SlideShare a Scribd company logo
1 of 25
Download to read offline
Experimental Identification of Model Parameters and the Statistical
Processing Using a Nonlinear Oscillator applied to EEG Analysis
◯Kenyu UEHARA, Takashi SAITO
Graduate School of Science and Technology for Innovation,
Yamaguchi University, Japan
Proceedings of the ASME 2018 International Mechanical
Engineering Congress & Exposition IMECE2018
November 9 - 15, Pittsburgh, Pennsylvania, USA
1.Brief overview of EEG characteristics 
2.Modeling EEG and Analysis way
   EPIA(Eeperimental Parameter Identification Analysis)
3.Experimental
   Relax state vs. Stress state
4.Result and Discussion   
Introduction
EEG: ElectroEncephaloGraphy
±10 ~ 100 μV
Recordings brain activity
Investigating Sleep Cycle
Diagnosing Epilepsy Brain Activity and Mental Activity
Epilepsy…?
Christine Lowe Having an Epileptic Seizure (Graphic)
delta
theta
alpha
beta
Rem
or
non Rem
How we analyze EEG to see the mental state
<FFT : Estimation human mental state>
Real time FFT analysis
Frequency
4~ 8~ 13~ 16~ 30~ (Hz)
θ α Low-β High-β γ
θ α γδ
delta
theta
alpha
beta
Time
<More investigating EEG : nonlinear analysis>
・EEG has a CHAOS
・For example:
 To see the quality of stress
「concentrating with joy」
「concentrating while being impatience」
etc.
EEG・・・Bio signals from the scalp 
(It has biological information, therefore, human mental state can be estimated)
β
4 8 13 30 (Hz)
Known in EEG band power
Alpha waves associate with an increase level of
relaxation.
In stress state, the beta power increases.
1.EEG signal・・・Chaos : “Bounded” + “Aperiodic” 
(Unstable fluctuation, but different from self-destructive state)
What is the characteristics of EEG signal
 ・Bounded regularity : the frequency band increases with stress.
 ・Irregularity : the same state is not repeated.
→ this wave form is not repeated anymore
EEG
EEG signal
Irregularity
Thousand of fluctuation
NonlinearityLinearity
Regularity
Bounded
Periodic Aperiodic
<EEG signal is chaos>
・Long-term unpredictability
  → short-term forecasting is possible.
・sensitivity to initial state
  → fluctuation is deterministic
Bounded regularity
1.EEG signal・・・Chaos : “Bounded” + “Aperiodic” 
(Unstable fluctuation, but different from self-destructive state)
What is the characteristics of EEG signal
 ・Bounded regularity : the frequency band increases with stress.
 ・Irregularity : the same state is not repeated.
→ this wave form is not repeated anymore
EEG
EEG signal
Irregularity
Thousand of fluctuation
NonlinearityLinearity
Regularity
Bounded
Periodic Aperiodic
<EEG signal is chaos>
・Long-term unpredictability
  → short-term forecasting is possible.
・sensitivity to initial state
  → fluctuation is deterministic
Bounded regularity
Chaotic EEG is difficult to analyze, but the quantitative analysis can be
performed if the time-series data is below a certain critical time
because it fluctuates according to deterministic dynamics.
2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)
 ・・・Modeling → Identification model parameters experimentally
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Linear term
Nonlinear oscillator:linear term + Duffing types nonlinear term
Nonlinear Periodic excitation
<Modeling> Modeling of EEG, one DOF, no random term
EEG x (mV)
Internal dynamics
of EEG
Influence of
external
Our study method identifies six model parameters experimentally.
A, B, C, P1, P2, ω
We have studied this model
with abnormal epileptic EEG
abnormal EEGnormal EEG
Previous study : model parameter identified based on the least squares method
  
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Error =
N
∑
i=0
(··xi + A ·xi + Bxi + Cx3
i − P1cosωti − P2sinωti)
“Study on Detection of Epileptic Discharges Based on a Duffing Oscillator Model”, Takahiro M, Yasumi U, Masami F, Michiyasu S and Takashi S,
Proceedings of the ASME 2014 IMECE, Vol.3, No. IMECE2014-38107, pp.003T03A083.
model parameter identification based on the LSM
nonlinear parameter C has been greatly reduced in abnormal
abnormal EEGnormal EEG
abnormal EEGnormal EEG
Periodic Spike waveComplex fluctuation
→ large C → Small C
Abnormalities occur in a living body,
all nonlinearity decrease.
This is in agreement with our result
Previous study : model parameter identified based on the least squares method
  
