SlideShare a Scribd company logo
FIELD EFFECT TRANSISTORS
(FET)
Celso José Faria de Araújo, Dr.
1
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Gate
Drain
Source
Base
Collector
Emitter
FET
 3 terminal device
 Channel e- current
from source to drain
controlled by the
electric field
generated by the gate
 Extremely high input
impedance for base
BJT
 3 terminal device emitter
to collector e- current
controlled by the current
injected into the base
FET X BJT (NPN)
2
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
• In addition to carrier type (N or P channel), there are differences in
how the control element is constructed (Junction x Insulated) and
those devices must be used differently
Depletion mode junction FETs (JFET)
npn
pnp
npn
pnp
Metal oxide semi-conductor FET (MOSFET)
– depletion/enhancement mode
– enhancement mode
(insulated gate FETs, IGFETs, are the same as MOSFETs)
Types of FETs
3
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2
to 500 m, and the thickness of the oxide layer is in the range of 0.02 to 0.1 m.
4
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
n
+
v Small
DS
D
n
+
S
B
v > V
GS TN
G
Depletion
Region
p
n
+
D
n
+
S v = v - V
DS GS TN
v > V
GS TN
G
B
Depletion
Region
p
n
+
D
n
+
S v > v - V
DS GS TN
v > V
GS TN
G
B
Depletion
Region Pinch-off Point
p Acceptor Ion
( a ) MOSFET in the linear region
( b ) MOSFET with channel just pinched
off at the drain.
( c ) Channel pinch off for vDS > vGS - VTN
Water
Waterfalls analogy
5
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate
beneath the gate.
6
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
An NMOS transistor with vGS > Vt and with a small vDS applied. The device acts as a conductance whose value is determined by vGS.
Specifically, the channel conductance is proportional to vGS - Vt, and this iD is proportional to (vGS - Vt) vDS. Note that the depletion
region is not shown (for simplicity).
7
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
0.8
0.6
0.4
0.2
0.0
0.00e+0
2.00e-4
4.00e-4
6.00e-4
8.00e-4
Drain-Source Voltage (V)
Drain-Source
Current
(A)
V = 2 V
V = 3 V
V = 4 V
V = 5 V
GS
GS
GS
GS
NMOS i-v characteristics in the linear region (VSB = 0)
  








2
2
DS
DS
tn
GS
OX
n
D
v
v
V
v
L
W
C
μ
i vGS  Vtn
0  vDS  vDSSAT
= vGS-Vtn
Linear Region (small vDS)
 
 
tn
GS
n
DS
D
DS
tn
GS
n
D
DS
V
v
L
W
k
dv
di
v
V
v
L
W
k
i
v
small




'
'
VTN =1V
OX
n
n C
μ
k 
'
8
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires a tapered shape and its resistance
increases as vDS is increased. Here, vGS is kept constant at a value > Vt.
9
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS transistor operated with vGS > Vt.
10
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Output characteristics
for an NMOS transistor with
Vtn = 1 V and k’n (W/L)= 25 x 10-6 A/V2
12
10
8
6
4
2
0
0.00e+0
2.00e-5
4.00e-5
6.00e-5
8.00e-5
1.00e-4
1.20e-4
1.40e-4
1.60e-4
1.80e-4
2.00e-4
2.20e-4
Drain-Source Voltage (V)
Drain-Source
Current
(A)
V = 2 V
V = 3 V
V = 4 V
V = 5 V
Pinchoff Locus
V Š 1 V
Saturation Region
Linear
Region
GS
GS
GS
GS
GS
 
















tn
GS
DS
DS
tn
GS
DS
DS
tn
GS
n
D
V
v
v
v
V
v
for
v
v
V
v
L
W
k
i
SAT
2
2
'
ID
G
D
S  B
vD  vS
tn
GS
D V
v
for
i 
 0
 









tn
GS
DS
DS
tn
GS
tn
GS
n
D
V
v
v
v
V
v
for
V
v
L
W
k
i
SAT
2
'
2
11
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Derivation of the iD - vDS characteristic of the NMOS transistor.
12
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
p+
L
Source
Gate
Drain
Channel Region
Body
N-Type Substrate
v > 0
B
i
B
iS
v
S
v < 0
G
i
G
v < 0
D
iD
p+
Cross section of an enhancement-mode PMOS transistor
ID
G
D
S
ID
G
D
S
B
The PMOS Transistor
13
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Output characteristics for a
PMOS transistor with
Vtp = -1V and k’P (W/L)= 25 x 10-6 A/V2
12
10
8
6
4
2
0
-2
-5.00e-5
0.00e+0
5.00e-5
1.00e-4
1.50e-4
2.00e-4
2.50e-4
Source-Drain Voltage (V)
Source-Drain
Current
(A)
V Š 1 V (V •
-1 V)
SG GS
V = 3 V (V = -3 V)
SG GS
V = 2 V (V = -2 V)
SG GS
V = 4 V (V = -4 V)
SG GS
V = 5 V (V = -5 V)
SG GS
ID
G
D
S  B
tp
GS
D V
v
for
i 
 0
 
















tp
GS
DS
DS
tp
GS
DS
DS
tp
GS
p
D
V
v
v
v
V
v
for
v
v
V
v
L
W
k
i
SAT
2
2
'
 









tp
GS
DS
DS
tp
GS
tp
GS
p
D
V
v
v
v
V
v
for
V
v
L
W
k
i
SAT
2
'
2
vS  vD
14
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Cross section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well.
Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well.
15
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
(a) An n-channel enhancement-type MOSFET with vGS and vDS applied and with the normal directions of current flow indicated.
(b)The iD - vDS characteristics for a device with Vt = 1 V and k’n(W/L) = 0.5 mA/V2 (d) The iD - vGS characteristic for an enhancement-
type NMOS transistor in saturation.
(d)
16
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Channel Length Modulation
 





 










