SlideShare a Scribd company logo
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 4 Ver. VI (Jul. - Aug. 2015), PP 37-54
www.iosrjournals.org
DOI: 10.9790/1684-12463754 www.iosrjournals.org 37 | Page
Random Vibration and Transient Bump Analysis of Automotive
Heavy Vehicle Levelling frame
1
Asst Prof.B.Anil Kumar, 2
S.Sheshikanth Reddy, 3
Prof. VVRLS Gangadhar,
4
Associate Prof.Anoop Kumar
1
Asst Professor, Department of Mechanical Engineering, Princeton College of Engineering & Technology,
Hyderabad, India.
2
M.Tech Student, Department of Mechanical Engineering, Princeton College of Engineering & Technology,
Hyderabad, India.
3
Professor, Department of Mechanical Engineering, Princeton College of Engineering & Technology,
Hyderabad, India.
4
Associate Professor, Department of Mechanical Engineering, JBIET College of Engineering & Technology,
Hyderabad, India.
Abstract: A heavy vehicle automobile is equipped with body and chassis. The chassis is basic structure of a
vehicle. It contains all the engine parts and power systems and the frame is the main portion of chassis on which
the entire load will be mounted. For efficient usage of the frame space and to ease the mounting of required
equipment and maintain the horizontal leveling of them, a suitable frame is designed. This paper describes
design modeling optimization and structural analysis of heavy vehicle levelling frame. Weight reduction is the
prime objective of this paper through analysis. In the present work, the existing heavy vehicle levelling frame is
studied and redesigned. The new leveling frame is validated through analysis using ANSYS. TATA 715 vehicle is
taken for modeling and analysis. The vehicle leveling frame is modeled in SOLID WORKS 2014 and then it is
imported to ANSYS 15.0. The analysis is done with the new frame with all the loads being considered. The
design constraints are stresses and deformations. The results is studied to validate the optimized leveling frame.
Keywords: Levelling frame, Auto CAD 2014, SOLID WORKS 2014, ANSYS 15.0, TATA 715
I. Introduction
Automotive chassis is a French word that was initially used to represent the basic structure. It is a
skeletal frame on which various mechanical parts like engine, tires, axle assemblies, brakes, steering etc. are
bolted. It gives strength and stability to the vehicle under different conditions. At the time of manufacturing, the
body of a vehicle is flexibly molded according to the structure of chassis. Automobile chassis is usually made of
light sheet metal or composite plastics. It provides strength needed for supporting vehicular components and
payload placed upon it. Automotive chassis or automobile chassis helps keep an automobile rigid, stiff and
unbending. It ensures low levels of noise, vibrations and harshness throughout the automobile. Automobile
chassis without the wheels and other engine parts is called frame. Automobile frames provide strength and
flexibility to the automobile. The backbone of any automobile, it is the supporting frame to which the body of an
engine, axle assemblies are affixed. Tie bars that are essential parts of automotive frames are fasteners that bind
different auto parts together. Automotive frames are basically manufactured from steel. Aluminum is another
raw material that has increasingly become popular for manufacturing these auto frames. In an automobile, front
frame is a set of metal parts that forms the framework which also supports the front wheels.
1.1 Types of frames:
There are three types of frames
1. Conventional frame
2. Integral frame
3. Semi-integral frame
1.1.1 Conventional frame It has two long side members and 5 to 6 cross members joined together with the help
of rivets and bolts. The frame sections are used generally. a. Channel Section – Good resistance to bending b.
Tabular Section – Good resistance to Torsion c. Box Section – Good resistance to both bending and Torsion
1.1.2 Integral frame This frame is used now in most of the cars. There is no frame and all the assembly units
are attached to the body. All the functions of the frame carried out by the body itself. Due to elimination of long
frame it is cheaper and due to less weight most economical also. Only disadvantage is repairing is difficult.
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 38 | Page
1.1.3 Semi – Integral frame In some vehicles half frame is fixed in the front end on which engine gear box and
front suspension is mounted. It has an advantage when the vehicle is met with an accident the front frame can be
taken easily to replace the damaged chassis frame. This type of frame is used in American and European cars.
1.2 Functions of the frame
1. To carry load of the passengers or goods carried in the body.
2. To support the load of the body, engine, gear box etc.,
3. To with stand the forces caused due to the sudden braking or acceleration.
4. To with stand the stresses caused due to the bad road condition.
5. To with stand centrifugal force while cornering.
1.3 Various loads acting on the frame
1. Short duration Load – While crossing a broken patch.
2. Momentary duration Load – While taking a curve.
3. Impact Loads – Due to the collision of the vehicle.
4. Inertia Load – While applying brakes.
5. Static Loads – Loads due to chassis parts.
II. Problem Specification
Weight reduction is now the main issue in automobile industries. Because if the weight of the vehicle
increases the fuel consumption increases. At the same time as the weight of the vehicle increases the cost also
increases which becomes a major issue while purchasing an automobile. The frame considered here is an
additional frame apart from vehicle chassis frame which will serve the main purpose of levelling and also
mounting of all the required equipment. It is manufactured with Structural Steel. The equipment that are
mounted on the leveling frame comprises of masts(2 No‘s) upon which high precision antennae will be
mounted, shelter, and leveling jacks(4 No‘s). The conventional frame is designed with more factor of safety and
less regard to the weight and hence the new frame will cater to the load distribution and also keeping acceptable
factor of safety limits in to consideration. Structural, Random vibration and Transient analysis are performed on
the leveling frame in order to ascertain the factor of safety limits.
2.1 Specifications of Existing Heavy Vehicle TATA 1109 EX2 Frame
Sl. No. Description Dimension (mm)
1 Length 3825
2 Width 2300
3 Height 75
4 Weight of conventional frame 660 Kg.
5 Material Structural Steel Mild
1. Structural Steel : Material Data
TABLE1: Structural Steel Constants
Density 7850 kg m^-3
Coefficient of Thermal Expansion 1.2e-005 C^-1
Specific Heat 434 J kg^-1 C^-1
Thermal Conductivity 60.5 W m^-1 C^-1
Resistivity 1.7e-007 ohm m
TABLE2: Structural Steel Compressive Yield Strength
Compressive Yield Strength Pa
2.5e+008
TABLE3: Structural Steel Tensile Yield Strength
Tensile Yield Strength Pa
2.5e+008
TABLE4: Structural Steel Tensile Ultimate Strength
Tensile Ultimate Strength Pa
4.6e+008
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 39 | Page
TABLE5: Structural Steel Strain-Life Parameters
Strength
Coefficient Pa
Strength
Exponent
Ductility
Coefficient
Ductility
Exponent
Cyclic Strength
Coefficient Pa
Cyclic Strain
Hardening
Exponent
9.2e+008 -0.106 0.213 -0.47 1.e+009 0.2
TABLE6: Structural Steel Isotropic Elasticity
Temperature C Young's Modulus Pa Poisson's Ratio Bulk Modulus Pa Shear Modulus Pa
2.e+011 0.3 1.6667e+011 7.6923e+010
TABLE7: Structural Steel Isotropic Relative Permeability
Relative Permeability
10000
2.1 Figure showing assembly of conventional frame on the Truck
2.2 Figure showing Conventional frame
2.3 Figure showing new modified levelling frame
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 40 | Page
2.4 Figure showing new modified levelling frame assembled on the truck
III. Design
Design may be done in two ways one way is the component design which is done by improving the
existing ones. The other is conceptual design where there is no reference and creation of new machines. A new
or better machine is one which is more economical in the overall cost of production and operation. The process
of design is a long and time consuming one. From the study of existing ideas, a new idea has to be conceived.
The idea is then studied keeping in mind its commercial success and given shape and form in the form of
drawings. In the preparation of these drawings, care must be taken about the availability of resources like
money, man power and materials required for the successful completion of the new idea into an actual reality. In
designing a machine component, it is necessary to have a good knowledge of many subjects such as
Mathematics, Engineering Mechanics, Strength of Materials, Theory of Machines, Workshop Processes and
Engineering Drawing. Generally the design of a component involves various steps in it. Initially, the drawings
must be drawn in user friendly software and they must be converted into a 3D model. This 3D model must be
imported into an analyzing medium where it is structurally or thermally analyzed to sustain the need. Different
steps involved in designing a component are
1. Part drawing
2. Modeling
3. Structural analysis
The present frame is divided in to individual components and each component is drawn, modeled and
structurally analyzed by using software and its procedure is explained as below.
3.1 Part Drawing: It is a document that includes the specifications for a part's production. Generally the part
drawings are drawn to have a clear idea of the model to be produced. The part drawing of the entire frame is
drawn with all the views in AUTO CAD 2014.
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 41 | Page
3.2 Modeling
It is the process of developing a mathematical representation of any three-dimensional surface of object via
specialized software. The product is called a 3D model.
There are three basic types of three dimensional computer geometric modeling methods
1. Wire frame modeling
2. Surface modeling
3. Solid modeling
3.2.1 Wire Frame Modeling
A wire frame model is visual presentation of a 3 dimensional or physical object used in 3D computer
graphics. It is created by specifying each edge of the physical object where two mathematically continuous
smooth surfaces meet, or by connecting an object‘s constituent vertices using straight lines or curves. The object
is projected on to a display screen by drawing lines at the location of each edge. The wire frame format is well
suited and widely used in programming tool paths for DNC (Direct Numerical Control) machine tools.
3.2.2 Surface Modeling
These models are with no thickness. These models are widely used in industries like automobiles,
aerospace, plastic, medical and so on. Surface models should not be confused with thick models that are models
having mass properties. The only difference between the soli model and the surface model is solid model will
have mass properties. The present frame is modeled by solid modeling because of its ease in construction and
realistic profile.
3.2.3 Solid Modeling
A solid model of an object is a more complete representation than its surface (wireframe) model. It
provides more topological information in addition to the geometrical information which helps to represent the
solid unambiguously. There are different software that are used for generating these solid models like Solid