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Error =
N
∑
i=0
(··xi + A ·xi + Bxi + Cx3
i − P1cosωti − P2sinωti)
“Study on Detection of Epileptic Discharges Based on a Duffing Oscillator Model”, Takahiro M, Yasumi U, Masami F, Michiyasu S and Takashi S,
Proceedings of the ASME 2014 IMECE, Vol.3, No. IMECE2014-38107, pp.003T03A083.
model parameter identification based on the LSM
nonlinear parameter C has been greatly reduced in abnormal
abnormal EEGnormal EEG
abnormal EEGnormal EEG
Periodic Spike waveComplex fluctuation
→ large C → Small C
Abnormalities occur in a living body,
all nonlinearity decrease.
This is in agreement with our result
This result revealed the relationship between the abnormalities of EEG
and the model parameters.
However, specific indexes of model parameters and physiological
characteristics in healthy condition have not been investigated.
Objective
we aim to investigate the characteristic of model
parameters for EEG analysis.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Linear term
Nonlinear oscillator:linear term + Duffing types nonlinear term
Nonlinear Periodic excitation
EEG x (mV)
1. Parameter identification
(EEG data : relax state and stress state)
2. Comparison between two states.
 This method identify model parameters for time sliding window.
Identified parameters evaluate human mental state.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Experimental EEG time series data
A
B
C
P1
P2
ω
Error(A, B, C, P1, P2, ω) =
1
N
N
∑
i=1
(xexp
i
− xsim
i )2
Objective function
Simulation model
The objective function is the average
of squared difference between
experimental and simulation value.
Record
Sim
Exp
Window
2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)
 ・・・Modeling → Identification model parameters experimentally
Linear term Nonlinear Periodic excitation
 This method identify model parameters for time sliding window.
Identified parameters evaluate human mental state.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Experimental EEG time series data
Error(A, B, C, P1, P2, ω) =
1
N
N
∑
i=1
(xexp
i
− xsim
i )2
Objective function
Simulation model
The objective function is the average
of squared difference between
experimental and simulation value.
Record
2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)
 ・・・Modeling → Identification model parameters experimentally
Linear term Nonlinear Periodic excitation
Sim
Exp
A
B
C
P1
P2
ω
Window
 This method identify model parameters for time sliding window.
Identified parameters evaluate human mental state.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Experimental EEG time series data
Error(A, B, C, P1, P2, ω) =
1
N
N
∑
i=1
(xexp
i
− xsim
i )2
Objective function
Simulation model
The objective function is the average
of squared difference between
experimental and simulation value.
Record
2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)
 ・・・Modeling → Identification model parameters experimentally
Linear term Nonlinear Periodic excitation
A
B
C
P1
P2
ω
Sim
Exp
Window
 This method identify model parameters for time sliding window.
Identified parameters evaluate human mental state.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Experimental EEG time series data
Error(A, B, C, P1, P2, ω) =
1
N
N
∑
i=1
(xexp
i
− xsim
i )2
Objective function
Simulation model
The objective function is the average
of squared difference between
experimental and simulation value.
Record
2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)
 ・・・Modeling → Identification model parameters experimentally
Linear term Nonlinear Periodic excitation
A
B
C
P1
P2
ω
...
...
...
...
...
...
Sim
Exp
Window・・・・・・・・・
 This method identify model parameters for time sliding window.
Identified parameters evaluate human mental state.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Experimental EEG time series data
Error(A, B, C, P1, P2, ω) =
1
N
N
∑
i=1
(xexp
i
− xsim
i )2
Objective function
Simulation model
The objective function is the average
of squared difference between
experimental and simulation value.
Record
2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)
 ・・・Modeling → Identification model parameters experimentally
Linear term Nonlinear Periodic excitation
A
B
C
P1
P2
ω
...
...
...
...
...
...
Sim
Exp
Window・・・・・・・・・
A
B
C
P1
P2
ω
...
...
...
...
...
...
Evaluate the human mental state (relax and stress)
Investigate the characteristic of model parameters
3.Experimental (EEG of both Relax state and Stress state)
<Experimental set-up>
 Relax state(non-stimulating landscape)
→ Stress state(100-cell calculation)
・visual area O1
・Impedance 20Ω or less
・Shield room
・No caffeine
Internal 10-20 method
Relax
(landscape)
Stress
(100-cell calc.)
Meditation
- 60 0 120 240 Sec.
Measurement start
<Result> We use alpha waves(8-13 Hz)in this study
State transitions at rest and concentration 40 seconds are not included in the analysis area
(Sampling 0.002 sec)
A
B
C
P1
P2
ω
.
.
.
.
.
.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Parameters identification
for 1 second
Window =
1sec. 500 sample
3.Analysis result・・・
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
<Error Value>
Error(A, B, C, P1, P2, ω) =
1
N
N
∑
i=1
(xexp
i
− xsim
i )2
Average error
2.02
Average error
0.582
Whether the simulation using the
identified parameters is consistent
with the experiment result
・it is possible to simulate
complicated fluctuations of EEG
the identified parameter value evaluates the characteristics of the change in the
mental state of humans
Linear term Nonlinear Periodic excitation
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Parameters in Relax state Parameters in Stress state
A
B
C
P1
P2
ω
A
B
C
P1
P2
ω
A B C P1 P2 ω A B C P1 P2 ω
Statistical processing was performed on the model parameters
at both relax state and stress state
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
the
diagonal cell
the
diagonal cell
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
Comparison with relax state and stress state
・parameter C is 30.2 times smaller (decrease)
・parameter B is 1.37 times larger (increase)
・Parameter A is 1.10 times larger (increase)
• • • • • • • •
In the stress state …
in the stress state,
the waveform of the EEG will be simply
and linearly from chaotic complicated behavior.
parameter B and C could be
indicators of human mental state
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
Statistical processing was performed on the model parameters
at both relax state and stress state
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
A
B
C
P1
P2
ω
A
B
C
P1
P2
ω
A B C P1 P2 ω A B C P1 P2 ω
Parameters in Relax state Parameters in Stress state
Internal
External
Internal Internal
External External
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
Statistical processing was performed on the model parameters
at both relax state and stress state
EEG x (mV)
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
A
B
C
P1
P2
ω
A
B
C
P1
P2
ω
A B C P1 P2 ω A B C P1 P2 ω
Parameters in Relax state Parameters in Stress state
Internal Internal
External External
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
Statistical processing was performed on the model parameters
at both relax state and stress state
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
A
B
C
P1
P2
ω
A
B
C
P1
P2
ω
A B C P1 P2 ω A B C P1 P2 ω
Parameters in Relax state Parameters in Stress state
Internal Internal
External External
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
Statistical processing was performed on the model parameters
at both relax state and stress state
・There was no correlation between the parameters A and B (both linear parameters)
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
A
B
C
P1
P2
ω
A
B
C
P1
P2
ω
A B C P1 P2 ω A B C P1 P2 ω
Parameters in Relax state Parameters in Stress state
Internal Internal
External External
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
Statistical processing was performed on the model parameters
at both relax state and stress state
・There was no correlation between the parameters A and B (both linear parameters)
・Nonlinear parameter C and linear A have weak positive correlation
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
A
B
C
P1
P2
ω
A
B
C
P1
P2
ω
A B C P1 P2 ω A B C P1 P2 ω
Parameters in Relax state Parameters in Stress state
Internal Internal
External External
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
Statistical processing was performed on the model parameters
at both relax state and stress state
・There was no correlation between the parameters A and B (both linear parameters)
・Nonlinear parameter C and linear A have weak positive correlation
・Nonlinear parameter C and linear B have strong negative correlation
・The results of these correlation indicate that the existence of the nonlinear
 term is crucial in EEG analysis using the mathematical model.
··x + A ·x + Bx + Cx3
= P1cosωt + P2sinωt
A
B
C
P1
P2
ω
A
B
C
P1
P2
ω
A B C P1 P2 ω A B C P1 P2 ω
Parameters in Relax state Parameters in Stress state
Internal Internal
External External
Linear term Nonlinear Periodic excitation
3.Analysis result・・・
Statistical processing was performed on the model parameters
at both relax state and stress state
・There was no correlation between the parameters A and B (both linear parameters)
・Nonlinear parameter C and linear A have weak positive correlation
・Nonlinear parameter C and linear B have strong negative correlation
These experimentally identified parameter maps can be useful tools as a way to visualize
the state of EEG in the future
・The results of these correlation indicate that the existence of the nonlinear
 term is crucial in EEG analysis using the mathematical model.
Conclusion
we aim to investigate the characteristic of model
parameters for EEG analysis.
1. Parameter identification
(EEG data : relax state and stress state)
2. Comparison between two states.
・parameter C is 30.2 times smaller (decrease)
・parameter B is 1.37 times larger (increase)
・Parameter A is 1.10 times larger (increase)
• • • • • • • •
In the stress state …
・There was no correlation between the parameters A and B (both linear parameters)
・Nonlinear parameter C and linear A have weak positive correlation
・Nonlinear parameter C and linear B have strong negative correlation
Parameters relationship
・The results of these correlation indicate that the existence of the nonlinear
 term is crucial in EEG analysis using the mathematical model.