M
D
M
D
D
M
D
t
GS
ox
D
L
L
I
L
L
I
i
L
L
I
V
v
L
W
C
i
SAT
SAT
SAT
1
1
2
2

LM
   
DS
t
GS
ox
D
A
DS
M
v
V
v
L
W
C
i
L
V
v
L
L












1
2
1
2
Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective
channel length (by L).
17
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Effect of vDS on iD in the saturation region. The MOSFET parameter VA is typically in the range of 30 to 200 V.
    Saturation
1
2
2



 DS
t
GS
ox
D v
V
v
L
W
C
i 

D
DS
-
v
DS
D
o
I
v
v
i
r
GS

1
1
constant














  A
DS
D
A
D
o V
V
I
V
I
r 



1

Output Resistance:
VA is directly proportional to L; thus two devices with the same process, and having channel lengths L1 e L2,
will have Early voltage VA1 and VA2,.
2
1
2
1
L
L
V
V
A
A

18
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance ro. The output
resistance models the linear dependence of iD on vDS and is given by ro  VA/ID.
19
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
ID
G
D
S
ID
G
D
S
G
D
S
B G
D
S
B
P-channel
N-channel
Vtn > 0
vDS  0
Vtp < 0
vDS  0
or or
ox
p
p C
μ
k 
'
Summary of equations for the enhancement-mode MOSFET
   
    























































A
SD
tp
SG
p
D
tp
SG
SD
tp
SG
A
DS
tn
GS
n
D
tn
GS
DS
tn
GS
SD
SD
tp
SG
p
D
tp
SG
SD
tp
SG
DS
DS
tn
GS
n
D
tn
GS
DS
tn
GS
D
tp
SG
D
tn
GS
V
V
V
v
L
W
k
i
V
v
v
and
V
v
V
V
V
v
L
W
k
i
V
v
v
and
V
v
v
v
V
v
L
W
k
i
V
v
v
and
V
v
v
v
V
v
L
W
k
i
V
v
v
and
V
v
i
V
v
i
V
v
1
2
1
2
Saturation
2
2
(Linear)
Triodo
0
0
Cutoff
Type
-
P
Type
-
N
Region
2
'
2
'
2
'
2
'
ox
n
n C
μ
k 
'
20
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The current-voltage characteristics of a depletion-type n-channel MOSFET for which Vt = -4 V and k’n(W/L) = 2 mA/V2:
(a) transistor with current and voltage polarities indicated; (b) the iD - vDS characteristics; (c) the iD - vGS characteristic in saturation.
21
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
-  usually neglected ( 1/  =VA)
- Q-point most often located in saturation for analog circuits
DD
G V
R
R
R
V
2
1
2


D
S
S I
R
V 
  D
S
D
DD
DS I
R
R
V
V 


 2
'
2
t
GS
n
D V
V
L
W
k
I 

2
2
1
2
'
2









 D
S
t
DD
n
D I
R
V
V
R
R
R
L
W
k
I
D
S
DD
GS I
R
V
R
R
R
V 


2
1
2
VDD
VG
RD
RS
RG
R1
R2
ID
( assuming the MOSFET to be
in the saturation region )
( two solutions  only one
is possible )
Ex: VDD = 10 V R1 = 150 k R2 = 100 k RS = 10 k
RD = 50 k k’n(W/L) = 50 A/V2 Vt = 1 V
Solution: ID = 100 A VDS = 4 V
Bias Circuits 1
22
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
VDD
-VSS
RD
RS
RG
VDD
-VSS
RD
I
RG
Two power supplies are
available
A simple circuit utilizing
a current source
Bias Circuits 2
VDD
VDS = VGS2
load line
curve VDS = VGS
VGS1
VGS2
VGS3
Q
VDD/ RD
VDD
RD
RG
ID
 2
'
2
t
GS
n
D V
V
L
W
k
I 

 2
'
2
D
D
t
DD
n
D I
R
V
V
k
I 


 
0


 G
DS
GS I
V
V
Analysis
D
D
DD
GS I
R
V
V 

23
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Basic MOSFET current mirror.
Q1: I  V converter
Q2: V  I converter
If Q2 in saturation
then
 
 1
2
L
W
L
W
I
I
REF
o 
 
t
GS
o V
V
v 

min
Example: VDD = 5V ;IREF=10A; Q1 and Q2 are
matched ; L=10 m and W=100 m; Vt = 1V ;
k’
n=20  A/V2 VA = 10L; Vo=+3V
 
3%
μA
3
M
1
V
3
M
1
100
V
100
V
100
10
x
10
1V
1
2
30
100
2
5
2V
1
10
100
20
2
1
100
min
2
1



























o
o
o
o
A
o
GS
GS
REF
D
r
V
I
μA
r
V
v
K
R
V
V
I
I

24
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
 
   
 
 
 
D
m
gs
d
v
gs
D
m
D
d
d
d
D
D
d
D
D
DD
D
D
DD
D
D
n
t
GS
n
gs
d
V
v
GS
D
m
gs
t
GS
n
d
d
D
D
t
GS
gs
gs
t
GS
n
gs
n
gs
n
gs
t
GS
n
t
GS
n
D
t
gs
GS
n
D
gs
GS
GS
t
GS
D
D
D
DD
D
t
GS
n
D
R
g
v
v
A
v
R
g
R
i
v
i
R
V
i
I
R
V
i
R
V
v
I
L
W
k
V
V
L
W
k
v
i
v
i
g
v
V
V
L
W
k
i
i
I
i
V
V
v
v
V
V
L
W
k
v
L
W
k
v
L
W
k
v
V
V
L
W
k
V
V
L
W
k
i
V
v
V
L
W
k
i
v
V
v
V
V
V
I
R
V
V
V
V
L
W
k
I
GS
GS





















































