Embed presentation
Downloaded 25 times
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 42
ESTIMATION OF SYMBOL TIMING AND CARRIER
FREQUENCY OFFSET USING SYNCHRONIZATION SCHEME
S.Selvabharathi1
and S.Nandhini2
1
Department of Electronics Communication Engineering, Nandha Engineering College,
Erode, Tamilnadu, India
2
Assistant Professor, Nandha Engineering College, Erode, Tamilnadu, India
ABSTRACT
OFDM/OQAM is preferred as multicarrier system which operates over a multipath channel. By using the
multipath channel the signal-to-noise ratio. In earlier, sub carriers are used to transmit the signals. Nowadays,
FFT and DFT are used for transmitting the signals based upon the bit values. AWGN is a channel used to
identify the noise produced at the output by adding the noise in the blind signal. By reducing subcarriers the
noise and timing are reduced. FFT bit value was increased which provides better performance. In the
multicarrier system, the error and noise was reduced by increasing the bit value.
KEYWORDS: OFDM, symbol timing, cyclic prefix, AWGN, signal-to-noise ratio, carrier frequency offset.
I. INTRODUCTION
The main objective of this project to estimate blind Symbol timing and carrier frequency offset
acceptable performances of system. In the last years, the interest for filter-bank multicarrier (FBMC)
systems is increased, [1] since they provide high spectral containment. Therefore, they have been
taken into account for high-data-rate transmissions over both wired and wireless frequency-selective
channels. One of the most famous multicarrier modulation techniques is orthogonal frequency
division multiplexing (OFDM), other known types of FBMC systems are filtered multi one systems
and OFDM based on offset QAM modulation (OQAM).
The FBMC approach complements the FFT with a set of digital filters called polyphase network
(PPN) while the OFDM approach inserts the cyclic prefix (CP) after the FFT. Unlike OFDM,
OFDM/OQAM systems do not require the presence of a CP in order to combat the effects of
frequency selective channels. The absence of the CP implies on the one hand the maximum spectral
efficiency and, on the other hand, an increased computational complexity. However, [2] since the sub
channel filters are obtained by complex modulation of a single filter; efficient polyphase
implementation is often considered.
Fundamental differences between OFDM and OFDM/OQAM systems concern the adoption (in the
OFDM/OQAM case) of pulse shaping filters very well localized in time and frequency and memory
effects between useful symbols and transmitted signal due to the PPN. OFDM/OQAM systems, as all
multicarrier systems, are more sensitive to synchronization errors than single-carrier systems. For this
reason, it is very important to derive efficient synchronization schemes. In the last years several
studies have been focused on [6] blind and data-aided carrier frequency offset (CFO) and symbol
timing (ST) synchronization for OFDM/OQAM systems.
New proposals aim at simplifying the structure of the preamble in order to be able to use it for
synchronization and visualization purposes. In synchronization scheme for preamble-based ST and
CFO estimation with robust acquisition properties in dispersive channels has been developed [4]. In a
new preamble structure has been proposed with useful properties that simplify the use of a one-tap
equalizer. The characteristics of the preamble derive from the need to simplify the procedures for
channel estimation.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/75/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-1-2048.jpg)
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 43
The resulting synchronization algorithms become dependent on the particular preamble, whose
utilization is obviously conditioned by the availability of a proper synchronization method. Therefore,
[3] a general contribution to the development of synchronization algorithms requires the capability to
operate without any specific knowledge about the structure of the preamble. This not only represents a
preamble-independent contribution to the synchronization task, which allows a standard definition of
the preamble structure unconstrained by the requirements of the synchronization algorithms, but also
paves the way to an increase of the spectral efficiency to be achieved by avoiding the preamble. The
blind estimation algorithm proposed in is based on the exploitation of the second-order
cyclostationarity of the transmitted OFDM/OQAM signal; the convergence of such a method is
particularly slow (too many symbol periods have to be processed) so that it is not useful in practice,
unless severe signal-to-noise ratios are considered.