works and Pro.E. In this project the frame is modeled by using SOLID WORKS 2014. All the parts that are
required for constructing the frame are modeled in part module by using different commands like extrude,
rotate, loft, fillet, extrude cut etc..,
3.3 Assembly
The components that are generated in part module are imported to assembly module and by using
‗insert components‘ command and all these components are mated together to form the required assembly.
3.4 Structural Analysis of the frame:
It is the methodology of determining the effects of loads on physical structures and their components.
Structures subject to this type of analysis include buildings, bridges, vehicles, machinery, furniture, attire, soil
strata, prostheses and biological tissue. Structural analysis incorporates the fields of applied mechanics,
materials science and applied mathematics to compute a structure's deformations, internal forces, stresses,
support reactions, accelerations, and stability. The results of the analysis are used to verify a structure's fitness
for use, often saving physical tests. Structural Analysis is thus a key part of the engineering design of structures.
The present frame model is imported to ANSYS Workbench 15.0 through the interface link established in the
SOLIDWORKS 2014 software. There are various steps that are to be followed in analyzing a component
structurally. They are
1. Mesh generation
2. Fixed supports
3. Application of loads
4. Evaluating result
3.4.1 Mesh Generation
The process for generating a mesh consists of three general steps
1. Set the element attributes
2. Set mesh controls (optional)
3. Meshing the model
It is not always necessary to set mesh controls because the default mesh controls are appropriate for
many models. If no controls are specified, the program will use the default settings (DESIZE) to produce a free
mesh. Alternatively, you can use the advanced Size feature controls to produce a better quality free mesh.
ANSYS Meshing technology provides multiple methods to generate a pure hex or hex- dominant mesh.
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 42 | Page
Depending on the model complexity, desired mesh quality and type, and the time available to perform meshing,
ANSYS Meshing provides a scalable solution. Quick automatic hex or hex-dominant mesh can be generated for
optimal solution efficiency and accuracy.
Structural analysis is divided in to two parts:
1. Static Structural analysis: Here loads will be static and does not vary with time. i.e., loads are applied on the
structure and the steady state response of the structure is observed.
2. Dynamic Structural analysis: Loads in this case vary over a period of time. i.e, both frequency and
amplitude of the loads are varied to evaluate the response of the structure. To account for these variations
Random and Transient dynamic analysis are performed.
The Dynamic structural analysis performed here are:
Modal analysis: For calculating the natural frequencies and mode shapes of the structure.
A modal analysis typically is used to determine the vibration characteristics (natural frequencies and
mode shapes) of a structure or machine component in the design stage. It also can serve as a starting point for
another more-detailed dynamic analysis, such as harmonic response or full transient dynamic analysis
Random Vibration Analysis:
Random vibration analyses are used to determine the response of structures to random or time
dependent loading conditions, such as earthquakes, wind loads, ocean wave loads, jet engine thrust, rocket
motor vibrations, and more. The random vibration analysis can be much less computationally intensive than a
full transient dynamic analysis while still providing design-guiding results.
Types of random vibration analyses include:
Response spectrum: single and multi-point base excitation in which the results of a modal analysis are used
with a known spectrum to calculate the model‘s displacements and stresses
Dynamic design analysis method (DDAM): a technique used to evaluate the shock resistance of shipboard
equipment. It is similar to the response spectrum method except the loading is derived from empirical equations
and shock design tables.
Power spectral density: a statistical-based random vibration method in which the input load histories are
specified based on a probability distribution of the loading taking that particular value. An example application
is the calculation of the probable response of a sensitive automotive electronic component to the engine and
drive train vibrations while the vehicle travels rapidly down a rough road.
Transient Dynamic Analysis:
Transient dynamic analysis (sometimes called time history analysis) is a technique used to determine
the dynamic response of a structure under the action of any general time-dependent loads. Transient dynamic
analyses are used to determine the time-varying displacements, strains, stresses and forces in a structure as it
responds to any combination of static and time-varying loads while simultaneously considering the effects of
inertia or damping.
Transient dynamic analysis in ANSYS software can be broadly classified as one of two types:
Rigid dynamics: In an assembly, all parts are considered to be infinitely stiff, no mesh is required and a special
solver is used to drastically reduce the amount of computational resources required. The primary focus of a rigid
dynamics simulation is mechanism operation, part velocities and accelerations, as well as joint forces
encountered during the range of mechanism motion.
Flexible dynamics: Some or all parts of an assembly are meshed and considered flexible based on the materials
from which they are made. A flexible dynamics simulation typically is done after a rigid dynamics simulation is
used to verify the model setup. Flexible dynamics simulation can provide information about machine
performance, such as: • Will a machine or mechanism work adequately with light, more-flexible members, or
will stiffer but heavier members be required? • Will the forces transmitted through joints exceed the strength of
the materials being used? • At what rotational or translation speed will the mechanism experience plastic
deformation and begin to fail? • Will the mechanism‘s natural frequencies be excited and lead to instability? •
Will the repeated loading/unloading lead to fatigue and, if so, where?
Here in this project the transient analysis is performed as BUMP test where the structure is given
25g(g-gravitation acceleration) acceleration force for 6 milli seconds(as per JSS 55555 specifications) . This
acceleration force of 25g for 6 milli seconds signifies one BUMP, and the structure is subjected to 3 BUMPS
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 43 | Page
per one second. The load of 25g acceleration force is normally distributed having a maximum amplitude of 25g
at 3 milli seconds. The response of the structure is then observed for further design considerations.
Random Vibration:
Random vibration is somewhat of a misnomer. If the generally accepted meaning of the term "random"
were applicable, it would not be possible to analyze a system subjected to "random" vibration. Furthermore, if
this term were considered in the context of having no specific pattern (i.e., haphazard), it would not be possible
to define a vibration environment, for the environment would vary in a totally unpredictable manner.
Fortunately, this is not the case. The majority of random processes fall in a special category termed stationary.
This means that the parameters by which random vibration is characterized do not change significantly when
analyzed statistically over a given period of time - the RMS amplitude is constant with time. For instance, the
vibration generated by a particular event, say, a missile launch, will be statistically similar whether the event is
measured today or six months from today. By implication, this also means that the vibration would be
statistically similar for all missiles of the same design. The assumption of a stationary process is essential in
both a technical and legal sense. As previously stated, it would not be possible for a designer to analyze a
system, nor for a user to test a system prior to installation in the field, if the vibration excitation were not
stationary. Consequently, it would not be possible to develop a legally binding specification. Any vibration is
described by the time history of motion, where the amplitude of the motion is expressed in terms of
displacement, velocity or acceleration. Sinusoidal vibration is the simplest motion, and can be fully described by
straightforward mathematical equations. Figure 1 shows the amplitude time plot of a sinusoidal vibration, and
indicates that sinusoidal vibration is cyclic and repetitive. In other words, if frequency and amplitude (or time
and amplitude) are defined, the motion can be predicted at any point in time.
Figure 1. Amplitude-Time History of Sinusoidal Vibration
A random vibration is one whose absolute value is not predictable at any point in time. As opposed to
sinusoidal vibration, there is no well defined periodicity - the amplitude at any point in time is not related to that
at any other point in time. Figure 2 shows the amplitude time history of a random vibration. The lack of
periodicity is apparent. A major difference between sinusoidal vibration and random vibration lies in the fact
that for the latter, numerous frequencies may be excited at the same time. Thus structural resonances of different
components can be excited simultaneously, the interaction of which could be vastly different from sinusoidal
vibration, wherein each resonance would be excited separately.
Figure 2. Amplitude-Time History of Random Vibration
Although the instantaneous amplitude of a random vibration cannot be expressed mathematically as an
exact function of time, it is possible to determine the probability of occurrence of a particular amplitude on a
statistical basis.
To characterize a stationary process, an ensemble of possible time histories must be obtained, wherein
the amplitude is measured over the frequency range of excitation. Thus, the three parameters of interest are:
frequency, time and amplitude. This information would provide the ability to analyze a random process in a
statistical sense. The characterization of random vibration typically results in a frequency spectrum of Power
Spectral Density (PSD) or Acceleration Spectral Density (ASD), which designates the mean square value of
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 44 | Page
some magnitude passed by a filter, divided by the bandwidth of the filter. Thus, Power Spectral Density defines
the distribution of power over the frequency range of excitation.
The equipment designer is interested in avoiding mechanical failure and equipment malfunction. These
may be produced by different mechanisms, requiring different methods of corrective action. To the designer,
random vibration could be considered as either:
a) An infinite number of harmonic vibrations with unpredictable amplitude and phase relationships in the
frequency domain; or
b) The sum of an infinite number of infinitesimal shocks occurring randomly in the time domain.
In the first case, response at a particular frequency may be the primary concern. For example, when a
displacement sensitive device is excited at its natural frequency, relatively large displacements may result in
malfunction. In such a case, the malfunction might be corrected by reducing the amplitude of excitation at the