)
(
Gain
Voltage
2
)
(
2
2
1
2
1
2
1
2
1
Terminal
Drain
in the
Current
signal
The
0
2
1
Point
Bias
DC
ctance
transcondu
'
'
'
signal
small
'
2
'
2
'
'
2
'
2
'
2
'










 










 










 









 


The operation of the MOSFET as an amplifier.
25
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Small-signal models for the MOSFET: (a) neglecting the dependence of iD on vDS in saturation (channel-length modulation effect); and
(b) including the effect of channel-length modulation modeled by output resistance ro = |VA|/ID.
(a.1) -Model
(a.2) T-Model
(b.1) -Model
(b.2) T-Model
26
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
 
 
2.33MΩ
3
.
4
3
.
4
1
Resistance
Input
V
V
37
.
3
//
//
//
1
Gain
Voltage
0
//
//
Analysis
AC
47KΩ
1.06m
50
mA/V
725
.
0
)
5
.
1
4
.
4
(
25
.
0
Meaningful
Physically
4.4V
and
1.06mA
K
10
15
15
5
.
1
25
.
0
2
1
Analysis
DC
2























 























G
i
i
in
G
i
i
o
G
i
G
o
i
i
G
L
D
o
G
m
i
o
v
G
i
o
i
m
L
D
o
o
o
m
D
D
D
D
D
D
D
D
D
GS
R
i
v
R
R
v
v
v
R
v
R
v
v
i
R
R
R
r
R
g
v
v
A
R
v
v
v
g
R
R
r
v
r
m
g
V
I
I
I
R
V
V
m
I
V
V
Example: Vt = 1.5V ; k’
n(W/L)=0.25 mA/V2 VA = 50V
27
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Small-signal equivalent-circuit model of a MOSFET in which the body is not connected to the source.
0.3
χ
0.1
g
v
i
g m
v
v
BS
D
mb
DS
GS









constante
constante
ctance
Transcondu
Body
28
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
VDD
I
vo
-VSS
vI
VDD
I
vo
vI
VDD
I
vI
vo
Source follower
or common-drain
amplifier
Common-source
amplifier
Common-gate
amplifier
Basic amplifier configurations with current sources
29
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
2
1
1
2
1
//
//
o
o
m
v
o
o
o
i
r
r
g
A
r
r
R
R





ID2
ID2
The CMOS common-source amplifier: (a) circuit; (b) i-v characteristic of the active-load Q2; (c) graphical construction to determine
the transfer characteristic; and transfer characteristic.
30
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Example: VDD=10V;Vtn = | Vtp| = 1V ; k’
n= 2 k’
p= 20 A/V2
(W=100 m; L =10 m |VA|= 100V for both the n and p device)
IREF=100 A.
 
 
 
 
  MΩ
5
.
0
//
V
V
100
//
1MΩ
V
A
2
.
0
2
2V
2
1
μA
100
V
795
.
4
V
1
8.59V
)
(
10
2.41V
2
1
μA
100
μA
100
2
1
2
1
1
2
1
1
'
1
2
1
'
1
2
1
1
2
3
'
3
1
2
min
min
max
min
max




























































o
o
o
in
o
o
m
i
o
v
REF
A
o
o
REF
n
m
I
tn
I
n
REF
D
O
o
o
o
O
O
O
tn
I
O
tp
SG
O
SG
tp
SG
p
REF
D
D
D
REF
r
r
R
R
r
r
g
v
v
A
I
V
r
r
m
I
L
W
k
g
V
V
V
L
W
k
I
I
v
r
r
r
v
v
V
V
V
v
V
V
v
V
V
V
L
W
k
I
I
I
I
I
vO
vI
2 2.04
1.96
8.59
10
4.795
1
Bias Point
Slope = -100V/V
p
^
p
^
mV
40
V
795
.
3 



 i
o v
v
31
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The CMOS common-gate amplifier: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the circuit in (b).
 
  






































1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
//
//
1
o
o
mb
m
i
o
o
o
mb
m
i
i
i
o
o
mb
m
v
o
o
o
mb
m
i
o
v
r
r
g
g
R
r
r
r
g
g
i
v
R
r
r
g
g
A
r
r
r
g
g
v
v
A
32
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The source follower: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the equivalent circuit.
 
χ
g
g
g
R
r
r
g
g
R
χ
g
g
g
A
r
r
g
g
g
R
g
R
g
v
v
A
m
mb
m
o
o
o
mb
m
o
mb
m
m
v
o
o
mb
m
m
S
m
S
m
i
o
v







































1
1
1
//
1
//
//
1
//
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
2
1
1
1
1
1
1
33
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
(a) NMOS amplifier with enhancement load; (b) graphical determination of the transfer characteristic; (c) transfer characteristic.
 
 
 
 
 
 
 
 2
1
2
2
1
2
1
2
1
1
1
L
W
L
W
L
W
L
W
A
v
L
W
L
W
V
L
W
L
W
V
V
v
v
I
t
t
DD
O


















34
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The NMOS amplifier with depletion load: (a) circuit; (b) graphical construction to determine the transfer characteristic; and
(c) transfer characteristic.
 
  χ
L
W
L
W
g
g
A
r
r
g
g
v
v
A
mb
m
v
o
o
mb
m
i
o
v
1
//
//
1
2
1
2
1
2
1
1
1




















35
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Operation of the CMOS inverter when v1 is high: (a) circuit with v1 = VDD (logic-1 level, or VOH); (b) graphical construction to
determine the operating point; and (c) equivalent circuit.
 













tn
DD
n
n
DSN
V
V
L
W
k
r
'
1
36
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Operation of the CMOS inverter when v1 is low: (a) circuit with v1 = 0V (logic-0 level, or VOL); (b) graphical construction to
determine the operating point; and (c) equivalent circuit.
 
















tp
DD
p
p
DSP
V
V
L
W
k
r
'
1
37
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 
 
t
DD
IL
t
DD
IH
V
V
V
V
V
V
2
3
8
1
2
5
8
1




The voltage transfer characteristic of the CMOS inverter.
 