It is limited to the case where CFO is present but it is not dedicated to the joint CFO and timing offset
estimation, [5] considers the case where both the offsets are jointly estimated by exploiting the
cyclostationarity properties. In an algorithm for blind CFO estimation is also proposed according to an
approximate (for a large number of subcarriers) maximum-likelihood approach and it is shown its
superior performance in comparison with the cyclostationarity-based methods. A maximum likelihood
method for blind CFO estimation suited for scenarios of low signal-to-noise ratio is proposed. The
weak point of both proposed methods lies in their computational complexity. In this paper, we analyze
the conjugate-symmetry property that approximately holds in the beginning of a burst of
OFDM/OQAM symbols. Using such an approximate property, a blind method for joint ST and CFO
estimation is proposed.
The proposed method is derived with reference to an AWGN channel, it is analyzed by computer
simulation with reference to standard multipath channels, and the numerical results show that the
proposed method can represent a useful contribution to the blind timing synchronization when the
OFDM/OQAM system operates over a multipath channel. The same analysis shows that the proposed
method provides a useful contribution to the coarse CFO compensation only for adequate signal-to-
noise ratios. [8] Preliminary results about the analysis of the approximate conjugate-symmetry-
property in the beginning of a burst of OFDM/OQAM symbols and its exploitation for ST and CFO
estimation are reported in organized. The OFDM/OQAM system model is delineated. The conjugate
symmetry property (CSP) and the methods to detect it are recalled. It is derived the proposed blind ST
estimator exploiting the approximate CSP.
II. ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
Orthogonal frequency-division multiplexing is a method of encoding digital data on multiple carrier
frequencies.[7] OFDM has developed into a popular scheme for wideband digital communication,
whether wireless or over copper wires, used in applications such as digital television and audio
broadcasting, DSL broadband internet access, wireless networks, and 4G mobile communications.
OFDM is essentially identical to coded OFDM (COFDM) and discrete multi-tone modulation, and is
a frequency-division multiplexing scheme used as a digital multi-carrier modulation method.
2.1. Basic Architecture of OFDM System
OFDM system block architecture can be divided into 3 main sections, shown in Figure 1, namely the
transmitter, the channel and the receiver. The model used in this thesis is tested without the using the
Forward Error Correction coding (Denoted in double-line box). The primary advantage of OFDM
over single-carrier schemes is its ability to cope with severe channel conditions (for
example, attenuation of high frequencies in a long copper wire, narrow band interference and
frequency-selective fading due to multipath) without complex equalization filters.
Channel equalization is simplified because OFDM may be viewed as using many slowly
modulated narrowband signals rather than one rapidly modulated wideband signal.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-2-320.jpg)


![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 46
produces simple and tractable mathematical models which are useful for gaining insight into the
underlying behaviour of a system before these other phenomena are considered. Wideband Gaussian
noise comes from many natural sources, such as the thermal vibrations of atoms in conductors
(referred to as thermal noise or Johnson-Nyquist noise), shot noise, black body radiation from the
earth and other warm objects, and from celestial sources.
nw(t)
m s(t) r(t)=nw(t)+s(t)
{P[mi]} {si[t]}
{mi}
Figure 3. Additive White Gaussian Noise
The AWGN channel is a good model for many satellite and deep space communication links. It is not
a good model for most terrestrial links because of multipath, terrain blocking, interference, etc.
However, for terrestrial path modeling, AWGN is commonly used to simulate background noise of
the channel under study, in addition to multipath, terrain blocking, interference, ground clutter and
self interference that modern radio systems encounter in terrestrial operation.
3.1. Filter Bank Multicarrier (FBMC)
Filter bank Multicarrier in the system, the efficiency of present OFDM based solutions can be
increased while conserving high degree of compatibility with the existing equipment. Filter bank
Multicarrier Technology avoids spectral waste and provided better frequency localization by
introducing an efficient pulse shaping in the modulation scheme, avoiding distortion from non-
synchronous signals in adjacent bands. In order to enable the use of accurately nonrectangular pulse-
shaping, the different subcarriers need to be modulated using staggered offset QAM modulation. The
application of this modulation presents an additional advantage. The filter bank multicarrier is less
sensitivity to frequency offsets. Filter bank Multicarrier Technology increases the data rate since it
does not use any cyclic prefix to combat channel effects. Filter bank Multicarrier Technology is a
strong candidate envisioned for high speed PLC due to its high spectral efficiency in terms of bps/Hz,
frequency properties, which fits the stringent frequency masks imposed for PLC links and high level
of compatibility with the OFDM based physical layer defined in the standard.
