This document reviews techniques for extracting features and classifying EEG signals to detect human stress levels. It discusses EEG signals and how they can provide information about mental states. It also reviews common feature extraction methods like DCT and DWT that can preprocess EEG data by transforming it from the time to frequency domain. Classification algorithms like KNN, LDA, and Naive Bayes that can classify EEG data are also examined. The document proposes a system to use a Neurosky Mindwave EEG headset to record raw EEG signals, preprocess them with DWT, and classify stress levels using a combination of classifiers.