 
t
DD
L
t
DD
H
V
V
NM
V
V
NM
2
3
8
1
2
3
8
1
Margins
Noise




38
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating
point as the input goes high and C discharges through the QN; (d) equivalent circuit during the capacitor discharge.
39
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
(a) High-frequency equivalent circuit model for the MOSFET; (b) the equivalent circuit for the case the source is connected to the
substrate (body); (c) the equivalent circuit model of (b) with Cdb neglected (to simplify analysis).
  D
m I
L
W
k
g 2

D
DS
A
o
I
V
V
r


Strong inversion and saturation:
VGS – Vt > 200 mV
W L
C
C ox
gs
3
2

40
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Determining the short-circuit current gain Io/Ii.
 
gd
gs
m
i
o
C
C
s
g
I
I


For physical frequencies s = j, it cam be seen that the magnitude of the current gain
becomes unity at the frequency:
 
gd
gs
m
T
C
C
g
f


π
2
41
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The Junction Field-Effect Transistor
p
p
Depletion
region
Depletion
region
G
S D
G
n
p
p
v = 0
GS
W
p
p
Depletion
region
Depletion
region
G
S D
G
n
p
p
+ -
V < v < 0
GS
P
W'
i
G
p
p
Depletion
region
Depletion
region
G
S D
G
n
p
p
+ -
v = V
GS P
Pinched-Off Channel
< 0
( a ) JFET with zero gate-source bias
( b ) JFET with negative gate-source voltage
that is less negative than the pinch-off
voltage VP. Note W’ < W
( c ) JFET at pinch-off with VGS = VP
42
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
The Junction Field-Effect Transistor ( a ) JFET with small drain-source ( b ) JFET with channel just at
pinch-off with vDS = vDSP
D
S
G
G
+ -
vGS
Depletion
region
Depletion
region
v
DS
p
p
p
n iDS
< 0
D
S
G
G
+ -
vGS
Depletion
region
Depletion
region
p
p
p
n iDS
v = v
DS DSP
( a ) JFET with small drain-source
( b ) JFET with channel just at
pinch-off with vDS = vDSP
43
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
iD
G
D
S
G
D
S
iD
P-channel
N-channel
Summary of equations for the JFET


















































































































A
DS
P
GS
DSS
D
P
GS
DS
P
GS
A
DS
P
GS
DSS
D
P
GS
DS
GS
P
P
DS
P
DS
P
GS
DSS
D
P
GS
DS
P
GS
P
DS
P
DS
P
GS
DSS
D
P
GS
DS
GS
P
D
P
GS
D
P
GS
V
V
V
v
I
i
V
v
v
and
V
v
V
V
V
v
I
i
V
v
v
and
v
V
V
v
V
v
V
v
I
i
V
v
v
and
V
v
V
v
V
v
V
v
I
i
V
v
v
and
v
V
i
V
v
i
V
v
1
1
0
1
1
0
Saturation
1
2
0
1
2
0
(Linear)
Triodo
0
0
Cutoff
Type
-
P
Type
-
N
Region
2
2
2
2
0
0
max


GS
P
v
V
0
0
min


GS
P
v
V
D
A
o
DSS
D
P
DSS
P
GS
P
DSS
m
I
V
r
I
I
V
I
V
V
V
I
g 




























2
1
2
44
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Output characteristics for a JFET with IDSS = 200 A and VP = -4V
12
10
8
6
4
2
0
0.00e+0
2.00e-5
4.00e-5
6.00e-5
8.00e-5
1.00e-4
1.20e-4
1.40e-4
1.60e-4
1.80e-4
2.00e-4
2.20e-4
Drain-Source Voltage (V)
Drain-Source
Current
(A)
V = -3 V
V = -2 V
V = -1 V
V = 0 V
Pinch-off Locus
V Š V
Pinch-off Region
(Saturation)
Linear
Region I
GS
P
DSS
GS
GS
GS
GS
D
S
G
iDS
vGS
v
DS
D
S
G
iSD
vSG
v
SD
n-channel JFET p-channel JFET
+
-
+
-
+
-
+
-
45
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
Transfer characteristic for a saturated JFET with IDSS = 1 mA and VP = -3.5V
3
2
1
0
-1
-2
-3
-4
-5
-6
-5.00e-4
0.00e+0
5.00e-4
1.00e-3
1.50e-3
Gate-Source Voltage (V)
Drain-Source
Current
(A) I DSS
V
P
46
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
When to use JFETs
 JFET have much higher input impedances
and much lower input currents than BJTs.
 BJTs are more linear than JFETs.
 The gain of a BJT is much higher than that
of a JFET.
47
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
JFET (Example)
The JFET in the circuit below has VP=-3V, IDSS=9mA,
and =0. Find the values of all resistors so that VG=5V,
ID=4mA, and VD=11V. Design for 0.05mA in the
voltage divider.
1KΩ
4m
11
15
R
100KΩ
R
200KΩ
R
0.05m
R
R
15
15
R
R
R
5
D
G2
G1
G1
G2
G1
G2
G2









1.5KΩ
R
10V
V
6V
V
3
V
5
1
9m
4m
S
'
'
S
Ok
'
S
2
S





















 


 