3.2. ITU Channel
The International Telecommunication Union (ITU) is an agency of the United Nations (UN) whose
purpose is to coordinate telecommunication operations and services throughout the world. Originally
founded in 1865, as the International Telegraph Union, the ITU is the oldest existing international
organization. ITU headquarters are in Geneva, Switzerland.
The ITU consists of three sectors:
Radio communication (ITU-R) -- ensures optimal, fair and rational use of the radio
frequency (RF) spectrum.
Telecommunication Standardization ( ITU-T ) - formulates recommendations for standardizing
telecommunication operations worldwide.
Telecommunication Development (ITU-D) -- assists countries in developing and maintaining
internal communication operations.
The ITU sets and publishes regulations and standards relevant to electronic communication and
broadcasting technologies of all kinds including radio, television, satellite, telephone and the Internet.
The organization conducts working parties, study groups and meetings to address current and future
issues and to resolve disputes. The ITU organizes and holds an exhibition and forum known as the
Global TELECOM every four years. Another important aspect of the ITU's mandate is helping
emerging countries to establish and develop telecommunication systems of their own. Although the
Transmitter Receiver](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-5-320.jpg)

![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 48
the beginning makes the linear convolution of the channel appear as though it were circular
convolution and thus, preserve this property in the part of the symbol after the cyclic prefix.
Cyclic Prefixes are used in OFDM in order to combat multipath by making channel estimation easy.
As an example, consider an OFDM system which has subcarriers. The message symbol can be
written as:
d = [d0,d1,…dN-1]
The OFDM symbol is constructed by taking the inverse discrete Fourier transform (IDFT) of the
message symbol, followed by a cyclic prefixing. Let the symbol obtained by the IDFT be denoted by
X=[x[0],x[1],…x[N-1]]T
Prefixing it with a cyclic prefix of length, L-1 the OFDM symbol obtained
X = [x[]N-L+1],.x[N-2],x[N-1],x[0],x[1],…x[N-1]]T
Assume that the channel is represented using
h = [h0,h1,….hL-1]T
So, taking the Discrete Fourier Transform, we get
y[k] = H[k] . X[k]
Where X[k] is the discrete Fourier transform of X. Thus, a multipath channel is converted into scalar
parallel sub-channels in frequency domain, thereby simplifying the receiver design considerably. The
task of channel estimation is simplified, as we just need to estimate the scalar coefficients H[k] for
each sub-channel and once the values of are estimated, for the duration in which the channel does not
vary significantly, merely multiplying the received demodulated symbols by the inverse of yields the
estimates of and hence, the estimate of actual symbols.
4.3. Inverse Fast Fourier Transform
The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided
the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case
of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial
with simple zeros on the unit circle, then this method can be extended.
4.4. Symbol Timing
The symbol timing (also known as baud or modulation rate) is the number of symbol changes
(waveform changes or signaling events) made to the transmission medium per second using a
digitally modulated signal or a line code. The Symbol rate is measured in baud rate or
symbols/second. In the case of a line code, the symbol rate is the pulse rate in pulses/second. Each
symbol can represent or convey one or several bits of data. The symbol rate is related to, but should
not be confused with, the gross bit rate expressed in bit/second.
A symbol can be described as either a pulse (in digital baseband transmission) or a "tone" (in pass
band transmission using modems) representing an integer number of bits. A theoretical definition of a
symbol is a waveform, a state or a significant condition of the communication channel that persists for
a fixed period of time. A sending device places symbols on the channel at a fixed and known symbol
rate, and the receiving device has the job of detecting the sequence of symbols in order to reconstruct
the transmitted data. There may be a direct correspondence between a symbol and a small unit
of data (for example, each a symbol may encode one or several binary digits or 'bits') or the data may
be represented by the transitions between symbols or even by a sequence of many symbols.