More Related Content

What's hot

EEG Signal processing
EEG Signal processing EEG Signal processing
EEG Signal processing DikshaKalra9
 
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...Editor IJCATR
 
EEG (ELECTROENCEPALOGRAM)
EEG (ELECTROENCEPALOGRAM)EEG (ELECTROENCEPALOGRAM)
EEG (ELECTROENCEPALOGRAM)ShriyaGautam3
 
Fir filter design using windows
Fir filter design using windowsFir filter design using windows
Fir filter design using windowsSarang Joshi
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transformmihir jain
 
Introduction to adaptive signal processing
Introduction  to adaptive signal processingIntroduction  to adaptive signal processing
Introduction to adaptive signal processingPeerapol Yuvapoositanon
 
Biomedical signal processing
Biomedical signal processingBiomedical signal processing
Biomedical signal processingAbdul Kader
 
Complete pan tompkins implementation of ecg qrs detector
Complete pan tompkins implementation of ecg qrs detectorComplete pan tompkins implementation of ecg qrs detector
Complete pan tompkins implementation of ecg qrs detectorvanikeerthika
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transformMOHAMMAD AKRAM
 
Nlms algorithm for adaptive filter
Nlms algorithm for adaptive filterNlms algorithm for adaptive filter
Nlms algorithm for adaptive filterchintanajoshi
 
Isolation amplifier
Isolation amplifierIsolation amplifier
Isolation amplifiervickeysv
 
4th UNIT Microwave Engineering.pptx
4th UNIT Microwave Engineering.pptx4th UNIT Microwave Engineering.pptx
4th UNIT Microwave Engineering.pptxKeerthiniKurapati
 
Understanding Noise Figure
Understanding Noise FigureUnderstanding Noise Figure
Understanding Noise FigureMostafa Ali
 
Artifact detection and removal
Artifact detection and removalArtifact detection and removal
Artifact detection and removalMd Kafiul Islam
 
Introduction to Digital Signal Processing (DSP)
Introduction  to  Digital Signal Processing (DSP)Introduction  to  Digital Signal Processing (DSP)
Introduction to Digital Signal Processing (DSP)Md. Arif Hossain
 
Wavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg WaveformWavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg Waveformshan pri
 
Empirical Mode Decomposition of the signal
Empirical Mode Decomposition of the signal Empirical Mode Decomposition of the signal
Empirical Mode Decomposition of the signal Harshal Chaudhari
 
Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter designSushant Shankar
 
digital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxdigital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxImranHasan760046
 
Biopotentials
BiopotentialsBiopotentials
Biopotentialsstooty s
 

What's hot (20)