particular frequency of concern - the natural frequency of the device. This might be accomplished by inserting a
vibration isolator between the source of excitation and the device. Alternatively, displacement might be reduced
by adjusting the stiffness of the device, or by increasing damping at the natural frequency of the device.
If the random vibration is considered as an infinite number of infinitesimal shocks, the overall Grms
may result in a fatigue related structural failure of a component due to the intermittent shocks associated with
the random excitation. In this case, the problem might be corrected by reducing the overall Grms or by
increasing the strength of the component.
There is a relationship between these considerations. The nature of the equipment problem will affect
the type of corrective action to be investigated.
Characterization of Input Acceleration And Displacement
The simplest random excitation to analyze is a band limited white spectrum shown in Figure 4.
Figure 4. Band Limited White Spectrum
The overall input Grms is the square root of the area under the curve, i.e.,
This value could be used in Equation 1 to predict the probability of occurrence of instantaneous values
of acceleration for a random signal. For design purposes, Grms would generally be multiplied by three to
provide three sigma values.
In actual practice, it is not possible for a vibration shaker to generate the instantaneous drop off shown in Figure
4. Consequently, specifications generally show a roll off rate in terms of decibels per octave (dB/Oct.).
Figure 5 shows a possible input vibration spectra including roll-off rates.
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 45 | Page
As in Figure 4, the overall Grms is the square root of the total area under the curve. However, since
most curves are plotted as straight lines on log-log paper, calculating the area under the sloped lines is more
complicated than for the region of constant PSD. To determine Grms for a spectrum with numerous break
points, G2 . for all areas are summed, and the square root of this summation results in overall Grms.
3.1 Model imported in to Ansys:
TABLE8: Geometry - Point Masses
Object Name mast1 'A' mast2 'B' shelter load 'C' jack1 'D' jack2 'E' jack3 'F' jack4 'G'
State Fully Defined
Scope
Scoping Method Geometry Selection
Applied By Remote Attachment
Geometry 1 Face 4 Faces 1 Face
Coordinate System Global Coordinate System
X Coordinate 1.078 m -0.183 m 0.4475 m -0.4815 m 1.4774 m
Y Coordinate 0.6 m 1.0431e-010 m -1.2e-002 m
Z Coordinate 0.55975 m 1.7 m 0.13 m
Location Defined
Definition
Mass 150. kg 1800. kg 50. kg 45. kg
Suppressed No
Behavior Deformable
Pinball Region All
1) MeshTABLE9: Mesh
Statistics
Nodes 59029
Elements 12761
Mesh Metric None
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 46 | Page
B. Static Structural (H5)
TABLE10: Static Structural-Accelerations
Object Name Standard Earth Gravity
State Fully Defined
Scope
Geometry All Bodies
Definition
Coordinate System Global Coordinate System
X Component 0. m/s² (ramped)
Y Component -9.8066 m/s² (ramped)
Z Component 0. m/s² (ramped)
Suppressed No
Direction -Y Direction
TABLE11: Static Structural- Loads
Object Name Fixed Support
State Fully Defined
Scope
Scoping Method Geometry Selection
Geometry 2 Faces
Definition
Type Fixed Support
Suppressed No
Results:
TABLE12: Static Structural Solution-Results
Object Name Total Deformation Equivalent Stress
State Solved
Scope
Geometry All Bodies
Definition
Type Total Deformation Equivalent (von-Mises) Stress
Results
Minimum 0. m 444.2 Pa
Maximum 1.884e-003 m 5.9897e+008 Pa
Minimum Occurs On c- runner-1
Maximum Occurs On Assem3-1@2721 130 8 TOP PLATE-1
Minimum Value Over Time
Minimum 0. m 444.2 Pa
Maximum 0. m 444.2 Pa
Maximum Value Over Time
Minimum 1.884e-003 m 5.9897e+008 Pa
Maximum 1.884e-003 m 5.9897e+008 Pa
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 47 | Page
Modal
TABLE13: Modal- Analysis Settings
Object Name Analysis Settings
State Fully Defined
Options
Max Modes to Find 6
The following bar chart indicates the frequency at each calculated mode.
FIGURE2: Modal -Solution
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 48 | Page
TABLE14: Modal-Solution
Mode Frequency [Hz]
1. 4.1055
2. 5.8055
3. 7.4631
4. 9.3161
5. 11.024
6. 15.869
Mode 1:
Mode:2
Mode : 3
Mode : 4
Mode : 5
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 49 | Page
Mode : 6
C. Transient
TABLE15: Transient Analysis Settings
Object Name Analysis Settings
State Fully Defined
Step Controls
Number Of Steps 1.
Current Step Number 1.
Step End Time 1. s
Auto Time Stepping Off
Define By Substeps
Number Of Substeps 1000.
Time Integration On
TABLE16: Transient - Accelerations
Object Name Acceleration
State Fully Defined
Scope
Geometry All Bodies
Definition
Define By Components
Coordinate System Global Coordinate System
X Component Tabular Data
Y Component Tabular Data
Z Component Tabular Data
Suppressed No
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 50 | Page
FIGURE3: Transient (J5)- Acceleration
Solution
TABLE17: Transient Solution -Results
Object Name Total Deformation Equivalent Stress
State Solved
Scope
Scoping Method Geometry Selection
Geometry All Bodies
Definition
Type Total Deformation Equivalent (von-Mises) Stress
By Time
Display Time Last
Calculate Time
History
Yes
Identifier
Suppressed No
Results
Minimum 0. m 10343 Pa
Maximum 1.3171e-002 m 1.4614e+009 Pa
Minimum Occurs On c- runner-1
Maximum Occurs On
shelter iso wing front-1@2721 130 8 TOP PLATE front-
2
shelter iso wing front-2@2721 130 8 TOP PLATE front-
2
Minimum Value Over Time
Minimum 0. m 0. Pa
Maximum 0. m 15771 Pa
Maximum Value Over Time
Minimum 0. m 0. Pa
Maximum 2.3956e-002 m 4.7854e+009 Pa
Information
Time 1. s
Load Step 1
Substep 1000
Iteration Number 1000
Integration Point Results
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 51 | Page
FIGURE4: Transient Solution- Total Deformation
FIGURE5: Transient Solution -Equivalent Stress
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 52 | Page
Random Vibration
TABLE18: Random Vibration- Loads
Object Name PSD Acceleration
State Fully Defined
Scope
Boundary Condition Fixed Support
Definition
Load Data Tabular Data
Direction Y Axis
Suppressed No
FIGURE6: Random Vibration- PSD Acceleration
TABLE19: Random Vibration -PSD Acceleration
Frequency [Hz] Acceleration [(m/s²)²/Hz]
20.
2.e-002
50.
500. 1.e-003
Solution
TABLE20: Random Vibration Solution -Results
Object Name Directional Deformation Equivalent Stress
State Solved
Scope
Scoping Method Geometry Selection
Geometry All Bodies
Definition
Type Directional Deformation Equivalent Stress
Orientation Y Axis
Reference Relative to base motion
Scale Factor 3 Sigma
Probability 99.73 %
Coordinate System Solution Coordinate System
Suppressed No
Results
Minimum 0. m 157.34 Pa
Maximum 1.9107e-004 m 2.8622e+007 Pa
Minimum Occurs On c- runner-1 u bolt fixing assy- bigger-11@top plate-bigger-1
Maximum Occurs On shelter iso wing front-1@2721 130 8 TOP PLATE front-2 Assem3-1@2721 130 8 TOP PLATE-1
Minimum Value Over Time
Minimum 0. m 157.34 Pa
Maximum 0. m 157.34 Pa
Maximum Value Over Time
Minimum 1.9107e-004 m 2.8622e+007 Pa
Maximum 1.9107e-004 m 2.8622e+007 Pa
Information
Time 0. s
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 53 | Page
Load Step 3
Substep 1
Iteration Number 1
Integration Point Results
Display Option Averaged
IV. Conclusion
From the above results it is observed that the stress levels are within acceptable limits and only in
transient bump analysis the stresses on the rear member are close to 1.5 factor of safety, which can be minimised
by either increasing the thickness of the member or adding the gusset plate at the joining cross members. Hence
the overall weight of the Flat levelling frame has come down from 660 Kg(conventional earlier design) to 450
Kg in the new modified design. Also there is a further scope to reduce the weight without compromising on the
strength by selecting carbon fibre composite material. Environment sustainability of carbon composite material
is much more superior to Mild steel. That is the carbon composite material shows more resistance to extreme
and harsh weather conditions comprising freezing temperatures, hot humid conditions, and salty environment
conditions.Validation of this environmental sustainability of carbon composite material can be done by
conducting Thermal shock analysis tests and salt spray tests in labs .
As the cost of this material is too high, this modification of replacing Mild Steel with Carbon
composite material needs to be carried out only under special cases where there is less regard to the cost and
much emphasis is placed on the weight reduction and strength enhancement.
References
[1]. N.V.Dhandapani, Dr. G Mohan Kumar, Dr K.K.Debnath, Static Analysis of Off-High Way Vehicle Chassis supporting Structure
for the effect of various Stress distributions IJART, Vol.2 Issue 1, 2012, 1-8.
[2]. Sairam Kotari, V.Gopinath,"Static and dynamic analysis on Tatra chassis" International Journal of Modern Engineering Research
(IJMER), Vol.2, Issue.1, pp-086-094.
[3]. Technical Manual specifications as per JSS 55555.
[4]. Static and Modal analysis of chassis by using FEA -THE IJES by R. Rajappan.
[5]. Stress and dynamic analysis of optimized Trailer chassis by M. Mahmood.
[6]. Finite element analysis in mechanical design using ANSYS: --by WAEL Al-TABEY.
[7]. K.W. Poh, P.H. Dayawansa, A.W. Dickerson, I.R. Thomas, Steel membrane floors for bodies of large rear- dump mining trucks,
Finite Elements in Analysis and Design 32, (1999), 141-161.
[8]. Mohd Husaini Bin Abd Wahab, "Stress Analysis of Truck Chassis", Project Report University Malaysia Pahang, 2009
[9]. Ansys Tutorial release -13 :Structural and Thermal analysis.
[10]. H J Beermann, English translation by Guy Tidbury, The Analysis of Commercial Vehicle Structures, Verlag TUV Rheinland
GmbH Koln-1989
[11]. T. Irvine, Integration of the Power Spectral Density Function, Vibrationdata.com Publications, 2000.
[12]. RANDOM VIBRATION—AN OVERVIEW by Barry Controls, Hopkinton, MA
[13]. Ibrahim, I.M., Crolla, D.A. and Barton, D.C., ―Effect of frame flexibility on the ride vibration of trucks‖, Engineering Failure
Analysis, Vol. 58, pp.709-713, 1994.
Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle…
DOI: 10.9790/1684-12463754 www.iosrjournals.org 54 | Page
[14]. Karaoglu C. and Kuralay, ―Stress analysis of a truck chassis with riveted joints‖, International Journal of Engineering Education,
Vol.38, pp.1115-1130, 2000.
[15]. Keiner, Henning. ―Static Structural Analysis of a Winston Cup Chassis under a Torsion Load‖, Engineering Failure Analysis, Vol.
2, pp. 146-157, 1995.
[16]. Kutay Yilmazcoban and Yaar Kahraman Tojsat, ―Tuuck chassis structural thickness optimization with the help of finite element
technique‖, Journal of Science and Technology, Vol.1, No.3, 2011.
[17]. Patel Vijay Kumar, Prof. R. I. Patel‘, ―Structural Analysis of Automotive Chassis Frame and Design Modification for Weight
Reduction‖, International Journal of Engineering Research & Technology, Vol.1, pp. 1-6, 2012.
[18]. Romulo Rossi Pinto Filho. ―Automotive frame optimization‖, Review of Mechanical Engineering, SAE Paper, Vol. 67, pp. 146-
156, 2003.
[19]. Zehsaz M, Vakili Tahami . and Esmaeili, ― The effect of connection plat thickness on stress of truck chassis with riveted and welded
joint under dynamic loads‖, Asian Journal of Applied Science, Vol. 2 No. 1, pp. 22-35, 2009.