Saturation
For the JFET circuit designed in the former exercise,
let an input signal vi be capacitively coupled to the
gate, a large bypass capacitor be connected between
the source and ground, and the output signal vo be
taken from the drain through a large coupling
capacitor. The resulting common-source amplifier is
shown below. Calculate gm and ro (assuming
VA=100V). Also find Ri and Ro.
25KΩ
4m
100
V
A
4m
9m
4m
3
9m
2x













 o
m r
g
  V
V
3.85
R
// D 



 o
m
i
o
v r
g
v
v
A
66.7KΩ
//R
R
962
R
// G2
G1
D 




 i
o
o R
r
R
48
Field Effect Transistors
Electronics – Celso José Faria de Araújo, M.Sc.
 SEDRA. Adel S. e SMITH, Kenneth C. Microelectronic
Circuits. Oxford University Press.
 BOYLESTAD, Robert e NASHELSKY, Louis.
Dispositivos Eletrônicos e Teoria de Circuitos. Prentice
Hall do Brasil.
 SZE, S. M. Physics of Semiconductor Devices. John Wiley
& Sons.
 SCHILLING, Donald L. e BELOVE, Charles. Circuitos
Eletrônicos Discretos e Integrados. Guanabara Dois.
 COMER, David J. Introduction to Semiconductor
Circuits Design. Addison Wesley Publishing Company.
 MALVINO, Albert P. Eletrônica. Volume I. McGraw-Hill.
References

More Related Content

Similar to Field_Effect_Transistors.pptx

FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif Sir
Muntasir Mahdi
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
Jess Rangcasajo
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
Dr Naim R Kidwai
 
Metal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesMetal Insulator Semiconductor devices
Metal Insulator Semiconductor devices
utpal sarkar
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect TransistorYong Heui Cho
 
Tluenotes lehmann
Tluenotes lehmannTluenotes lehmann
Tluenotes lehmann
Hoopeer Hoopeer
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
AUTHELECTRONIC
 
IDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxIDS MOS Equation (1).pptx
IDS MOS Equation (1).pptx
AravindS273883
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
AUTHELECTRONIC
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
AUTHELECTRONIC
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
ssuserb4d806
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
AUTHELECTRONIC
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
AUTHELECTRONIC
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
RCC Institute of Information Technology
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
PRAVEENA N G
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)aicdesign
 

Similar to Field_Effect_Transistors.pptx (20)

FET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif SirFET lecture_Electronics by Arif Sir
FET lecture_Electronics by Arif Sir
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Metal Insulator Semiconductor devices
Metal Insulator Semiconductor devicesMetal Insulator Semiconductor devices
Metal Insulator Semiconductor devices
 
Field Effect Transistor
Field Effect TransistorField Effect Transistor
Field Effect Transistor
 
Tluenotes lehmann
Tluenotes lehmannTluenotes lehmann
Tluenotes lehmann
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
IDS MOS Equation (1).pptx
IDS MOS Equation (1).pptxIDS MOS Equation (1).pptx
IDS MOS Equation (1).pptx
 
FET
FETFET
FET
 
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IROriginal P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
Original P-CHANNEL MOSFET IRF5210PBF IRF5210 5210 100V 38A TO-220 New IR
 
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas ElectronicsOriginal N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
Original N-Channel Mosfet 2SK3484 3484 16A 100V TO-252 New Renesas Electronics
 
Analog_chap_02.ppt
Analog_chap_02.pptAnalog_chap_02.ppt
Analog_chap_02.ppt
 
Chapter3
Chapter3Chapter3
Chapter3
 
Session 4
Session 4Session 4
Session 4
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
Lect2 up090 (100324)
Lect2 up090 (100324)Lect2 up090 (100324)
Lect2 up090 (100324)
 

Recently uploaded

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 

Recently uploaded (20)

