This document presents a numerical analysis of fluid flow and heat transfer characteristics of ventilated disc brake rotors using computational fluid dynamics (CFD). Two types of rotor configurations are considered: circular pillared (CP) and diamond pillared radial vane (DP). A 20° sector of each rotor is modeled and meshed. Governing equations for mass, momentum, and energy are solved using ANSYS CFX. Boundary conditions include 900K and 1500K isothermal rotor walls for different speeds. Results show the DP rotor has 70% higher mass flow and 24% higher heat dissipation than the CP rotor. Velocity and pressure distributions are more uniform for the DP rotor at higher speeds, ensuring more uniform cooling. The