EEG Signal processing
EEG Signal processing EEG Signal processing
EEG Signal processing
 
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
 
EEG (ELECTROENCEPALOGRAM)
EEG (ELECTROENCEPALOGRAM)EEG (ELECTROENCEPALOGRAM)
EEG (ELECTROENCEPALOGRAM)
 
Fir filter design using windows
Fir filter design using windowsFir filter design using windows
Fir filter design using windows
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transform
 
Introduction to adaptive signal processing
Introduction  to adaptive signal processingIntroduction  to adaptive signal processing
Introduction to adaptive signal processing
 
Biomedical signal processing
Biomedical signal processingBiomedical signal processing
Biomedical signal processing
 
Complete pan tompkins implementation of ecg qrs detector
Complete pan tompkins implementation of ecg qrs detectorComplete pan tompkins implementation of ecg qrs detector
Complete pan tompkins implementation of ecg qrs detector
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transform
 
Nlms algorithm for adaptive filter
Nlms algorithm for adaptive filterNlms algorithm for adaptive filter
Nlms algorithm for adaptive filter
 
Isolation amplifier
Isolation amplifierIsolation amplifier
Isolation amplifier
 
4th UNIT Microwave Engineering.pptx
4th UNIT Microwave Engineering.pptx4th UNIT Microwave Engineering.pptx
4th UNIT Microwave Engineering.pptx
 
Understanding Noise Figure
Understanding Noise FigureUnderstanding Noise Figure
Understanding Noise Figure
 
Artifact detection and removal
Artifact detection and removalArtifact detection and removal
Artifact detection and removal
 
Introduction to Digital Signal Processing (DSP)
Introduction  to  Digital Signal Processing (DSP)Introduction  to  Digital Signal Processing (DSP)
Introduction to Digital Signal Processing (DSP)
 
Wavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg WaveformWavelet Based Feature Extraction Scheme Of Eeg Waveform
Wavelet Based Feature Extraction Scheme Of Eeg Waveform
 
Empirical Mode Decomposition of the signal
Empirical Mode Decomposition of the signal Empirical Mode Decomposition of the signal
Empirical Mode Decomposition of the signal
 
Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter design
 
digital signal processing lecture 1.pptx
digital signal processing lecture 1.pptxdigital signal processing lecture 1.pptx
digital signal processing lecture 1.pptx
 
Biopotentials
BiopotentialsBiopotentials
Biopotentials
 

Similar to Modeling of EEG (Brain waves)

chapter10
chapter10chapter10
chapter10butest
 
An Entropy-based Feature in Epileptic Seizure Prediction Algorithm
An Entropy-based Feature in Epileptic Seizure Prediction AlgorithmAn Entropy-based Feature in Epileptic Seizure Prediction Algorithm
An Entropy-based Feature in Epileptic Seizure Prediction Algorithmiosrjce
 
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELMClassification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELMIJTET Journal
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Introduction to Approximate entropy
Introduction to Approximate entropyIntroduction to Approximate entropy
Introduction to Approximate entropyGaurav Pandit
 
IRJET- Analysis of Epilepsy using Approximate Entropy Algorithm
IRJET- Analysis of Epilepsy using Approximate Entropy AlgorithmIRJET- Analysis of Epilepsy using Approximate Entropy Algorithm
IRJET- Analysis of Epilepsy using Approximate Entropy AlgorithmIRJET Journal
 
Advanced Support Vector Machine for classification in Neural Network
Advanced Support Vector Machine for classification  in Neural NetworkAdvanced Support Vector Machine for classification  in Neural Network
Advanced Support Vector Machine for classification in Neural NetworkAshwani Jha
 
Eeg time series data analysis in focal cerebral ischemic rat model
Eeg time series data analysis in focal cerebral ischemic rat modelEeg time series data analysis in focal cerebral ischemic rat model
Eeg time series data analysis in focal cerebral ischemic rat modelijbesjournal
 
Matthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 PresentationMatthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 PresentationMatthew Gray
 
NeurSciACone
NeurSciAConeNeurSciACone
NeurSciAConeAdam Cone
 
EE Senior Project Presentation (2)
EE Senior Project Presentation (2)EE Senior Project Presentation (2)
EE Senior Project Presentation (2)Daniel Villarreal
 
ECG Signal Analysis for Myocardial Infarction Detection
ECG Signal Analysis for Myocardial Infarction DetectionECG Signal Analysis for Myocardial Infarction Detection
ECG Signal Analysis for Myocardial Infarction DetectionUzair Akbar
 
ECG Signal Analysis for MI Detection
ECG Signal Analysis for MI DetectionECG Signal Analysis for MI Detection
ECG Signal Analysis for MI DetectionUzair Akbar
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning ruleshirokazutanaka
 
EEG Signal Classification using Deep Neural Network
EEG Signal Classification using Deep Neural NetworkEEG Signal Classification using Deep Neural Network
EEG Signal Classification using Deep Neural NetworkIRJET Journal
 
Model of visual cortex
Model of visual cortexModel of visual cortex
Model of visual cortexSSA KPI
 

Similar to Modeling of EEG (Brain waves) (20)

chapter10
chapter10chapter10
chapter10
 
G017614754
G017614754G017614754
G017614754
 
An Entropy-based Feature in Epileptic Seizure Prediction Algorithm
An Entropy-based Feature in Epileptic Seizure Prediction AlgorithmAn Entropy-based Feature in Epileptic Seizure Prediction Algorithm
An Entropy-based Feature in Epileptic Seizure Prediction Algorithm
 