road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 

Field_Effect_Transistors.pptx

  • 1. FIELD EFFECT TRANSISTORS (FET) Celso José Faria de Araújo, Dr.
  • 2. 1 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Gate Drain Source Base Collector Emitter FET  3 terminal device  Channel e- current from source to drain controlled by the electric field generated by the gate  Extremely high input impedance for base BJT  3 terminal device emitter to collector e- current controlled by the current injected into the base FET X BJT (NPN)
  • 3. 2 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. • In addition to carrier type (N or P channel), there are differences in how the control element is constructed (Junction x Insulated) and those devices must be used differently Depletion mode junction FETs (JFET) npn pnp npn pnp Metal oxide semi-conductor FET (MOSFET) – depletion/enhancement mode – enhancement mode (insulated gate FETs, IGFETs, are the same as MOSFETs) Types of FETs
  • 4. 3 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2 to 500 m, and the thickness of the oxide layer is in the range of 0.02 to 0.1 m.
  • 5. 4 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. n + v Small DS D n + S B v > V GS TN G Depletion Region p n + D n + S v = v - V DS GS TN v > V GS TN G B Depletion Region p n + D n + S v > v - V DS GS TN v > V GS TN G B Depletion Region Pinch-off Point p Acceptor Ion ( a ) MOSFET in the linear region ( b ) MOSFET with channel just pinched off at the drain. ( c ) Channel pinch off for vDS > vGS - VTN Water Waterfalls analogy
  • 6. 5 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate beneath the gate.
  • 7. 6 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. An NMOS transistor with vGS > Vt and with a small vDS applied. The device acts as a conductance whose value is determined by vGS. Specifically, the channel conductance is proportional to vGS - Vt, and this iD is proportional to (vGS - Vt) vDS. Note that the depletion region is not shown (for simplicity).
  • 8. 7 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. 0.8 0.6 0.4 0.2 0.0 0.00e+0 2.00e-4 4.00e-4 6.00e-4 8.00e-4 Drain-Source Voltage (V) Drain-Source Current (A) V = 2 V V = 3 V V = 4 V V = 5 V GS GS GS GS NMOS i-v characteristics in the linear region (VSB = 0)            2 2 DS DS tn GS OX n D v v V v L W C μ i vGS  Vtn 0  vDS  vDSSAT = vGS-Vtn Linear Region (small vDS)     tn GS n DS D DS tn GS n D DS V v L W k dv di v V v L W k i v small     ' ' VTN =1V OX n n C μ k  '
  • 9. 8 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Operation of the enhancement NMOS transistor as vDS is increased. The induced channel acquires a tapered shape and its resistance increases as vDS is increased. Here, vGS is kept constant at a value > Vt.
  • 10. 9 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS transistor operated with vGS > Vt.
  • 11. 10 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Output characteristics for an NMOS transistor with Vtn = 1 V and k’n (W/L)= 25 x 10-6 A/V2 12 10 8 6 4 2 0 0.00e+0 2.00e-5 4.00e-5 6.00e-5 8.00e-5 1.00e-4 1.20e-4 1.40e-4 1.60e-4 1.80e-4 2.00e-4 2.20e-4 Drain-Source Voltage (V) Drain-Source Current (A) V = 2 V V = 3 V V = 4 V V = 5 V Pinchoff Locus V Š 1 V Saturation Region Linear Region GS GS GS GS GS                   tn GS DS DS tn GS DS DS tn GS n D V v v v V v for v v V v L W k i SAT 2 2 ' ID G D S  B vD  vS tn GS D V v for i   0            tn GS DS DS tn GS tn GS n D V v v v V v for V v L W k i SAT 2 ' 2
  • 12. 11 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Derivation of the iD - vDS characteristic of the NMOS transistor.
  • 13. 12 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. p+ L Source Gate Drain Channel Region Body N-Type Substrate v > 0 B i B iS v S v < 0 G i G v < 0 D iD p+ Cross section of an enhancement-mode PMOS transistor ID G D S ID G D S B The PMOS Transistor
  • 14. 13 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Output characteristics for a PMOS transistor with Vtp = -1V and k’P (W/L)= 25 x 10-6 A/V2 12 10 8 6 4 2 0 -2 -5.00e-5 0.00e+0 5.00e-5 1.00e-4 1.50e-4 2.00e-4 2.50e-4 Source-Drain Voltage (V) Source-Drain Current (A) V Š 1 V (V • -1 V) SG GS V = 3 V (V = -3 V) SG GS V = 2 V (V = -2 V) SG GS V = 4 V (V = -4 V) SG GS V = 5 V (V = -5 V) SG GS ID G D S  B tp GS D V v for i   0                   tp GS DS DS tp GS DS DS tp GS p D V v v v V v for v v V v L W k i SAT 2 2 '            tp GS DS DS tp GS tp GS p D V v v v V v for V v L W k i SAT 2 ' 2 vS  vD
  • 15. 14 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Cross section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well. Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well.
  • 16. 15 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. (a) An n-channel enhancement-type MOSFET with vGS and vDS applied and with the normal directions of current flow indicated. (b)The iD - vDS characteristics for a device with Vt = 1 V and k’n(W/L) = 0.5 mA/V2 (d) The iD - vGS characteristic for an enhancement- type NMOS transistor in saturation. (d)
  • 17. 16 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Channel Length Modulation                    M D M D D M D t GS ox D L L I L L I i L L I V v L W C i SAT SAT SAT 1 1 2 2  LM     DS t GS ox D A DS M v V v L W C i L V v L L             1 2 1 2 Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by L).
  • 18. 17 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Effect of vDS on iD in the saturation region. The MOSFET parameter VA is typically in the range of 30 to 200 V.     Saturation 1 2 2     DS t GS ox D v V v L W C i   D DS - v DS D o I v v i r GS  1 1 constant                 A DS D A D o V V I V I r     1  Output Resistance: VA is directly proportional to L; thus two devices with the same process, and having channel lengths L1 e L2, will have Early voltage VA1 and VA2,. 2 1 2 1 L L V V A A 
  • 19. 18 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Large-signal equivalent circuit model of the n-channel MOSFET in saturation, incorporating the output resistance ro. The output resistance models the linear dependence of iD on vDS and is given by ro  VA/ID.