The symbol duration time, also known as unit interval, can be directly measured as the time between
transitions by looking into an eye diagram of an oscilloscope. The symbol duration time Ts can be
calculated as:
Ts = 1/fs
Where, fs is the symbol rate.
V. OUTPUT OF PROPOSED METHOD
The output of OQAM modulation is shown in Figure 5.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-7-320.jpg)
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 49
Figure 5. Output of OQAM
The output for estimating CFO in OQAM modulation in AWGN channel is shown in Figure 6.
Figure 6. Output of estimating CFO
VI. CONCLUSIONS
The problem of blind synchronization for OFDM/OQAM systems has been considered. Specifically, a
new method for blind ST and CFO synchronization has been proposed by exploiting the approximate
CSP of the beginning of a burst of OFDM/OQAM symbols due to the presence of the time offset. The
results of the performance analysis with reference to the considered OFDM/OQAM system show that
the proposed blind ST and CFO estimators, complemented by a simpler coarse ST estimator, achieve
acceptable performance for realistic values of Eb/N0.
REFERENCES
[1]. Bellanger. M, “Efficiency of filter bank multicarrier techniques in burst radio transmission,” in Proc.
IEEE Global Commun..conf., pp.1-4
[2]. Cherubini. G, Eleftheriou. E, Oker. S, and Cioffi. J, (2000) “Filter bank modulation techniques for very
high speed digital subscriber lines,”IEEECommun. Mag…vol.38, pp. 98-104.
[3]. Ciblat. P and Serpedin. E, (2004) “A fine blind frequency offset estimator for OFDM/OQAM
systems,” IEEE Trans. Signal Process..vol.52, pp.291-296.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-8-320.jpg)
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 50
[4]. DavideMattera and Mario Tanda“Blind Symbol Timing and CFO Estimation for OFDM/OQAM
Systems”IEEE transactions on wireless communications,.
[5]. Fusco. T and Tanda. M, (2007) “Blind frequency-offset estimation for OFDM/OQAM systems,” IEEE
Trans. Signal Process..vol.55, pp.1828-1838.
[6]. Fusco. T, Petrella. A, and Tanda. M, (2009) “Data-aided symbol timing and CFO synchronization for
filter-bank multicarrier systems,”IEEETrans.WirelessCommun..vol.8, pp.2705-2715.
[7]. Le Floch. B, Alard. M, and Berrou. C, “Coded orthogonal frequency division multiplex,” Proc.
IEEEvol. 83, pp. 982–996.
[8]. Mattera. D and Tanda.M, “A new method for blind synchronization for OFDM/OQAM systems,” in
Proc.,International Symp.Image Signal Process,. Analysis.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-9-320.jpg)

This document discusses the estimation of symbol timing and carrier frequency offset in OFDM/OQAM multicarrier systems using synchronization schemes. It emphasizes the importance of blind estimation techniques and presents a blind method that exploits the conjugate-symmetry property for effective synchronization over multipath channels. The paper also evaluates the advantages of using FBMC technology for improved spectral efficiency and reduced sensitivity to frequency offsets.
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 42
ESTIMATION OF SYMBOL TIMING AND CARRIER
FREQUENCY OFFSET USING SYNCHRONIZATION SCHEME
S.Selvabharathi1
and S.Nandhini2
1
Department of Electronics Communication Engineering, Nandha Engineering College,
Erode, Tamilnadu, India
2
Assistant Professor, Nandha Engineering College, Erode, Tamilnadu, India
ABSTRACT
OFDM/OQAM is preferred as multicarrier system which operates over a multipath channel. By using the
multipath channel the signal-to-noise ratio. In earlier, sub carriers are used to transmit the signals. Nowadays,
FFT and DFT are used for transmitting the signals based upon the bit values. AWGN is a channel used to
identify the noise produced at the output by adding the noise in the blind signal. By reducing subcarriers the
noise and timing are reduced. FFT bit value was increased which provides better performance. In the
multicarrier system, the error and noise was reduced by increasing the bit value.
KEYWORDS: OFDM, symbol timing, cyclic prefix, AWGN, signal-to-noise ratio, carrier frequency offset.