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELMClassification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
Classification of EEG Signal for Epileptic Seizure DetectionusingEMD and ELM
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Introduction to Approximate entropy
Introduction to Approximate entropyIntroduction to Approximate entropy
Introduction to Approximate entropy
 
IRJET- Analysis of Epilepsy using Approximate Entropy Algorithm
IRJET- Analysis of Epilepsy using Approximate Entropy AlgorithmIRJET- Analysis of Epilepsy using Approximate Entropy Algorithm
IRJET- Analysis of Epilepsy using Approximate Entropy Algorithm
 
Causality detection
Causality detectionCausality detection
Causality detection
 
Advanced Support Vector Machine for classification in Neural Network
Advanced Support Vector Machine for classification  in Neural NetworkAdvanced Support Vector Machine for classification  in Neural Network
Advanced Support Vector Machine for classification in Neural Network
 
Eeg time series data analysis in focal cerebral ischemic rat model
Eeg time series data analysis in focal cerebral ischemic rat modelEeg time series data analysis in focal cerebral ischemic rat model
Eeg time series data analysis in focal cerebral ischemic rat model
 
Matthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 PresentationMatthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 Presentation
 
EEG course.pptx
EEG course.pptxEEG course.pptx
EEG course.pptx
 
NeurSciACone
NeurSciAConeNeurSciACone
NeurSciACone
 
EE Senior Project Presentation (2)
EE Senior Project Presentation (2)EE Senior Project Presentation (2)
EE Senior Project Presentation (2)
 
ECG Signal Analysis for Myocardial Infarction Detection
ECG Signal Analysis for Myocardial Infarction DetectionECG Signal Analysis for Myocardial Infarction Detection
ECG Signal Analysis for Myocardial Infarction Detection
 
ECG Signal Analysis for MI Detection
ECG Signal Analysis for MI DetectionECG Signal Analysis for MI Detection
ECG Signal Analysis for MI Detection
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
 
EEG Signal Classification using Deep Neural Network
EEG Signal Classification using Deep Neural NetworkEEG Signal Classification using Deep Neural Network
EEG Signal Classification using Deep Neural Network
 
Model of visual cortex
Model of visual cortexModel of visual cortex
Model of visual cortex
 
STRESS ANALYSIS
STRESS ANALYSISSTRESS ANALYSIS
STRESS ANALYSIS
 

More from Kenyu Uehara

アボカドフェスティバル
アボカドフェスティバルアボカドフェスティバル
アボカドフェスティバルKenyu Uehara
 
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜Kenyu Uehara
 
ダウンヒルシンプレックス法について解説
ダウンヒルシンプレックス法について解説ダウンヒルシンプレックス法について解説
ダウンヒルシンプレックス法について解説Kenyu Uehara
 
最適化手法「最急降下法」を出来るだけわかりやすく!
最適化手法「最急降下法」を出来るだけわかりやすく!最適化手法「最急降下法」を出来るだけわかりやすく!
最適化手法「最急降下法」を出来るだけわかりやすく!Kenyu Uehara
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会Kenyu Uehara
 
機械学習を使って数字認識してみよう!
機械学習を使って数字認識してみよう!機械学習を使って数字認識してみよう!
機械学習を使って数字認識してみよう!Kenyu Uehara
 
Cellular automaton
Cellular automatonCellular automaton
Cellular automatonKenyu Uehara
 
ラズベリーパイで作る顔面追跡カメラシステム
ラズベリーパイで作る顔面追跡カメラシステムラズベリーパイで作る顔面追跡カメラシステム
ラズベリーパイで作る顔面追跡カメラシステムKenyu Uehara
 
Study on temperature control model of a focal cooling human physiological system
Study on temperature control model of a focal cooling human physiological systemStudy on temperature control model of a focal cooling human physiological system
Study on temperature control model of a focal cooling human physiological systemKenyu Uehara
 
Study on model parameters of focal cooling device using a Peltier element for...
Study on model parameters of focal cooling device using a Peltier element for...Study on model parameters of focal cooling device using a Peltier element for...
Study on model parameters of focal cooling device using a Peltier element for...Kenyu Uehara
 
てんかん波抑制における脳冷却速度と周波数帯域の関係について
てんかん波抑制における脳冷却速度と周波数帯域の関係についててんかん波抑制における脳冷却速度と周波数帯域の関係について
てんかん波抑制における脳冷却速度と周波数帯域の関係についてKenyu Uehara
 
Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...
Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...
Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...Kenyu Uehara
 
脳波モデルを用いたてんかん波判別手法
脳波モデルを用いたてんかん波判別手法脳波モデルを用いたてんかん波判別手法
脳波モデルを用いたてんかん波判別手法Kenyu Uehara
 
ゆらぐヒト脳波データからどのように集中度合いを可視化するか
ゆらぐヒト脳波データからどのように集中度合いを可視化するかゆらぐヒト脳波データからどのように集中度合いを可視化するか
ゆらぐヒト脳波データからどのように集中度合いを可視化するかKenyu Uehara
 
EEG analysis (nonlinear)
EEG analysis (nonlinear)EEG analysis (nonlinear)
EEG analysis (nonlinear)Kenyu Uehara
 
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)Kenyu Uehara
 
脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)
脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)
脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)Kenyu Uehara
 
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析Kenyu Uehara
 
連成非線形振動子を用いたてんかん性異常脳波の解析
連成非線形振動子を用いたてんかん性異常脳波の解析連成非線形振動子を用いたてんかん性異常脳波の解析
連成非線形振動子を用いたてんかん性異常脳波の解析Kenyu Uehara
 

