This document discusses distance similarity measures that can be used for data mining classification and clustering techniques. It proposes a novel distance similarity measure called "Supervised & Unsupervised learning" that uses Euclidean distance similarity to partition training data into clusters. It then builds decision trees on each cluster to improve classification performance. The document also discusses using these measures for other applications like image processing, where k-means clustering can be used to segment images into clusters of similar pixel intensities. In conclusion, it states these similarity measures can help analyze complex datasets for business analysis purposes.