More Related Content

What's hot

Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...
eSAT Publishing House
 
2015 UTM SAE BAJA FRAME
2015 UTM SAE BAJA FRAME2015 UTM SAE BAJA FRAME
2015 UTM SAE BAJA FRAMEJacob Gansert
 
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
IOSR Journals
 
Stress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering systemStress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering system
eSAT Publishing House
 
Baja vehicle chasis design & analysis
Baja vehicle chasis design & analysisBaja vehicle chasis design & analysis
Baja vehicle chasis design & analysis
Mukul kashiwal
 
Design & Analysis of Composite Shaft of Passenger Vehicle
Design & Analysis of Composite Shaft of Passenger VehicleDesign & Analysis of Composite Shaft of Passenger Vehicle
Design & Analysis of Composite Shaft of Passenger Vehicle
IRJET Journal
 
Design and fabrication of variable steering ratio mechanism for light Motor v...
Design and fabrication of variable steering ratio mechanism for light Motor v...Design and fabrication of variable steering ratio mechanism for light Motor v...
Design and fabrication of variable steering ratio mechanism for light Motor v...
sushil Choudhary
 
Fatigue or Durability Analysis of Steering Knuckle
Fatigue or Durability Analysis of Steering KnuckleFatigue or Durability Analysis of Steering Knuckle
Fatigue or Durability Analysis of Steering Knuckle
ijsrd.com
 
Ijme vol7.1 647
Ijme vol7.1 647Ijme vol7.1 647
Ijme vol7.1 647
Tejatech
 
Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...
Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...
Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...
ijtsrd
 
IRJET- Design and Analysis of Chassis for Solar Electric Vehicle
IRJET- Design and Analysis of Chassis for Solar Electric VehicleIRJET- Design and Analysis of Chassis for Solar Electric Vehicle
IRJET- Design and Analysis of Chassis for Solar Electric Vehicle
IRJET Journal
 
Design and Analysis of Electric Bike
Design and Analysis of Electric BikeDesign and Analysis of Electric Bike
Design and Analysis of Electric Bike
ijtsrd
 
A review on stress analysis and weight reduction of automobile chassis
A review on stress analysis and weight reduction of automobile chassisA review on stress analysis and weight reduction of automobile chassis
A review on stress analysis and weight reduction of automobile chassis
eSAT Journals
 
The automobile basic book
The automobile basic bookThe automobile basic book
The automobile basic book
Subha Aero M
 
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy WheelStructural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
IOSR Journals
 
Design and analysis of an electric kart
Design and analysis of an electric kartDesign and analysis of an electric kart
Design and analysis of an electric kart
eSAT Journals
 
AUTOMONBILE CHASSIS & BODY ENGINEERING
AUTOMONBILE CHASSIS & BODY  ENGINEERING AUTOMONBILE CHASSIS & BODY  ENGINEERING
AUTOMONBILE CHASSIS & BODY ENGINEERING
Devendra Hembade
 
Bus Crash Analysis
Bus Crash AnalysisBus Crash Analysis
Bus Crash Analysis
tsmanjurao
 
Project report on analysis of composite drive shaft11new2
Project report on analysis of composite drive shaft11new2Project report on analysis of composite drive shaft11new2
Project report on analysis of composite drive shaft11new2
Student
 

What's hot (20)

Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...
 
2015 UTM SAE BAJA FRAME
2015 UTM SAE BAJA FRAME2015 UTM SAE BAJA FRAME
2015 UTM SAE BAJA FRAME
 
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
Study of Different Parameters on the Chassis Space Frame For the Sports Car b...
 
Stress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering systemStress analysis on steering knuckle of the automobile steering system
Stress analysis on steering knuckle of the automobile steering system
 
Baja vehicle chasis design & analysis
Baja vehicle chasis design & analysisBaja vehicle chasis design & analysis
Baja vehicle chasis design & analysis
 
Design & Analysis of Composite Shaft of Passenger Vehicle
Design & Analysis of Composite Shaft of Passenger VehicleDesign & Analysis of Composite Shaft of Passenger Vehicle
Design & Analysis of Composite Shaft of Passenger Vehicle
 
Design and fabrication of variable steering ratio mechanism for light Motor v...
Design and fabrication of variable steering ratio mechanism for light Motor v...Design and fabrication of variable steering ratio mechanism for light Motor v...
Design and fabrication of variable steering ratio mechanism for light Motor v...
 
Fatigue or Durability Analysis of Steering Knuckle
Fatigue or Durability Analysis of Steering KnuckleFatigue or Durability Analysis of Steering Knuckle
Fatigue or Durability Analysis of Steering Knuckle
 
Ijme vol7.1 647
Ijme vol7.1 647Ijme vol7.1 647
Ijme vol7.1 647
 
Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...
Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...
Experimental Investigation of U Bolt used in Leaf Spring of an Automobile for...
 
IRJET- Design and Analysis of Chassis for Solar Electric Vehicle
IRJET- Design and Analysis of Chassis for Solar Electric VehicleIRJET- Design and Analysis of Chassis for Solar Electric Vehicle
IRJET- Design and Analysis of Chassis for Solar Electric Vehicle
 
Design and Analysis of Electric Bike
Design and Analysis of Electric BikeDesign and Analysis of Electric Bike
Design and Analysis of Electric Bike
 
A review on stress analysis and weight reduction of automobile chassis
A review on stress analysis and weight reduction of automobile chassisA review on stress analysis and weight reduction of automobile chassis
A review on stress analysis and weight reduction of automobile chassis
 
The automobile basic book
The automobile basic bookThe automobile basic book
The automobile basic book
 
Ijariie1166
Ijariie1166Ijariie1166
Ijariie1166
 
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy WheelStructural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
 
Design and analysis of an electric kart
Design and analysis of an electric kartDesign and analysis of an electric kart
Design and analysis of an electric kart
 
AUTOMONBILE CHASSIS & BODY ENGINEERING
AUTOMONBILE CHASSIS & BODY  ENGINEERING AUTOMONBILE CHASSIS & BODY  ENGINEERING
AUTOMONBILE CHASSIS & BODY ENGINEERING
 
Bus Crash Analysis
Bus Crash AnalysisBus Crash Analysis
Bus Crash Analysis
 
Project report on analysis of composite drive shaft11new2
Project report on analysis of composite drive shaft11new2Project report on analysis of composite drive shaft11new2
Project report on analysis of composite drive shaft11new2
 

Viewers also liked

G0953643
G0953643G0953643
G0953643
IOSR Journals
 
Bus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & CanBus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & Can
IOSR Journals
 
Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...
Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...
Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...
IOSR Journals
 
Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...
IOSR Journals
 
Correlation Coefficient Based Average Textual Similarity Model for Informatio...
Correlation Coefficient Based Average Textual Similarity Model for Informatio...Correlation Coefficient Based Average Textual Similarity Model for Informatio...
Correlation Coefficient Based Average Textual Similarity Model for Informatio...
IOSR Journals
 
Development of a D.C Circuit Analysis Software Using Microsoft Visual C#.Net
Development of a D.C Circuit Analysis Software Using Microsoft Visual C#.NetDevelopment of a D.C Circuit Analysis Software Using Microsoft Visual C#.Net
Development of a D.C Circuit Analysis Software Using Microsoft Visual C#.Net
IOSR Journals
 
Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...
Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...
Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...
IOSR Journals
 
DSNs & X.400 assist in ensuring email reliability
DSNs & X.400 assist in ensuring email reliabilityDSNs & X.400 assist in ensuring email reliability
DSNs & X.400 assist in ensuring email reliability
IOSR Journals
 
Analysis of Butterworth and Chebyshev Filters for ECG Denoising Using Wavelets
Analysis of Butterworth and Chebyshev Filters for ECG Denoising Using WaveletsAnalysis of Butterworth and Chebyshev Filters for ECG Denoising Using Wavelets
Analysis of Butterworth and Chebyshev Filters for ECG Denoising Using Wavelets
IOSR Journals
 
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
IOSR Journals
 
G1303042935
G1303042935G1303042935
G1303042935
IOSR Journals
 
G1304033947
G1304033947G1304033947
G1304033947
IOSR Journals
 
B012640917
B012640917B012640917
B012640917
IOSR Journals
 
B1303031220
B1303031220B1303031220
B1303031220
IOSR Journals
 
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
IOSR Journals
 
D1302021425
D1302021425D1302021425
D1302021425
IOSR Journals
 
Data Security Model Enhancement In Cloud Environment
Data Security Model Enhancement In Cloud EnvironmentData Security Model Enhancement In Cloud Environment
Data Security Model Enhancement In Cloud Environment
IOSR Journals
 
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
IOSR Journals
 
A Review: Machine vision and its Applications
A Review: Machine vision and its ApplicationsA Review: Machine vision and its Applications
A Review: Machine vision and its Applications
IOSR Journals
 

Viewers also liked (20)

G0953643
G0953643G0953643
G0953643
 
Bus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & CanBus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & Can
 
Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...
Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...
Chemical Reaction Effects on Free Convective Flow of a Polar Fluid from a Ver...
 
Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...Speech Recognized Automation System Using Speaker Identification through Wire...
Speech Recognized Automation System Using Speaker Identification through Wire...
 
Correlation Coefficient Based Average Textual Similarity Model for Informatio...
Correlation Coefficient Based Average Textual Similarity Model for Informatio...Correlation Coefficient Based Average Textual Similarity Model for Informatio...
Correlation Coefficient Based Average Textual Similarity Model for Informatio...
 
Development of a D.C Circuit Analysis Software Using Microsoft Visual C#.Net
Development of a D.C Circuit Analysis Software Using Microsoft Visual C#.NetDevelopment of a D.C Circuit Analysis Software Using Microsoft Visual C#.Net
Development of a D.C Circuit Analysis Software Using Microsoft Visual C#.Net
 
Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...
Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...
Study of Characteristics of Capacitors, Having Non-Traditional Conical Electr...
 
DSNs & X.400 assist in ensuring email reliability
DSNs & X.400 assist in ensuring email reliabilityDSNs & X.400 assist in ensuring email reliability
DSNs & X.400 assist in ensuring email reliability
 
Analysis of Butterworth and Chebyshev Filters for ECG Denoising Using Wavelets
Analysis of Butterworth and Chebyshev Filters for ECG Denoising Using WaveletsAnalysis of Butterworth and Chebyshev Filters for ECG Denoising Using Wavelets
Analysis of Butterworth and Chebyshev Filters for ECG Denoising Using Wavelets
 
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
 
G1303042935
G1303042935G1303042935
G1303042935
 
G1304033947
G1304033947G1304033947
G1304033947
 
B012640917
B012640917B012640917
B012640917
 
B1303031220
B1303031220B1303031220
B1303031220
 
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
Spectral Studies of Some Transition Metal Ion complexes with 4-[(E)-(Ferrocen...
 
D1302021425
D1302021425D1302021425
D1302021425
 
C01230912
C01230912C01230912
C01230912
 
Data Security Model Enhancement In Cloud Environment
Data Security Model Enhancement In Cloud EnvironmentData Security Model Enhancement In Cloud Environment
Data Security Model Enhancement In Cloud Environment
 
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
Increase In Electrical And Thermal Conductivities Of Doped Polymers Dependent...
 
A Review: Machine vision and its Applications
A Review: Machine vision and its ApplicationsA Review: Machine vision and its Applications
A Review: Machine vision and its Applications
 

Similar to F012463754

Modeling and Structural Analysis of Ladder Type Heavy Vehicle Frame
Modeling and Structural Analysis of Ladder Type Heavy Vehicle  FrameModeling and Structural Analysis of Ladder Type Heavy Vehicle  Frame
Modeling and Structural Analysis of Ladder Type Heavy Vehicle Frame
IJMER
 
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
IJMER
 
Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...
Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...
Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...
IRJET Journal
 
STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...
STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...
STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...
IRJET Journal
 
IJET-V2I6P27
IJET-V2I6P27IJET-V2I6P27
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET Journal
 
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET Journal
 
Optimization study on trailer arm chassis by finite element method
Optimization study on trailer arm chassis by finite element methodOptimization study on trailer arm chassis by finite element method
Optimization study on trailer arm chassis by finite element method
eSAT Journals
 
5)structural performance analysis of formula sae car
5)structural performance analysis of formula sae car5)structural performance analysis of formula sae car
5)structural performance analysis of formula sae carAnkit Singh
 
Design of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning VehicleDesign of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning Vehicle
IRJET Journal
 
Ijett v67 i12p205
Ijett v67 i12p205Ijett v67 i12p205
Ijett v67 i12p205
ELKINMAURICIOGONZALE
 
Kw3518711873
Kw3518711873Kw3518711873
Kw3518711873
IJERA Editor
 
High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...
High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...
High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...
IRJET Journal
 
Design and impact analysis of an Automotive Frame
Design and impact analysis of an Automotive FrameDesign and impact analysis of an Automotive Frame
Design and impact analysis of an Automotive Frame
IRJET Journal
 
Design analysis of the roll cage for all terrain
Design analysis of the roll cage for all   terrainDesign analysis of the roll cage for all   terrain
Design analysis of the roll cage for all terraineSAT Publishing House
 
Design analysis of the roll cage for all terrain
Design analysis of the roll cage for all   terrainDesign analysis of the roll cage for all   terrain
Design analysis of the roll cage for all terrain
eSAT Publishing House
 
Design analysis of the roll cage for all terrain vehicle
Design analysis of the roll cage for all   terrain vehicleDesign analysis of the roll cage for all   terrain vehicle
Design analysis of the roll cage for all terrain vehicle
eSAT Journals
 
DESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERY
DESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERYDESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERY
DESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERY
IRJET Journal
 
Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...
Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...
Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...
IRJET Journal
 

Similar to F012463754 (20)

Modeling and Structural Analysis of Ladder Type Heavy Vehicle Frame
Modeling and Structural Analysis of Ladder Type Heavy Vehicle  FrameModeling and Structural Analysis of Ladder Type Heavy Vehicle  Frame
Modeling and Structural Analysis of Ladder Type Heavy Vehicle Frame
 
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
 
Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...
Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...
Design, Simulation and Optimization of Multitubublar Rollcage of an All Terra...
 
STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...
STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...
STATIC STRUCTURAL ANALYSIS OF CHASSIS IN COMPLIANCE WITH INTERNATIONAL RULES ...
 
IJET-V2I6P27
IJET-V2I6P27IJET-V2I6P27
IJET-V2I6P27
 
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
 
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
 
Optimization study on trailer arm chassis by finite element method
Optimization study on trailer arm chassis by finite element methodOptimization study on trailer arm chassis by finite element method
Optimization study on trailer arm chassis by finite element method
 
5)structural performance analysis of formula sae car
5)structural performance analysis of formula sae car5)structural performance analysis of formula sae car
5)structural performance analysis of formula sae car
 
Design of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning VehicleDesign of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning Vehicle
 
Ijett v67 i12p205
Ijett v67 i12p205Ijett v67 i12p205
Ijett v67 i12p205
 
Kw3518711873
Kw3518711873Kw3518711873
Kw3518711873
 
High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...
High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...
High Cycle Fatigue Life Estimation of Automotive Chassis Under the Dynamic Lo...
 
Design and impact analysis of an Automotive Frame
Design and impact analysis of an Automotive FrameDesign and impact analysis of an Automotive Frame
Design and impact analysis of an Automotive Frame
 
Design analysis of the roll cage for all terrain
Design analysis of the roll cage for all   terrainDesign analysis of the roll cage for all   terrain
Design analysis of the roll cage for all terrain
 
Design analysis of the roll cage for all terrain
Design analysis of the roll cage for all   terrainDesign analysis of the roll cage for all   terrain
Design analysis of the roll cage for all terrain
 
Design analysis of the roll cage for all terrain vehicle
Design analysis of the roll cage for all   terrain vehicleDesign analysis of the roll cage for all   terrain vehicle
Design analysis of the roll cage for all terrain vehicle
 
DESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERY
DESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERYDESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERY
DESIGN AND DEVELOPMENT OF A CHASSIS FRAME FOR MINI- HARVESTING MACHINERY
 
Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...
Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...
Design and Static Analysis of Heavy Vehicle Chassis with Different Alloy Mate...
 
Ijrdt 140001
Ijrdt 140001Ijrdt 140001
Ijrdt 140001
 

More from IOSR Journals

A011140104
A011140104A011140104
A011140104
IOSR Journals
 
M0111397100
M0111397100M0111397100
M0111397100
IOSR Journals
 
L011138596
L011138596L011138596
L011138596
IOSR Journals
 
K011138084
K011138084K011138084
K011138084
IOSR Journals
 
J011137479
J011137479J011137479
J011137479
IOSR Journals
 
I011136673
I011136673I011136673
I011136673
IOSR Journals
 
G011134454
G011134454G011134454
G011134454
IOSR Journals
 
H011135565
H011135565H011135565
H011135565
IOSR Journals
 
F011134043
F011134043F011134043
F011134043
IOSR Journals
 
E011133639
E011133639E011133639
E011133639
IOSR Journals
 
D011132635
D011132635D011132635
D011132635
IOSR Journals
 
C011131925
C011131925C011131925
C011131925
IOSR Journals
 
B011130918
B011130918B011130918
B011130918
IOSR Journals
 
A011130108
A011130108A011130108
A011130108
IOSR Journals
 
I011125160
I011125160I011125160
I011125160
IOSR Journals
 
H011124050
H011124050H011124050
H011124050
IOSR Journals
 
G011123539
G011123539G011123539
G011123539
IOSR Journals
 
F011123134
F011123134F011123134
F011123134
IOSR Journals
 
E011122530
E011122530E011122530
E011122530
IOSR Journals
 
D011121524
D011121524D011121524
D011121524
IOSR Journals
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 

Recently uploaded (20)

Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 

F012463754

  • 1. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 4 Ver. VI (Jul. - Aug. 2015), PP 37-54 www.iosrjournals.org DOI: 10.9790/1684-12463754 www.iosrjournals.org 37 | Page Random Vibration and Transient Bump Analysis of Automotive Heavy Vehicle Levelling frame 1 Asst Prof.B.Anil Kumar, 2 S.Sheshikanth Reddy, 3 Prof. VVRLS Gangadhar, 4 Associate Prof.Anoop Kumar 1 Asst Professor, Department of Mechanical Engineering, Princeton College of Engineering & Technology, Hyderabad, India. 2 M.Tech Student, Department of Mechanical Engineering, Princeton College of Engineering & Technology, Hyderabad, India. 3 Professor, Department of Mechanical Engineering, Princeton College of Engineering & Technology, Hyderabad, India. 4 Associate Professor, Department of Mechanical Engineering, JBIET College of Engineering & Technology, Hyderabad, India. Abstract: A heavy vehicle automobile is equipped with body and chassis. The chassis is basic structure of a vehicle. It contains all the engine parts and power systems and the frame is the main portion of chassis on which the entire load will be mounted. For efficient usage of the frame space and to ease the mounting of required equipment and maintain the horizontal leveling of them, a suitable frame is designed. This paper describes design modeling optimization and structural analysis of heavy vehicle levelling frame. Weight reduction is the prime objective of this paper through analysis. In the present work, the existing heavy vehicle levelling frame is studied and redesigned. The new leveling frame is validated through analysis using ANSYS. TATA 715 vehicle is taken for modeling and analysis. The vehicle leveling frame is modeled in SOLID WORKS 2014 and then it is imported to ANSYS 15.0. The analysis is done with the new frame with all the loads being considered. The design constraints are stresses and deformations. The results is studied to validate the optimized leveling frame. Keywords: Levelling frame, Auto CAD 2014, SOLID WORKS 2014, ANSYS 15.0, TATA 715 I. Introduction Automotive chassis is a French word that was initially used to represent the basic structure. It is a skeletal frame on which various mechanical parts like engine, tires, axle assemblies, brakes, steering etc. are bolted. It gives strength and stability to the vehicle under different conditions. At the time of manufacturing, the body of a vehicle is flexibly molded according to the structure of chassis. Automobile chassis is usually made of light sheet metal or composite plastics. It provides strength needed for supporting vehicular components and payload placed upon it. Automotive chassis or automobile chassis helps keep an automobile rigid, stiff and unbending. It ensures low levels of noise, vibrations and harshness throughout the automobile. Automobile chassis without the wheels and other engine parts is called frame. Automobile frames provide strength and flexibility to the automobile. The backbone of any automobile, it is the supporting frame to which the body of an engine, axle assemblies are affixed. Tie bars that are essential parts of automotive frames are fasteners that bind different auto parts together. Automotive frames are basically manufactured from steel. Aluminum is another raw material that has increasingly become popular for manufacturing these auto frames. In an automobile, front frame is a set of metal parts that forms the framework which also supports the front wheels. 1.1 Types of frames: There are three types of frames 1. Conventional frame 2. Integral frame 3. Semi-integral frame 1.1.1 Conventional frame It has two long side members and 5 to 6 cross members joined together with the help of rivets and bolts. The frame sections are used generally. a. Channel Section – Good resistance to bending b. Tabular Section – Good resistance to Torsion c. Box Section – Good resistance to both bending and Torsion 1.1.2 Integral frame This frame is used now in most of the cars. There is no frame and all the assembly units are attached to the body. All the functions of the frame carried out by the body itself. Due to elimination of long frame it is cheaper and due to less weight most economical also. Only disadvantage is repairing is difficult.
  • 2. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 38 | Page 1.1.3 Semi – Integral frame In some vehicles half frame is fixed in the front end on which engine gear box and front suspension is mounted. It has an advantage when the vehicle is met with an accident the front frame can be taken easily to replace the damaged chassis frame. This type of frame is used in American and European cars. 1.2 Functions of the frame 1. To carry load of the passengers or goods carried in the body. 2. To support the load of the body, engine, gear box etc., 3. To with stand the forces caused due to the sudden braking or acceleration. 4. To with stand the stresses caused due to the bad road condition. 5. To with stand centrifugal force while cornering. 1.3 Various loads acting on the frame 1. Short duration Load – While crossing a broken patch. 2. Momentary duration Load – While taking a curve. 3. Impact Loads – Due to the collision of the vehicle. 4. Inertia Load – While applying brakes. 5. Static Loads – Loads due to chassis parts. II. Problem Specification Weight reduction is now the main issue in automobile industries. Because if the weight of the vehicle increases the fuel consumption increases. At the same time as the weight of the vehicle increases the cost also increases which becomes a major issue while purchasing an automobile. The frame considered here is an additional frame apart from vehicle chassis frame which will serve the main purpose of levelling and also mounting of all the required equipment. It is manufactured with Structural Steel. The equipment that are mounted on the leveling frame comprises of masts(2 No‘s) upon which high precision antennae will be mounted, shelter, and leveling jacks(4 No‘s). The conventional frame is designed with more factor of safety and less regard to the weight and hence the new frame will cater to the load distribution and also keeping acceptable factor of safety limits in to consideration. Structural, Random vibration and Transient analysis are performed on the leveling frame in order to ascertain the factor of safety limits. 2.1 Specifications of Existing Heavy Vehicle TATA 1109 EX2 Frame Sl. No. Description Dimension (mm) 1 Length 3825 2 Width 2300 3 Height 75 4 Weight of conventional frame 660 Kg. 5 Material Structural Steel Mild 1. Structural Steel : Material Data TABLE1: Structural Steel Constants Density 7850 kg m^-3 Coefficient of Thermal Expansion 1.2e-005 C^-1 Specific Heat 434 J kg^-1 C^-1 Thermal Conductivity 60.5 W m^-1 C^-1 Resistivity 1.7e-007 ohm m TABLE2: Structural Steel Compressive Yield Strength Compressive Yield Strength Pa 2.5e+008 TABLE3: Structural Steel Tensile Yield Strength Tensile Yield Strength Pa 2.5e+008 TABLE4: Structural Steel Tensile Ultimate Strength Tensile Ultimate Strength Pa 4.6e+008
  • 3. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 39 | Page TABLE5: Structural Steel Strain-Life Parameters Strength Coefficient Pa Strength Exponent Ductility Coefficient Ductility Exponent Cyclic Strength Coefficient Pa Cyclic Strain Hardening Exponent 9.2e+008 -0.106 0.213 -0.47 1.e+009 0.2 TABLE6: Structural Steel Isotropic Elasticity Temperature C Young's Modulus Pa Poisson's Ratio Bulk Modulus Pa Shear Modulus Pa 2.e+011 0.3 1.6667e+011 7.6923e+010 TABLE7: Structural Steel Isotropic Relative Permeability Relative Permeability 10000 2.1 Figure showing assembly of conventional frame on the Truck 2.2 Figure showing Conventional frame 2.3 Figure showing new modified levelling frame
  • 4. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 40 | Page 2.4 Figure showing new modified levelling frame assembled on the truck III. Design Design may be done in two ways one way is the component design which is done by improving the existing ones. The other is conceptual design where there is no reference and creation of new machines. A new or better machine is one which is more economical in the overall cost of production and operation. The process of design is a long and time consuming one. From the study of existing ideas, a new idea has to be conceived. The idea is then studied keeping in mind its commercial success and given shape and form in the form of drawings. In the preparation of these drawings, care must be taken about the availability of resources like money, man power and materials required for the successful completion of the new idea into an actual reality. In designing a machine component, it is necessary to have a good knowledge of many subjects such as Mathematics, Engineering Mechanics, Strength of Materials, Theory of Machines, Workshop Processes and Engineering Drawing. Generally the design of a component involves various steps in it. Initially, the drawings must be drawn in user friendly software and they must be converted into a 3D model. This 3D model must be imported into an analyzing medium where it is structurally or thermally analyzed to sustain the need. Different steps involved in designing a component are 1. Part drawing 2. Modeling 3. Structural analysis The present frame is divided in to individual components and each component is drawn, modeled and structurally analyzed by using software and its procedure is explained as below. 3.1 Part Drawing: It is a document that includes the specifications for a part's production. Generally the part drawings are drawn to have a clear idea of the model to be produced. The part drawing of the entire frame is drawn with all the views in AUTO CAD 2014.
  • 5. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 41 | Page 3.2 Modeling It is the process of developing a mathematical representation of any three-dimensional surface of object via specialized software. The product is called a 3D model. There are three basic types of three dimensional computer geometric modeling methods 1. Wire frame modeling 2. Surface modeling 3. Solid modeling 3.2.1 Wire Frame Modeling A wire frame model is visual presentation of a 3 dimensional or physical object used in 3D computer graphics. It is created by specifying each edge of the physical object where two mathematically continuous smooth surfaces meet, or by connecting an object‘s constituent vertices using straight lines or curves. The object is projected on to a display screen by drawing lines at the location of each edge. The wire frame format is well suited and widely used in programming tool paths for DNC (Direct Numerical Control) machine tools. 3.2.2 Surface Modeling These models are with no thickness. These models are widely used in industries like automobiles, aerospace, plastic, medical and so on. Surface models should not be confused with thick models that are models having mass properties. The only difference between the soli model and the surface model is solid model will have mass properties. The present frame is modeled by solid modeling because of its ease in construction and realistic profile. 