More from Kenyu Uehara (20)

アボカドフェスティバル
アボカドフェスティバルアボカドフェスティバル
アボカドフェスティバル
 
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
フーリエ解析〜「フーリエ級数」から「高速フーリエ変換」まで〜
 
ダウンヒルシンプレックス法について解説
ダウンヒルシンプレックス法について解説ダウンヒルシンプレックス法について解説
ダウンヒルシンプレックス法について解説
 
最適化手法「最急降下法」を出来るだけわかりやすく!
最適化手法「最急降下法」を出来るだけわかりやすく!最適化手法「最急降下法」を出来るだけわかりやすく!
最適化手法「最急降下法」を出来るだけわかりやすく!
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
 
機械学習を使って数字認識してみよう!
機械学習を使って数字認識してみよう!機械学習を使って数字認識してみよう!
機械学習を使って数字認識してみよう!
 
Cellular automaton
Cellular automatonCellular automaton
Cellular automaton
 
ラズベリーパイで作る顔面追跡カメラシステム
ラズベリーパイで作る顔面追跡カメラシステムラズベリーパイで作る顔面追跡カメラシステム
ラズベリーパイで作る顔面追跡カメラシステム
 
Study on temperature control model of a focal cooling human physiological system
Study on temperature control model of a focal cooling human physiological systemStudy on temperature control model of a focal cooling human physiological system
Study on temperature control model of a focal cooling human physiological system
 
Study on model parameters of focal cooling device using a Peltier element for...
Study on model parameters of focal cooling device using a Peltier element for...Study on model parameters of focal cooling device using a Peltier element for...
Study on model parameters of focal cooling device using a Peltier element for...
 
てんかん波抑制における脳冷却速度と周波数帯域の関係について
てんかん波抑制における脳冷却速度と周波数帯域の関係についててんかん波抑制における脳冷却速度と周波数帯域の関係について
てんかん波抑制における脳冷却速度と周波数帯域の関係について
 
Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...
Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...
Dependency of ECoG Band Spectrum in Epileptic Discharges upon Local Cooling R...
 
脳波モデルを用いたてんかん波判別手法
脳波モデルを用いたてんかん波判別手法脳波モデルを用いたてんかん波判別手法
脳波モデルを用いたてんかん波判別手法
 
ゆらぐヒト脳波データからどのように集中度合いを可視化するか
ゆらぐヒト脳波データからどのように集中度合いを可視化するかゆらぐヒト脳波データからどのように集中度合いを可視化するか
ゆらぐヒト脳波データからどのように集中度合いを可視化するか
 
EEG analysis (nonlinear)
EEG analysis (nonlinear)EEG analysis (nonlinear)
EEG analysis (nonlinear)
 
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析(改訂版)
 
脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)
脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)
脳波信号を対象としたEPIAモデル構造に関する研究 (Study on model structure of EPIA for EEG signals)
 
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析
連成非線形振動子を用いたてんかん波焦点とその周辺脳波との関係性の解析
 
連成非線形振動子を用いたてんかん性異常脳波の解析
連成非線形振動子を用いたてんかん性異常脳波の解析連成非線形振動子を用いたてんかん性異常脳波の解析
連成非線形振動子を用いたてんかん性異常脳波の解析
 
Implant device
Implant deviceImplant device
Implant device
 

Recently uploaded

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 

Recently uploaded (20)

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 

Modeling of EEG (Brain waves)

