This document summarizes a research article that investigates the steady, two-dimensional Falkner-Skan boundary layer flow over a stationary wedge with momentum and thermal slip boundary conditions. The flow considers a temperature-dependent thermal conductivity in the presence of a porous medium and viscous dissipation. Governing partial differential equations are non-dimensionalized and transformed into ordinary differential equations using similarity transformations. The equations are highly nonlinear and cannot be solved analytically, so a numerical solver is used. Numerical results are presented for the skin friction coefficient, local Nusselt number, velocity and temperature profiles for varying parameters like the Falkner-Skan parameter and Eckert number.