3.2.3 Solid Modeling A solid model of an object is a more complete representation than its surface (wireframe) model. It provides more topological information in addition to the geometrical information which helps to represent the solid unambiguously. There are different software that are used for generating these solid models like Solid works and Pro.E. In this project the frame is modeled by using SOLID WORKS 2014. All the parts that are required for constructing the frame are modeled in part module by using different commands like extrude, rotate, loft, fillet, extrude cut etc.., 3.3 Assembly The components that are generated in part module are imported to assembly module and by using ‗insert components‘ command and all these components are mated together to form the required assembly. 3.4 Structural Analysis of the frame: It is the methodology of determining the effects of loads on physical structures and their components. Structures subject to this type of analysis include buildings, bridges, vehicles, machinery, furniture, attire, soil strata, prostheses and biological tissue. Structural analysis incorporates the fields of applied mechanics, materials science and applied mathematics to compute a structure's deformations, internal forces, stresses, support reactions, accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, often saving physical tests. Structural Analysis is thus a key part of the engineering design of structures. The present frame model is imported to ANSYS Workbench 15.0 through the interface link established in the SOLIDWORKS 2014 software. There are various steps that are to be followed in analyzing a component structurally. They are 1. Mesh generation 2. Fixed supports 3. Application of loads 4. Evaluating result 3.4.1 Mesh Generation The process for generating a mesh consists of three general steps 1. Set the element attributes 2. Set mesh controls (optional) 3. Meshing the model It is not always necessary to set mesh controls because the default mesh controls are appropriate for many models. If no controls are specified, the program will use the default settings (DESIZE) to produce a free mesh. Alternatively, you can use the advanced Size feature controls to produce a better quality free mesh. ANSYS Meshing technology provides multiple methods to generate a pure hex or hex- dominant mesh.
  • 6. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 42 | Page Depending on the model complexity, desired mesh quality and type, and the time available to perform meshing, ANSYS Meshing provides a scalable solution. Quick automatic hex or hex-dominant mesh can be generated for optimal solution efficiency and accuracy. Structural analysis is divided in to two parts: 1. Static Structural analysis: Here loads will be static and does not vary with time. i.e., loads are applied on the structure and the steady state response of the structure is observed. 2. Dynamic Structural analysis: Loads in this case vary over a period of time. i.e, both frequency and amplitude of the loads are varied to evaluate the response of the structure. To account for these variations Random and Transient dynamic analysis are performed. The Dynamic structural analysis performed here are: Modal analysis: For calculating the natural frequencies and mode shapes of the structure. A modal analysis typically is used to determine the vibration characteristics (natural frequencies and mode shapes) of a structure or machine component in the design stage. It also can serve as a starting point for another more-detailed dynamic analysis, such as harmonic response or full transient dynamic analysis Random Vibration Analysis: Random vibration analyses are used to determine the response of structures to random or time dependent loading conditions, such as earthquakes, wind loads, ocean wave loads, jet engine thrust, rocket motor vibrations, and more. The random vibration analysis can be much less computationally intensive than a full transient dynamic analysis while still providing design-guiding results. Types of random vibration analyses include: Response spectrum: single and multi-point base excitation in which the results of a modal analysis are used with a known spectrum to calculate the model‘s displacements and stresses Dynamic design analysis method (DDAM): a technique used to evaluate the shock resistance of shipboard equipment. It is similar to the response spectrum method except the loading is derived from empirical equations and shock design tables. Power spectral density: a statistical-based random vibration method in which the input load histories are specified based on a probability distribution of the loading taking that particular value. An example application is the calculation of the probable response of a sensitive automotive electronic component to the engine and drive train vibrations while the vehicle travels rapidly down a rough road. Transient Dynamic Analysis: Transient dynamic analysis (sometimes called time history analysis) is a technique used to determine the dynamic response of a structure under the action of any general time-dependent loads. Transient dynamic analyses are used to determine the time-varying displacements, strains, stresses and forces in a structure as it responds to any combination of static and time-varying loads while simultaneously considering the effects of inertia or damping. Transient dynamic analysis in ANSYS software can be broadly classified as one of two types: Rigid dynamics: In an assembly, all parts are considered to be infinitely stiff, no mesh is required and a special solver is used to drastically reduce the amount of computational resources required. The primary focus of a rigid dynamics simulation is mechanism operation, part velocities and accelerations, as well as joint forces encountered during the range of mechanism motion. Flexible dynamics: Some or all parts of an assembly are meshed and considered flexible based on the materials from which they are made. A flexible dynamics simulation typically is done after a rigid dynamics simulation is used to verify the model setup. Flexible dynamics simulation can provide information about machine performance, such as: • Will a machine or mechanism work adequately with light, more-flexible members, or will stiffer but heavier members be required? • Will the forces transmitted through joints exceed the strength of the materials being used? • At what rotational or translation speed will the mechanism experience plastic deformation and begin to fail? • Will the mechanism‘s natural frequencies be excited and lead to instability? • Will the repeated loading/unloading lead to fatigue and, if so, where? Here in this project the transient analysis is performed as BUMP test where the structure is given 25g(g-gravitation acceleration) acceleration force for 6 milli seconds(as per JSS 55555 specifications) . This acceleration force of 25g for 6 milli seconds signifies one BUMP, and the structure is subjected to 3 BUMPS
  • 7. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 43 | Page per one second. The load of 25g acceleration force is normally distributed having a maximum amplitude of 25g at 3 milli seconds. The response of the structure is then observed for further design considerations. Random Vibration: Random vibration is somewhat of a misnomer. If the generally accepted meaning of the term "random" were applicable, it would not be possible to analyze a system subjected to "random" vibration. Furthermore, if this term were considered in the context of having no specific pattern (i.e., haphazard), it would not be possible to define a vibration environment, for the environment would vary in a totally unpredictable manner. Fortunately, this is not the case. The majority of random processes fall in a special category termed stationary. This means that the parameters by which random vibration is characterized do not change significantly when analyzed statistically over a given period of time - the RMS amplitude is constant with time. For instance, the vibration generated by a particular event, say, a missile launch, will be statistically similar whether the event is measured today or six months from today. By implication, this also means that the vibration would be statistically similar for all missiles of the same design. The assumption of a stationary process is essential in both a technical and legal sense. As previously stated, it would not be possible for a designer to analyze a system, nor for a user to test a system prior to installation in the field, if the vibration excitation were not stationary. Consequently, it would not be possible to develop a legally binding specification. Any vibration is described by the time history of motion, where the amplitude of the motion is expressed in terms of displacement, velocity or acceleration. Sinusoidal vibration is the simplest motion, and can be fully described by straightforward mathematical equations. Figure 1 shows the amplitude time plot of a sinusoidal vibration, and indicates that sinusoidal vibration is cyclic and repetitive. In other words, if frequency and amplitude (or time and amplitude) are defined, the motion can be predicted at any point in time. Figure 1. Amplitude-Time History of Sinusoidal Vibration A random vibration is one whose absolute value is not predictable at any point in time. As opposed to sinusoidal vibration, there is no well defined periodicity - the amplitude at any point in time is not related to that at any other point in time. Figure 2 shows the amplitude time history of a random vibration. The lack of periodicity is apparent. A major difference between sinusoidal vibration and random vibration lies in the fact that for the latter, numerous frequencies may be excited at the same time. Thus structural resonances of different components can be excited simultaneously, the interaction of which could be vastly different from sinusoidal vibration, wherein each resonance would be excited separately. Figure 2. Amplitude-Time History of Random Vibration Although the instantaneous amplitude of a random vibration cannot be expressed mathematically as an exact function of time, it is possible to determine the probability of occurrence of a particular amplitude on a statistical basis. To characterize a stationary process, an ensemble of possible time histories must be obtained, wherein the amplitude is measured over the frequency range of excitation. Thus, the three parameters of interest are: frequency, time and amplitude. This information would provide the ability to analyze a random process in a statistical sense. The characterization of random vibration typically results in a frequency spectrum of Power Spectral Density (PSD) or Acceleration Spectral Density (ASD), which designates the mean square value of