  • 1. Experimental Identification of Model Parameters and the Statistical Processing Using a Nonlinear Oscillator applied to EEG Analysis ◯Kenyu UEHARA, Takashi SAITO Graduate School of Science and Technology for Innovation, Yamaguchi University, Japan Proceedings of the ASME 2018 International Mechanical Engineering Congress & Exposition IMECE2018 November 9 - 15, Pittsburgh, Pennsylvania, USA 1.Brief overview of EEG characteristics  2.Modeling EEG and Analysis way    EPIA(Eeperimental Parameter Identification Analysis) 3.Experimental    Relax state vs. Stress state 4.Result and Discussion   
  • 2. Introduction EEG: ElectroEncephaloGraphy ±10 ~ 100 μV Recordings brain activity Investigating Sleep Cycle Diagnosing Epilepsy Brain Activity and Mental Activity Epilepsy…? Christine Lowe Having an Epileptic Seizure (Graphic) delta theta alpha beta Rem or non Rem
  • 3. How we analyze EEG to see the mental state <FFT : Estimation human mental state> Real time FFT analysis Frequency 4~ 8~ 13~ 16~ 30~ (Hz) θ α Low-β High-β γ θ α γδ delta theta alpha beta Time <More investigating EEG : nonlinear analysis> ・EEG has a CHAOS ・For example:  To see the quality of stress 「concentrating with joy」 「concentrating while being impatience」 etc. EEG・・・Bio signals from the scalp  (It has biological information, therefore, human mental state can be estimated) β 4 8 13 30 (Hz) Known in EEG band power Alpha waves associate with an increase level of relaxation. In stress state, the beta power increases.
  • 4. 1.EEG signal・・・Chaos : “Bounded” + “Aperiodic”  (Unstable fluctuation, but different from self-destructive state) What is the characteristics of EEG signal  ・Bounded regularity : the frequency band increases with stress.  ・Irregularity : the same state is not repeated. → this wave form is not repeated anymore EEG EEG signal Irregularity Thousand of fluctuation NonlinearityLinearity Regularity Bounded Periodic Aperiodic <EEG signal is chaos> ・Long-term unpredictability   → short-term forecasting is possible. ・sensitivity to initial state   → fluctuation is deterministic Bounded regularity
  • 5. 1.EEG signal・・・Chaos : “Bounded” + “Aperiodic”  (Unstable fluctuation, but different from self-destructive state) What is the characteristics of EEG signal  ・Bounded regularity : the frequency band increases with stress.  ・Irregularity : the same state is not repeated. → this wave form is not repeated anymore EEG EEG signal Irregularity Thousand of fluctuation NonlinearityLinearity Regularity Bounded Periodic Aperiodic <EEG signal is chaos> ・Long-term unpredictability   → short-term forecasting is possible. ・sensitivity to initial state   → fluctuation is deterministic Bounded regularity Chaotic EEG is difficult to analyze, but the quantitative analysis can be performed if the time-series data is below a certain critical time because it fluctuates according to deterministic dynamics.
  • 6. 2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)  ・・・Modeling → Identification model parameters experimentally ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Linear term Nonlinear oscillator:linear term + Duffing types nonlinear term Nonlinear Periodic excitation <Modeling> Modeling of EEG, one DOF, no random term EEG x (mV) Internal dynamics of EEG Influence of external Our study method identifies six model parameters experimentally. A, B, C, P1, P2, ω We have studied this model with abnormal epileptic EEG abnormal EEGnormal EEG
  • 7. Previous study : model parameter identified based on the least squares method    ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Error = N ∑ i=0 (··xi + A ·xi + Bxi + Cx3 i − P1cosωti − P2sinωti) “Study on Detection of Epileptic Discharges Based on a Duffing Oscillator Model”, Takahiro M, Yasumi U, Masami F, Michiyasu S and Takashi S, Proceedings of the ASME 2014 IMECE, Vol.3, No. IMECE2014-38107, pp.003T03A083. model parameter identification based on the LSM nonlinear parameter C has been greatly reduced in abnormal abnormal EEGnormal EEG abnormal EEGnormal EEG Periodic Spike waveComplex fluctuation → large C → Small C Abnormalities occur in a living body, all nonlinearity decrease. This is in agreement with our result
  • 8. Previous study : model parameter identified based on the least squares method    ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Error = N ∑ i=0 (··xi + A ·xi + Bxi + Cx3 i − P1cosωti − P2sinωti) “Study on Detection of Epileptic Discharges Based on a Duffing Oscillator Model”, Takahiro M, Yasumi U, Masami F, Michiyasu S and Takashi S, Proceedings of the ASME 2014 IMECE, Vol.3, No. IMECE2014-38107, pp.003T03A083. model parameter identification based on the LSM nonlinear parameter C has been greatly reduced in abnormal abnormal EEGnormal EEG abnormal EEGnormal EEG Periodic Spike waveComplex fluctuation → large C → Small C Abnormalities occur in a living body, all nonlinearity decrease. This is in agreement with our result This result revealed the relationship between the abnormalities of EEG and the model parameters. However, specific indexes of model parameters and physiological characteristics in healthy condition have not been investigated.
  • 9. Objective we aim to investigate the characteristic of model parameters for EEG analysis. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Linear term Nonlinear oscillator:linear term + Duffing types nonlinear term Nonlinear Periodic excitation EEG x (mV) 1. Parameter identification (EEG data : relax state and stress state) 2. Comparison between two states.
  • 10.  This method identify model parameters for time sliding window. Identified parameters evaluate human mental state. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Experimental EEG time series data A B C P1 P2 ω Error(A, B, C, P1, P2, ω) = 1 N N ∑ i=1 (xexp i − xsim i )2 Objective function Simulation model The objective function is the average of squared difference between experimental and simulation value. Record Sim Exp Window 2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)  ・・・Modeling → Identification model parameters experimentally Linear term Nonlinear Periodic excitation
  • 11.  This method identify model parameters for time sliding window. Identified parameters evaluate human mental state. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Experimental EEG time series data Error(A, B, C, P1, P2, ω) = 1 N N ∑ i=1 (xexp i − xsim i )2 Objective function Simulation model The objective function is the average of squared difference between experimental and simulation value. Record 2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)  ・・・Modeling → Identification model parameters experimentally Linear term Nonlinear Periodic excitation Sim Exp A B C P1 P2 ω Window
  • 12.  This method identify model parameters for time sliding window. Identified parameters evaluate human mental state. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Experimental EEG time series data Error(A, B, C, P1, P2, ω) = 1 N N ∑ i=1 (xexp i − xsim i )2 Objective function Simulation model The objective function is the average of squared difference between experimental and simulation value. Record 2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)  ・・・Modeling → Identification model parameters experimentally Linear term Nonlinear Periodic excitation A B C P1 P2 ω Sim Exp Window