I. INTRODUCTION
The main objective of this project to estimate blind Symbol timing and carrier frequency offset
acceptable performances of system. In the last years, the interest for filter-bank multicarrier (FBMC)
systems is increased, [1] since they provide high spectral containment. Therefore, they have been
taken into account for high-data-rate transmissions over both wired and wireless frequency-selective
channels. One of the most famous multicarrier modulation techniques is orthogonal frequency
division multiplexing (OFDM), other known types of FBMC systems are filtered multi one systems
and OFDM based on offset QAM modulation (OQAM).
The FBMC approach complements the FFT with a set of digital filters called polyphase network
(PPN) while the OFDM approach inserts the cyclic prefix (CP) after the FFT. Unlike OFDM,
OFDM/OQAM systems do not require the presence of a CP in order to combat the effects of
frequency selective channels. The absence of the CP implies on the one hand the maximum spectral
efficiency and, on the other hand, an increased computational complexity. However, [2] since the sub
channel filters are obtained by complex modulation of a single filter; efficient polyphase
implementation is often considered.
Fundamental differences between OFDM and OFDM/OQAM systems concern the adoption (in the
OFDM/OQAM case) of pulse shaping filters very well localized in time and frequency and memory
effects between useful symbols and transmitted signal due to the PPN. OFDM/OQAM systems, as all
multicarrier systems, are more sensitive to synchronization errors than single-carrier systems. For this
reason, it is very important to derive efficient synchronization schemes. In the last years several
studies have been focused on [6] blind and data-aided carrier frequency offset (CFO) and symbol
timing (ST) synchronization for OFDM/OQAM systems.
New proposals aim at simplifying the structure of the preamble in order to be able to use it for
synchronization and visualization purposes. In synchronization scheme for preamble-based ST and
CFO estimation with robust acquisition properties in dispersive channels has been developed [4]. In a
new preamble structure has been proposed with useful properties that simplify the use of a one-tap
equalizer. The characteristics of the preamble derive from the need to simplify the procedures for
channel estimation.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/75/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-1-2048.jpg)
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 43
The resulting synchronization algorithms become dependent on the particular preamble, whose
utilization is obviously conditioned by the availability of a proper synchronization method. Therefore,
[3] a general contribution to the development of synchronization algorithms requires the capability to
operate without any specific knowledge about the structure of the preamble. This not only represents a
preamble-independent contribution to the synchronization task, which allows a standard definition of
the preamble structure unconstrained by the requirements of the synchronization algorithms, but also
paves the way to an increase of the spectral efficiency to be achieved by avoiding the preamble. The
blind estimation algorithm proposed in is based on the exploitation of the second-order
cyclostationarity of the transmitted OFDM/OQAM signal; the convergence of such a method is
particularly slow (too many symbol periods have to be processed) so that it is not useful in practice,
unless severe signal-to-noise ratios are considered.
It is limited to the case where CFO is present but it is not dedicated to the joint CFO and timing offset
estimation, [5] considers the case where both the offsets are jointly estimated by exploiting the
cyclostationarity properties. In an algorithm for blind CFO estimation is also proposed according to an
approximate (for a large number of subcarriers) maximum-likelihood approach and it is shown its
superior performance in comparison with the cyclostationarity-based methods. A maximum likelihood
method for blind CFO estimation suited for scenarios of low signal-to-noise ratio is proposed. The
weak point of both proposed methods lies in their computational complexity. In this paper, we analyze
the conjugate-symmetry property that approximately holds in the beginning of a burst of
OFDM/OQAM symbols. Using such an approximate property, a blind method for joint ST and CFO
estimation is proposed.
The proposed method is derived with reference to an AWGN channel, it is analyzed by computer
simulation with reference to standard multipath channels, and the numerical results show that the
proposed method can represent a useful contribution to the blind timing synchronization when the
OFDM/OQAM system operates over a multipath channel. The same analysis shows that the proposed
method provides a useful contribution to the coarse CFO compensation only for adequate signal-to-
noise ratios. [8] Preliminary results about the analysis of the approximate conjugate-symmetry-
property in the beginning of a burst of OFDM/OQAM symbols and its exploitation for ST and CFO
estimation are reported in organized. The OFDM/OQAM system model is delineated. The conjugate
symmetry property (CSP) and the methods to detect it are recalled. It is derived the proposed blind ST
estimator exploiting the approximate CSP.
II. ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
Orthogonal frequency-division multiplexing is a method of encoding digital data on multiple carrier
frequencies.[7] OFDM has developed into a popular scheme for wideband digital communication,
whether wireless or over copper wires, used in applications such as digital television and audio
broadcasting, DSL broadband internet access, wireless networks, and 4G mobile communications.
OFDM is essentially identical to coded OFDM (COFDM) and discrete multi-tone modulation, and is
a frequency-division multiplexing scheme used as a digital multi-carrier modulation method.
2.1. Basic Architecture of OFDM System
OFDM system block architecture can be divided into 3 main sections, shown in Figure 1, namely the
transmitter, the channel and the receiver. The model used in this thesis is tested without the using the
Forward Error Correction coding (Denoted in double-line box). The primary advantage of OFDM
over single-carrier schemes is its ability to cope with severe channel conditions (for
example, attenuation of high frequencies in a long copper wire, narrow band interference and
frequency-selective fading due to multipath) without complex equalization filters.
Channel equalization is simplified because OFDM may be viewed as using many slowly
modulated narrowband signals rather than one rapidly modulated wideband signal.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-2-320.jpg)


![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 46
produces simple and tractable mathematical models which are useful for gaining insight into the
underlying behaviour of a system before these other phenomena are considered. Wideband Gaussian
noise comes from many natural sources, such as the thermal vibrations of atoms in conductors
(referred to as thermal noise or Johnson-Nyquist noise), shot noise, black body radiation from the
earth and other warm objects, and from celestial sources.
nw(t)
m s(t) r(t)=nw(t)+s(t)
{P[mi]} {si[t]}
{mi}
Figure 3. Additive White Gaussian Noise
The AWGN channel is a good model for many satellite and deep space communication links. It is not
a good model for most terrestrial links because of multipath, terrain blocking, interference, etc.
However, for terrestrial path modeling, AWGN is commonly used to simulate background noise of
the channel under study, in addition to multipath, terrain blocking, interference, ground clutter and
self interference that modern radio systems encounter in terrestrial operation.
3.1. Filter Bank Multicarrier (FBMC)
Filter bank Multicarrier in the system, the efficiency of present OFDM based solutions can be
increased while conserving high degree of compatibility with the existing equipment. Filter bank
Multicarrier Technology avoids spectral waste and provided better frequency localization by
introducing an efficient pulse shaping in the modulation scheme, avoiding distortion from non-
synchronous signals in adjacent bands. In order to enable the use of accurately nonrectangular pulse-
shaping, the different subcarriers need to be modulated using staggered offset QAM modulation. The
application of this modulation presents an additional advantage. The filter bank multicarrier is less
sensitivity to frequency offsets. Filter bank Multicarrier Technology increases the data rate since it
does not use any cyclic prefix to combat channel effects. Filter bank Multicarrier Technology is a
strong candidate envisioned for high speed PLC due to its high spectral efficiency in terms of bps/Hz,
frequency properties, which fits the stringent frequency masks imposed for PLC links and high level
of compatibility with the OFDM based physical layer defined in the standard.
3.2. ITU Channel
The International Telecommunication Union (ITU) is an agency of the United Nations (UN) whose
purpose is to coordinate telecommunication operations and services throughout the world. Originally
founded in 1865, as the International Telegraph Union, the ITU is the oldest existing international
organization. ITU headquarters are in Geneva, Switzerland.
The ITU consists of three sectors:
Radio communication (ITU-R) -- ensures optimal, fair and rational use of the radio
frequency (RF) spectrum.
Telecommunication Standardization ( ITU-T ) - formulates recommendations for standardizing
telecommunication operations worldwide.
Telecommunication Development (ITU-D) -- assists countries in developing and maintaining
internal communication operations.
The ITU sets and publishes regulations and standards relevant to electronic communication and
broadcasting technologies of all kinds including radio, television, satellite, telephone and the Internet.