  • 8. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 44 | Page some magnitude passed by a filter, divided by the bandwidth of the filter. Thus, Power Spectral Density defines the distribution of power over the frequency range of excitation. The equipment designer is interested in avoiding mechanical failure and equipment malfunction. These may be produced by different mechanisms, requiring different methods of corrective action. To the designer, random vibration could be considered as either: a) An infinite number of harmonic vibrations with unpredictable amplitude and phase relationships in the frequency domain; or b) The sum of an infinite number of infinitesimal shocks occurring randomly in the time domain. In the first case, response at a particular frequency may be the primary concern. For example, when a displacement sensitive device is excited at its natural frequency, relatively large displacements may result in malfunction. In such a case, the malfunction might be corrected by reducing the amplitude of excitation at the particular frequency of concern - the natural frequency of the device. This might be accomplished by inserting a vibration isolator between the source of excitation and the device. Alternatively, displacement might be reduced by adjusting the stiffness of the device, or by increasing damping at the natural frequency of the device. If the random vibration is considered as an infinite number of infinitesimal shocks, the overall Grms may result in a fatigue related structural failure of a component due to the intermittent shocks associated with the random excitation. In this case, the problem might be corrected by reducing the overall Grms or by increasing the strength of the component. There is a relationship between these considerations. The nature of the equipment problem will affect the type of corrective action to be investigated. Characterization of Input Acceleration And Displacement The simplest random excitation to analyze is a band limited white spectrum shown in Figure 4. Figure 4. Band Limited White Spectrum The overall input Grms is the square root of the area under the curve, i.e., This value could be used in Equation 1 to predict the probability of occurrence of instantaneous values of acceleration for a random signal. For design purposes, Grms would generally be multiplied by three to provide three sigma values. In actual practice, it is not possible for a vibration shaker to generate the instantaneous drop off shown in Figure 4. Consequently, specifications generally show a roll off rate in terms of decibels per octave (dB/Oct.). Figure 5 shows a possible input vibration spectra including roll-off rates.
  • 9. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 45 | Page As in Figure 4, the overall Grms is the square root of the total area under the curve. However, since most curves are plotted as straight lines on log-log paper, calculating the area under the sloped lines is more complicated than for the region of constant PSD. To determine Grms for a spectrum with numerous break points, G2 . for all areas are summed, and the square root of this summation results in overall Grms. 3.1 Model imported in to Ansys: TABLE8: Geometry - Point Masses Object Name mast1 'A' mast2 'B' shelter load 'C' jack1 'D' jack2 'E' jack3 'F' jack4 'G' State Fully Defined Scope Scoping Method Geometry Selection Applied By Remote Attachment Geometry 1 Face 4 Faces 1 Face Coordinate System Global Coordinate System X Coordinate 1.078 m -0.183 m 0.4475 m -0.4815 m 1.4774 m Y Coordinate 0.6 m 1.0431e-010 m -1.2e-002 m Z Coordinate 0.55975 m 1.7 m 0.13 m Location Defined Definition Mass 150. kg 1800. kg 50. kg 45. kg Suppressed No Behavior Deformable Pinball Region All 1) MeshTABLE9: Mesh Statistics Nodes 59029 Elements 12761 Mesh Metric None
  • 10. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 46 | Page B. Static Structural (H5) TABLE10: Static Structural-Accelerations Object Name Standard Earth Gravity State Fully Defined Scope Geometry All Bodies Definition Coordinate System Global Coordinate System X Component 0. m/s² (ramped) Y Component -9.8066 m/s² (ramped) Z Component 0. m/s² (ramped) Suppressed No Direction -Y Direction TABLE11: Static Structural- Loads Object Name Fixed Support State Fully Defined Scope Scoping Method Geometry Selection Geometry 2 Faces Definition Type Fixed Support Suppressed No Results: TABLE12: Static Structural Solution-Results Object Name Total Deformation Equivalent Stress State Solved Scope Geometry All Bodies Definition Type Total Deformation Equivalent (von-Mises) Stress Results Minimum 0. m 444.2 Pa Maximum 1.884e-003 m 5.9897e+008 Pa Minimum Occurs On c- runner-1 Maximum Occurs On Assem3-1@2721 130 8 TOP PLATE-1 Minimum Value Over Time Minimum 0. m 444.2 Pa Maximum 0. m 444.2 Pa Maximum Value Over Time Minimum 1.884e-003 m 5.9897e+008 Pa Maximum 1.884e-003 m 5.9897e+008 Pa
  • 11. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 47 | Page Modal TABLE13: Modal- Analysis Settings Object Name Analysis Settings State Fully Defined Options Max Modes to Find 6 The following bar chart indicates the frequency at each calculated mode. FIGURE2: Modal -Solution
  • 12. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 48 | Page TABLE14: Modal-Solution Mode Frequency [Hz] 1. 4.1055 2. 5.8055 3. 7.4631 4. 9.3161 5. 11.024 6. 15.869 Mode 1: Mode:2 Mode : 3 Mode : 4 Mode : 5
  • 13. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 49 | Page Mode : 6 C. Transient TABLE15: Transient Analysis Settings Object Name Analysis Settings State Fully Defined Step Controls Number Of Steps 1. Current Step Number 1. Step End Time 1. s Auto Time Stepping Off Define By Substeps Number Of Substeps 1000. Time Integration On TABLE16: Transient - Accelerations Object Name Acceleration State Fully Defined Scope Geometry All Bodies Definition Define By Components Coordinate System Global Coordinate System X Component Tabular Data Y Component Tabular Data Z Component Tabular Data Suppressed No
  • 14. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 50 | Page FIGURE3: Transient (J5)- Acceleration Solution TABLE17: Transient Solution -Results Object Name Total Deformation Equivalent Stress State Solved Scope Scoping Method Geometry Selection Geometry All Bodies Definition Type Total Deformation Equivalent (von-Mises) Stress By Time Display Time Last Calculate Time History Yes Identifier Suppressed No Results Minimum 0. m 10343 Pa Maximum 1.3171e-002 m 1.4614e+009 Pa Minimum Occurs On c- runner-1 Maximum Occurs On shelter iso wing front-1@2721 130 8 TOP PLATE front- 2 shelter iso wing front-2@2721 130 8 TOP PLATE front- 2 Minimum Value Over Time Minimum 0. m 0. Pa Maximum 0. m 15771 Pa Maximum Value Over Time Minimum 0. m 0. Pa Maximum 2.3956e-002 m 4.7854e+009 Pa Information Time 1. s Load Step 1 Substep 1000 Iteration Number 1000 Integration Point Results
  • 15. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 51 | Page FIGURE4: Transient Solution- Total Deformation FIGURE5: Transient Solution -Equivalent Stress
  • 16. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 52 | Page Random Vibration TABLE18: Random Vibration- Loads Object Name PSD Acceleration State Fully Defined Scope Boundary Condition Fixed Support Definition Load Data Tabular Data Direction Y Axis Suppressed No FIGURE6: Random Vibration- PSD Acceleration TABLE19: Random Vibration -PSD Acceleration Frequency [Hz] Acceleration [(m/s²)²/Hz] 20. 2.e-002 50. 500. 1.e-003 Solution TABLE20: Random Vibration Solution -Results Object Name Directional Deformation Equivalent Stress State Solved Scope Scoping Method Geometry Selection Geometry All Bodies Definition Type Directional Deformation Equivalent Stress Orientation Y Axis Reference Relative to base motion Scale Factor 3 Sigma Probability 99.73 % Coordinate System Solution Coordinate System Suppressed No Results Minimum 0. m 157.34 Pa Maximum 1.9107e-004 m 2.8622e+007 Pa Minimum Occurs On c- runner-1 u bolt fixing assy- bigger-11@top plate-bigger-1 Maximum Occurs On shelter iso wing front-1@2721 130 8 TOP PLATE front-2 Assem3-1@2721 130 8 TOP PLATE-1 Minimum Value Over Time Minimum 0. m 157.34 Pa Maximum 0. m 157.34 Pa Maximum Value Over Time Minimum 1.9107e-004 m 2.8622e+007 Pa Maximum 1.9107e-004 m 2.8622e+007 Pa Information Time 0. s
  • 17. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 53 | Page Load Step 3 Substep 1 Iteration Number 1 Integration Point Results Display Option Averaged IV. Conclusion From the above results it is observed that the stress levels are within acceptable limits and only in transient bump analysis the stresses on the rear member are close to 1.5 factor of safety, which can be minimised by either increasing the thickness of the member or adding the gusset plate at the joining cross members. Hence the overall weight of the Flat levelling frame has come down from 660 Kg(conventional earlier design) to 450 Kg in the new modified design. Also there is a further scope to reduce the weight without compromising on the strength by selecting carbon fibre composite material. Environment sustainability of carbon composite material is much more superior to Mild steel. That is the carbon composite material shows more resistance to extreme and harsh weather conditions comprising freezing temperatures, hot humid conditions, and salty environment conditions.Validation of this environmental sustainability of carbon composite material can be done by conducting Thermal shock analysis tests and salt spray tests in labs . As the cost of this material is too high, this modification of replacing Mild Steel with Carbon composite material needs to be carried out only under special cases where there is less regard to the cost and much emphasis is placed on the weight reduction and strength enhancement. References [1]. N.V.Dhandapani, Dr. G Mohan Kumar, Dr K.K.Debnath, Static Analysis of Off-High Way Vehicle Chassis supporting Structure for the effect of various Stress distributions IJART, Vol.2 Issue 1, 2012, 1-8. [2]. Sairam Kotari, V.Gopinath,"Static and dynamic analysis on Tatra chassis" International Journal of Modern Engineering Research (IJMER), Vol.2, Issue.1, pp-086-094. [3]. Technical Manual specifications as per JSS 55555. [4]. Static and Modal analysis of chassis by using FEA -THE IJES by R. Rajappan. [5]. Stress and dynamic analysis of optimized Trailer chassis by M. Mahmood. [6]. Finite element analysis in mechanical design using ANSYS: --by WAEL Al-TABEY. [7]. K.W. Poh, P.H. Dayawansa, A.W. Dickerson, I.R. Thomas, Steel membrane floors for bodies of large rear- dump mining trucks, Finite Elements in Analysis and Design 32, (1999), 141-161. [8]. Mohd Husaini Bin Abd Wahab, "Stress Analysis of Truck Chassis", Project Report University Malaysia Pahang, 2009 [9]. Ansys Tutorial release -13 :Structural and Thermal analysis. [10]. H J Beermann, English translation by Guy Tidbury, The Analysis of Commercial Vehicle Structures, Verlag TUV Rheinland GmbH Koln-1989 [11]. T. Irvine, Integration of the Power Spectral Density Function, Vibrationdata.com Publications, 2000. [12]. RANDOM VIBRATION—AN OVERVIEW by Barry Controls, Hopkinton, MA [13]. Ibrahim, I.M., Crolla, D.A. and Barton, D.C., ―Effect of frame flexibility on the ride vibration of trucks‖, Engineering Failure Analysis, Vol. 58, pp.709-713, 1994.
  • 18. Random vibration and Transient Bump Analysis of Automotive Heavy Vehicle… DOI: 10.9790/1684-12463754 www.iosrjournals.org 54 | Page [14]. Karaoglu C. and Kuralay, ―Stress analysis of a truck chassis with riveted joints‖, International Journal of Engineering Education, Vol.38, pp.1115-1130, 2000. [15]. Keiner, Henning. ―Static Structural Analysis of a Winston Cup Chassis under a Torsion Load‖, Engineering Failure Analysis, Vol. 2, pp. 146-157, 1995. [16]. Kutay Yilmazcoban and Yaar Kahraman Tojsat, ―Tuuck chassis structural thickness optimization with the help of finite element technique‖, Journal of Science and Technology, Vol.1, No.3, 2011. [17]. Patel Vijay Kumar, Prof. R. I. Patel‘, ―Structural Analysis of Automotive Chassis Frame and Design Modification for Weight Reduction‖, International Journal of Engineering Research & Technology, Vol.1, pp. 1-6, 2012. [18]. Romulo Rossi Pinto Filho. ―Automotive frame optimization‖, Review of Mechanical Engineering, SAE Paper, Vol. 67, pp. 146- 156, 2003. [19]. Zehsaz M, Vakili Tahami . and Esmaeili, ― The effect of connection plat thickness on stress of truck chassis with riveted and welded joint under dynamic loads‖, Asian Journal of Applied Science, Vol. 2 No. 1, pp. 22-35, 2009.