  • 13.  This method identify model parameters for time sliding window. Identified parameters evaluate human mental state. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Experimental EEG time series data Error(A, B, C, P1, P2, ω) = 1 N N ∑ i=1 (xexp i − xsim i )2 Objective function Simulation model The objective function is the average of squared difference between experimental and simulation value. Record 2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)  ・・・Modeling → Identification model parameters experimentally Linear term Nonlinear Periodic excitation A B C P1 P2 ω ... ... ... ... ... ... Sim Exp Window・・・・・・・・・
  • 14.  This method identify model parameters for time sliding window. Identified parameters evaluate human mental state. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Experimental EEG time series data Error(A, B, C, P1, P2, ω) = 1 N N ∑ i=1 (xexp i − xsim i )2 Objective function Simulation model The objective function is the average of squared difference between experimental and simulation value. Record 2.Modeling of EEG fluctuation (Short-term forecasting, deterministic)  ・・・Modeling → Identification model parameters experimentally Linear term Nonlinear Periodic excitation A B C P1 P2 ω ... ... ... ... ... ... Sim Exp Window・・・・・・・・・ A B C P1 P2 ω ... ... ... ... ... ... Evaluate the human mental state (relax and stress) Investigate the characteristic of model parameters
  • 15. 3.Experimental (EEG of both Relax state and Stress state) <Experimental set-up>  Relax state(non-stimulating landscape) → Stress state(100-cell calculation) ・visual area O1 ・Impedance 20Ω or less ・Shield room ・No caffeine Internal 10-20 method Relax (landscape) Stress (100-cell calc.) Meditation - 60 0 120 240 Sec. Measurement start <Result> We use alpha waves(8-13 Hz)in this study State transitions at rest and concentration 40 seconds are not included in the analysis area (Sampling 0.002 sec) A B C P1 P2 ω . . . . . . ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Parameters identification for 1 second Window = 1sec. 500 sample
  • 16. 3.Analysis result・・・ ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt <Error Value> Error(A, B, C, P1, P2, ω) = 1 N N ∑ i=1 (xexp i − xsim i )2 Average error 2.02 Average error 0.582 Whether the simulation using the identified parameters is consistent with the experiment result ・it is possible to simulate complicated fluctuations of EEG the identified parameter value evaluates the characteristics of the change in the mental state of humans Linear term Nonlinear Periodic excitation
  • 17. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Parameters in Relax state Parameters in Stress state A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω Statistical processing was performed on the model parameters at both relax state and stress state Linear term Nonlinear Periodic excitation 3.Analysis result・・・ the diagonal cell the diagonal cell
  • 18. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt Comparison with relax state and stress state ・parameter C is 30.2 times smaller (decrease) ・parameter B is 1.37 times larger (increase) ・Parameter A is 1.10 times larger (increase) • • • • • • • • In the stress state … in the stress state, the waveform of the EEG will be simply and linearly from chaotic complicated behavior. parameter B and C could be indicators of human mental state Linear term Nonlinear Periodic excitation 3.Analysis result・・・ Statistical processing was performed on the model parameters at both relax state and stress state
  • 19. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω Parameters in Relax state Parameters in Stress state Internal External Internal Internal External External Linear term Nonlinear Periodic excitation 3.Analysis result・・・ Statistical processing was performed on the model parameters at both relax state and stress state EEG x (mV)
  • 20. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω Parameters in Relax state Parameters in Stress state Internal Internal External External Linear term Nonlinear Periodic excitation 3.Analysis result・・・ Statistical processing was performed on the model parameters at both relax state and stress state
  • 21. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω Parameters in Relax state Parameters in Stress state Internal Internal External External Linear term Nonlinear Periodic excitation 3.Analysis result・・・ Statistical processing was performed on the model parameters at both relax state and stress state ・There was no correlation between the parameters A and B (both linear parameters)
  • 22. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω Parameters in Relax state Parameters in Stress state Internal Internal External External Linear term Nonlinear Periodic excitation 3.Analysis result・・・ Statistical processing was performed on the model parameters at both relax state and stress state ・There was no correlation between the parameters A and B (both linear parameters) ・Nonlinear parameter C and linear A have weak positive correlation
  • 23. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω Parameters in Relax state Parameters in Stress state Internal Internal External External Linear term Nonlinear Periodic excitation 3.Analysis result・・・ Statistical processing was performed on the model parameters at both relax state and stress state ・There was no correlation between the parameters A and B (both linear parameters) ・Nonlinear parameter C and linear A have weak positive correlation ・Nonlinear parameter C and linear B have strong negative correlation ・The results of these correlation indicate that the existence of the nonlinear  term is crucial in EEG analysis using the mathematical model.
  • 24. ··x + A ·x + Bx + Cx3 = P1cosωt + P2sinωt A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω A B C P1 P2 ω Parameters in Relax state Parameters in Stress state Internal Internal External External Linear term Nonlinear Periodic excitation 3.Analysis result・・・ Statistical processing was performed on the model parameters at both relax state and stress state ・There was no correlation between the parameters A and B (both linear parameters) ・Nonlinear parameter C and linear A have weak positive correlation ・Nonlinear parameter C and linear B have strong negative correlation These experimentally identified parameter maps can be useful tools as a way to visualize the state of EEG in the future ・The results of these correlation indicate that the existence of the nonlinear  term is crucial in EEG analysis using the mathematical model.
  • 25. Conclusion we aim to investigate the characteristic of model parameters for EEG analysis. 1. Parameter identification (EEG data : relax state and stress state) 2. Comparison between two states. ・parameter C is 30.2 times smaller (decrease) ・parameter B is 1.37 times larger (increase) ・Parameter A is 1.10 times larger (increase) • • • • • • • • In the stress state … ・There was no correlation between the parameters A and B (both linear parameters) ・Nonlinear parameter C and linear A have weak positive correlation ・Nonlinear parameter C and linear B have strong negative correlation Parameters relationship ・The results of these correlation indicate that the existence of the nonlinear  term is crucial in EEG analysis using the mathematical model.