  • 20. 19 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. ID G D S ID G D S G D S B G D S B P-channel N-channel Vtn > 0 vDS  0 Vtp < 0 vDS  0 or or ox p p C μ k  ' Summary of equations for the enhancement-mode MOSFET                                                                 A SD tp SG p D tp SG SD tp SG A DS tn GS n D tn GS DS tn GS SD SD tp SG p D tp SG SD tp SG DS DS tn GS n D tn GS DS tn GS D tp SG D tn GS V V V v L W k i V v v and V v V V V v L W k i V v v and V v v v V v L W k i V v v and V v v v V v L W k i V v v and V v i V v i V v 1 2 1 2 Saturation 2 2 (Linear) Triodo 0 0 Cutoff Type - P Type - N Region 2 ' 2 ' 2 ' 2 ' ox n n C μ k  '
  • 21. 20 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The current-voltage characteristics of a depletion-type n-channel MOSFET for which Vt = -4 V and k’n(W/L) = 2 mA/V2: (a) transistor with current and voltage polarities indicated; (b) the iD - vDS characteristics; (c) the iD - vGS characteristic in saturation.
  • 22. 21 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. -  usually neglected ( 1/  =VA) - Q-point most often located in saturation for analog circuits DD G V R R R V 2 1 2   D S S I R V    D S D DD DS I R R V V     2 ' 2 t GS n D V V L W k I   2 2 1 2 ' 2           D S t DD n D I R V V R R R L W k I D S DD GS I R V R R R V    2 1 2 VDD VG RD RS RG R1 R2 ID ( assuming the MOSFET to be in the saturation region ) ( two solutions  only one is possible ) Ex: VDD = 10 V R1 = 150 k R2 = 100 k RS = 10 k RD = 50 k k’n(W/L) = 50 A/V2 Vt = 1 V Solution: ID = 100 A VDS = 4 V Bias Circuits 1
  • 23. 22 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. VDD -VSS RD RS RG VDD -VSS RD I RG Two power supplies are available A simple circuit utilizing a current source Bias Circuits 2 VDD VDS = VGS2 load line curve VDS = VGS VGS1 VGS2 VGS3 Q VDD/ RD VDD RD RG ID  2 ' 2 t GS n D V V L W k I    2 ' 2 D D t DD n D I R V V k I      0    G DS GS I V V Analysis D D DD GS I R V V  
  • 24. 23 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Basic MOSFET current mirror. Q1: I  V converter Q2: V  I converter If Q2 in saturation then    1 2 L W L W I I REF o    t GS o V V v   min Example: VDD = 5V ;IREF=10A; Q1 and Q2 are matched ; L=10 m and W=100 m; Vt = 1V ; k’ n=20  A/V2 VA = 10L; Vo=+3V   3% μA 3 M 1 V 3 M 1 100 V 100 V 100 10 x 10 1V 1 2 30 100 2 5 2V 1 10 100 20 2 1 100 min 2 1                            o o o o A o GS GS REF D r V I μA r V v K R V V I I 
  • 25. 24 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.               D m gs d v gs D m D d d d D D d D D DD D D DD D D n t GS n gs d V v GS D m gs t GS n d d D D t GS gs gs t GS n gs n gs n gs t GS n t GS n D t gs GS n D gs GS GS t GS D D D DD D t GS n D R g v v A v R g R i v i R V i I R V i R V v I L W k V V L W k v i v i g v V V L W k i i I i V V v v V V L W k v L W k v L W k v V V L W k V V L W k i V v V L W k i v V v V V V I R V V V V L W k I GS GS                                                      ) ( Gain Voltage 2 ) ( 2 2 1 2 1 2 1 2 1 Terminal Drain in the Current signal The 0 2 1 Point Bias DC ctance transcondu ' ' ' signal small ' 2 ' 2 ' ' 2 ' 2 ' 2 '                                                  The operation of the MOSFET as an amplifier.
  • 26. 25 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Small-signal models for the MOSFET: (a) neglecting the dependence of iD on vDS in saturation (channel-length modulation effect); and (b) including the effect of channel-length modulation modeled by output resistance ro = |VA|/ID. (a.1) -Model (a.2) T-Model (b.1) -Model (b.2) T-Model
  • 27. 26 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.       2.33MΩ 3 . 4 3 . 4 1 Resistance Input V V 37 . 3 // // // 1 Gain Voltage 0 // // Analysis AC 47KΩ 1.06m 50 mA/V 725 . 0 ) 5 . 1 4 . 4 ( 25 . 0 Meaningful Physically 4.4V and 1.06mA K 10 15 15 5 . 1 25 . 0 2 1 Analysis DC 2                                                 G i i in G i i o G i G o i i G L D o G m i o v G i o i m L D o o o m D D D D D D D D D GS R i v R R v v v R v R v v i R R R r R g v v A R v v v g R R r v r m g V I I I R V V m I V V Example: Vt = 1.5V ; k’ n(W/L)=0.25 mA/V2 VA = 50V
  • 28. 27 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Small-signal equivalent-circuit model of a MOSFET in which the body is not connected to the source. 0.3 χ 0.1 g v i g m v v BS D mb DS GS          constante constante ctance Transcondu Body
  • 29. 28 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. VDD I vo -VSS vI VDD I vo vI VDD I vI vo Source follower or common-drain amplifier Common-source amplifier Common-gate amplifier Basic amplifier configurations with current sources
  • 30. 29 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.   2 1 1 2 1 // // o o m v o o o i r r g A r r R R      ID2 ID2 The CMOS common-source amplifier: (a) circuit; (b) i-v characteristic of the active-load Q2; (c) graphical construction to determine the transfer characteristic; and transfer characteristic.
  • 31. 30 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Example: VDD=10V;Vtn = | Vtp| = 1V ; k’ n= 2 k’ p= 20 A/V2 (W=100 m; L =10 m |VA|= 100V for both the n and p device) IREF=100 A.           MΩ 5 . 0 // V V 100 // 1MΩ V A 2 . 0 2 2V 2 1 μA 100 V 795 . 4 V 1 8.59V ) ( 10 2.41V 2 1 μA 100 μA 100 2 1 2 1 1 2 1 1 ' 1 2 1 ' 1 2 1 1 2 3 ' 3 1 2 min min max min max                                                             o o o in o o m i o v REF A o o REF n m I tn I n REF D O o o o O O O tn I O tp SG O SG tp SG p REF D D D REF r r R R r r g v v A I V r r m I L W k g V V V L W k I I v r r r v v V V V v V V v V V V L W k I I I I I vO vI 2 2.04 1.96 8.59 10 4.795 1 Bias Point Slope = -100V/V p ^ p ^ mV 40 V 795 . 3      i o v v
  • 32. 31 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The CMOS common-gate amplifier: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the circuit in (b).                                            1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 // // 1 o o mb m i o o o mb m i i i o o mb m v o o o mb m i o v r r g g R r r r g g i v R r r g g A r r r g g v v A
  • 33. 32 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The source follower: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the equivalent circuit.   χ g g g R r r g g R χ g g g A r r g g g R g R g v v A m mb m o o o mb m o mb m m v o o mb m m S m S m i o v                                        1 1 1 // 1 // // 1 // 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
  • 34. 33 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. (a) NMOS amplifier with enhancement load; (b) graphical determination of the transfer characteristic; (c) transfer characteristic.                2 1 2 2 1 2 1 2 1 1 1 L W L W L W L W A v L W L W V L W L W V V v v I t t DD O                  
