C g     = optimum cost savings of special order
  • 28.
    KNOWN PRICE INCREASE:DERIVATION OF g* C R Q PF Q R PFq R FQ k P k g R Q PF R PFq R FQ k P k q P Q k P PF kR Q a a a                       2 ˆ ˆ ) ( * ˆ ) ( ) ( * ˆ 2 * * *  *) ( 2 2 Q C R PF                   1 * * ˆ * 2 Q Q C g   *) ( *) ˆ ( 2 2 C Q Q C C R Q PF R Q PF g    2 *) ˆ ( *) ˆ ( * 2 2 C R Q PF   2 *) ˆ ( 2
  • 29.
                                   1 * * ˆ 1 * * ˆ * ) ( ) ( ) ( * ˆ 2 2 * * Q Q C Q Q C g B q P Q k P PF kR P Q k P PF kR Q a a KNOWN PRICE INCREASE OPTIMIZATION During Regular Replenishment Before Regular Replenishment
  • 30.
    PRODUCTION ORDER QUANTITYQ 1 Q B 0 t p L t 1 TIME QUANTITY (Q) - r p p - r
  • 31.
    EPQ - SINGLEITEM p r p Q r p t p ) ( ) (     MAX. INV. t p = Q/p p r p Q CR dQ Q dTC 0 2 ) H ( ) ( 2      p H r p Q Q CR PR 2 ) (     HOLDING SETUP PRODUCTION Q TC ) (    r p H CRp Q ) ( 2 *   = EPQ p HQ r p PR Q TC * ) ( *) (   
  • 32.
    EPQ WITH BACKORDERING ) ( 2 * K K H r p H CRp Q    * J N RL B   ) ( ) ( * * p K H r p HQ J    ) ( ) ( * *) *, ( p K H r p K HQ PR J Q TC     * KJ PR  
  • 33.
    MAKE / BUYINFLUENCING FACTORS Idle plant capacity In-house capabilities Personnel Equipment Future capabilities Economic Advantage Incremental cost Allocation of overhead Reliability of Supply Trade Relations (reciprocity) Employment stabilization Alternative resource uses
  • 34.
    EPQ - MULTIPLEITEMS Q i = R i /m* = lot size for item i R i = annual demand for item i m* = optimum number of runs (cycles) per year N = operating days per year n = number of products or items Q i / p i = run time in days per cycle for item i p i = production rate for item i in units per day N/m* = run (cycle) time in days N m* 1 2 3 4 5 1 Q 1 p 1 Q 2 p 2 Q 3 Q 4 Q 5 p 3 p 4 p 5 slack time slack time  0  n   i i i p Q 1 /
  • 35.
    EPQ - MULTIPLEITEMS m / R i t pi p i m p i / R i t pi = = = Q i Holding Setup oduction Pr ) m ( TC + + = m p i ) r i ( R i ) r i p i ( t pi - = - = MAX INV for item i p i   = = = - = n 1 i n 1 i year per runs of . no optimal C i 2 p i ) r i p i ( R i H i m * p i ) r i p i ( R i H i m 2 1 C i m R i P i n 1 i n 1 i n 1 i - + + =    = = = 0 p i ) r i p i ( R i H i m 2 2 1 C i dm ) m ( dTC n 1 i n 1 i = - - =   = =
  • 36.
     i i* m / R Q *     n 1 i i i p / Q * m N Cycle / Time Slack     n 1 i i i p R N Time Demand Time Supply       n 1 i i n 1 i i i C * m 2 R P *) m ( TC
  • 37.
    FIXED ORDER INTERVALSYSTEM Backorder/Lost Sale Issue Replenishment Order Determine Stock Position (on hand + on order - backorders) Compute Order Quantity (max. stock - stock position) Stock Available Demand Occurs Has Review Period Arrived ? Is Stock > Demand? no yes yes no no
  • 38.
    FIXED ORDER INTERVALSYSTEM QUANTITY TIME E 0 T L T L T L L
  • 39.
    EOI - SINGLEITEM TOTAL ANNUAL COST = PURCHASE + ORDER + HOLDING ) ( L T R E  = 2 ) ( RFPT T C PR T TC   = 2 ) ( 2 RFP T C dT T dTC   = = 0 2 * RFP C T = Q * = RT * = R 2C PFR = 2CR PF TC(T * ) = PR + HRT *
  • 40.
    ANNUAL INVENTORY COSTS ORDER INTERVAL (T) T* COST TC(T) PFRT PR C 2 T
  • 41.
    EOI - MULTIPLEITEMS TOTAL ANNUAL COST = PURCHASE + ORDER + HOLDING ) ( L T R E i i   0 2 ) ( ) ( 1 2 P R F T nc C dT T dTC n i i i        2 ) ( ) ( 1 1 P R TF T nc C P R T TC n i i i n i i i          = n 1 i i i R P TC(T*) = ( 1 + FT*) ) ( 2 * 1 P R F nc C T n i i i     = EOI