  • 35. 34 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The NMOS amplifier with depletion load: (a) circuit; (b) graphical construction to determine the transfer characteristic; and (c) transfer characteristic.     χ L W L W g g A r r g g v v A mb m v o o mb m i o v 1 // // 1 2 1 2 1 2 1 1 1                    
  • 36. 35 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Operation of the CMOS inverter when v1 is high: (a) circuit with v1 = VDD (logic-1 level, or VOH); (b) graphical construction to determine the operating point; and (c) equivalent circuit.                tn DD n n DSN V V L W k r ' 1
  • 37. 36 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Operation of the CMOS inverter when v1 is low: (a) circuit with v1 = 0V (logic-0 level, or VOL); (b) graphical construction to determine the operating point; and (c) equivalent circuit.                   tp DD p p DSP V V L W k r ' 1
  • 38. 37 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.     t DD IL t DD IH V V V V V V 2 3 8 1 2 5 8 1     The voltage transfer characteristic of the CMOS inverter.     t DD L t DD H V V NM V V NM 2 3 8 1 2 3 8 1 Margins Noise    
  • 39. 38 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through the QN; (d) equivalent circuit during the capacitor discharge.
  • 40. 39 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. (a) High-frequency equivalent circuit model for the MOSFET; (b) the equivalent circuit for the case the source is connected to the substrate (body); (c) the equivalent circuit model of (b) with Cdb neglected (to simplify analysis).   D m I L W k g 2  D DS A o I V V r   Strong inversion and saturation: VGS – Vt > 200 mV W L C C ox gs 3 2 
  • 41. 40 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Determining the short-circuit current gain Io/Ii.   gd gs m i o C C s g I I   For physical frequencies s = j, it cam be seen that the magnitude of the current gain becomes unity at the frequency:   gd gs m T C C g f   π 2
  • 42. 41 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The Junction Field-Effect Transistor p p Depletion region Depletion region G S D G n p p v = 0 GS W p p Depletion region Depletion region G S D G n p p + - V < v < 0 GS P W' i G p p Depletion region Depletion region G S D G n p p + - v = V GS P Pinched-Off Channel < 0 ( a ) JFET with zero gate-source bias ( b ) JFET with negative gate-source voltage that is less negative than the pinch-off voltage VP. Note W’ < W ( c ) JFET at pinch-off with VGS = VP
  • 43. 42 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. The Junction Field-Effect Transistor ( a ) JFET with small drain-source ( b ) JFET with channel just at pinch-off with vDS = vDSP D S G G + - vGS Depletion region Depletion region v DS p p p n iDS < 0 D S G G + - vGS Depletion region Depletion region p p p n iDS v = v DS DSP ( a ) JFET with small drain-source ( b ) JFET with channel just at pinch-off with vDS = vDSP
  • 44. 43 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. iD G D S G D S iD P-channel N-channel Summary of equations for the JFET                                                                                                                   A DS P GS DSS D P GS DS P GS A DS P GS DSS D P GS DS GS P P DS P DS P GS DSS D P GS DS P GS P DS P DS P GS DSS D P GS DS GS P D P GS D P GS V V V v I i V v v and V v V V V v I i V v v and v V V v V v V v I i V v v and V v V v V v V v I i V v v and v V i V v i V v 1 1 0 1 1 0 Saturation 1 2 0 1 2 0 (Linear) Triodo 0 0 Cutoff Type - P Type - N Region 2 2 2 2 0 0 max   GS P v V 0 0 min   GS P v V D A o DSS D P DSS P GS P DSS m I V r I I V I V V V I g                              2 1 2
  • 45. 44 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Output characteristics for a JFET with IDSS = 200 A and VP = -4V 12 10 8 6 4 2 0 0.00e+0 2.00e-5 4.00e-5 6.00e-5 8.00e-5 1.00e-4 1.20e-4 1.40e-4 1.60e-4 1.80e-4 2.00e-4 2.20e-4 Drain-Source Voltage (V) Drain-Source Current (A) V = -3 V V = -2 V V = -1 V V = 0 V Pinch-off Locus V Š V Pinch-off Region (Saturation) Linear Region I GS P DSS GS GS GS GS D S G iDS vGS v DS D S G iSD vSG v SD n-channel JFET p-channel JFET + - + - + - + -
  • 46. 45 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. Transfer characteristic for a saturated JFET with IDSS = 1 mA and VP = -3.5V 3 2 1 0 -1 -2 -3 -4 -5 -6 -5.00e-4 0.00e+0 5.00e-4 1.00e-3 1.50e-3 Gate-Source Voltage (V) Drain-Source Current (A) I DSS V P
  • 47. 46 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. When to use JFETs  JFET have much higher input impedances and much lower input currents than BJTs.  BJTs are more linear than JFETs.  The gain of a BJT is much higher than that of a JFET.
  • 48. 47 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc. JFET (Example) The JFET in the circuit below has VP=-3V, IDSS=9mA, and =0. Find the values of all resistors so that VG=5V, ID=4mA, and VD=11V. Design for 0.05mA in the voltage divider. 1KΩ 4m 11 15 R 100KΩ R 200KΩ R 0.05m R R 15 15 R R R 5 D G2 G1 G1 G2 G1 G2 G2          1.5KΩ R 10V V 6V V 3 V 5 1 9m 4m S ' ' S Ok ' S 2 S                             Saturation For the JFET circuit designed in the former exercise, let an input signal vi be capacitively coupled to the gate, a large bypass capacitor be connected between the source and ground, and the output signal vo be taken from the drain through a large coupling capacitor. The resulting common-source amplifier is shown below. Calculate gm and ro (assuming VA=100V). Also find Ri and Ro. 25KΩ 4m 100 V A 4m 9m 4m 3 9m 2x               o m r g   V V 3.85 R // D      o m i o v r g v v A 66.7KΩ //R R 962 R // G2 G1 D       i o o R r R
  • 49. 48 Field Effect Transistors Electronics – Celso José Faria de Araújo, M.Sc.  SEDRA. Adel S. e SMITH, Kenneth C. Microelectronic Circuits. Oxford University Press.  BOYLESTAD, Robert e NASHELSKY, Louis. Dispositivos Eletrônicos e Teoria de Circuitos. Prentice Hall do Brasil.  SZE, S. M. Physics of Semiconductor Devices. John Wiley & Sons.  SCHILLING, Donald L. e BELOVE, Charles. Circuitos Eletrônicos Discretos e Integrados. Guanabara Dois.  COMER, David J. Introduction to Semiconductor Circuits Design. Addison Wesley Publishing Company.  MALVINO, Albert P. Eletrônica. Volume I. McGraw-Hill. References