The organization conducts working parties, study groups and meetings to address current and future
issues and to resolve disputes. The ITU organizes and holds an exhibition and forum known as the
Global TELECOM every four years. Another important aspect of the ITU's mandate is helping
emerging countries to establish and develop telecommunication systems of their own. Although the
Transmitter Receiver](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-5-320.jpg)

![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 48
the beginning makes the linear convolution of the channel appear as though it were circular
convolution and thus, preserve this property in the part of the symbol after the cyclic prefix.
Cyclic Prefixes are used in OFDM in order to combat multipath by making channel estimation easy.
As an example, consider an OFDM system which has subcarriers. The message symbol can be
written as:
d = [d0,d1,…dN-1]
The OFDM symbol is constructed by taking the inverse discrete Fourier transform (IDFT) of the
message symbol, followed by a cyclic prefixing. Let the symbol obtained by the IDFT be denoted by
X=[x[0],x[1],…x[N-1]]T
Prefixing it with a cyclic prefix of length, L-1 the OFDM symbol obtained
X = [x[]N-L+1],.x[N-2],x[N-1],x[0],x[1],…x[N-1]]T
Assume that the channel is represented using
h = [h0,h1,….hL-1]T
So, taking the Discrete Fourier Transform, we get
y[k] = H[k] . X[k]
Where X[k] is the discrete Fourier transform of X. Thus, a multipath channel is converted into scalar
parallel sub-channels in frequency domain, thereby simplifying the receiver design considerably. The
task of channel estimation is simplified, as we just need to estimate the scalar coefficients H[k] for
each sub-channel and once the values of are estimated, for the duration in which the channel does not
vary significantly, merely multiplying the received demodulated symbols by the inverse of yields the
estimates of and hence, the estimate of actual symbols.
4.3. Inverse Fast Fourier Transform
The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided
the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case
of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial
with simple zeros on the unit circle, then this method can be extended.
4.4. Symbol Timing
The symbol timing (also known as baud or modulation rate) is the number of symbol changes
(waveform changes or signaling events) made to the transmission medium per second using a
digitally modulated signal or a line code. The Symbol rate is measured in baud rate or
symbols/second. In the case of a line code, the symbol rate is the pulse rate in pulses/second. Each
symbol can represent or convey one or several bits of data. The symbol rate is related to, but should
not be confused with, the gross bit rate expressed in bit/second.
A symbol can be described as either a pulse (in digital baseband transmission) or a "tone" (in pass
band transmission using modems) representing an integer number of bits. A theoretical definition of a
symbol is a waveform, a state or a significant condition of the communication channel that persists for
a fixed period of time. A sending device places symbols on the channel at a fixed and known symbol
rate, and the receiving device has the job of detecting the sequence of symbols in order to reconstruct
the transmitted data. There may be a direct correspondence between a symbol and a small unit
of data (for example, each a symbol may encode one or several binary digits or 'bits') or the data may
be represented by the transitions between symbols or even by a sequence of many symbols.
The symbol duration time, also known as unit interval, can be directly measured as the time between
transitions by looking into an eye diagram of an oscilloscope. The symbol duration time Ts can be
calculated as:
Ts = 1/fs
Where, fs is the symbol rate.
V. OUTPUT OF PROPOSED METHOD
The output of OQAM modulation is shown in Figure 5.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-7-320.jpg)
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 49
Figure 5. Output of OQAM
The output for estimating CFO in OQAM modulation in AWGN channel is shown in Figure 6.
Figure 6. Output of estimating CFO
VI. CONCLUSIONS
The problem of blind synchronization for OFDM/OQAM systems has been considered. Specifically, a
new method for blind ST and CFO synchronization has been proposed by exploiting the approximate
CSP of the beginning of a burst of OFDM/OQAM symbols due to the presence of the time offset. The
results of the performance analysis with reference to the considered OFDM/OQAM system show that
the proposed blind ST and CFO estimators, complemented by a simpler coarse ST estimator, achieve
acceptable performance for realistic values of Eb/N0.
REFERENCES
[1]. Bellanger. M, “Efficiency of filter bank multicarrier techniques in burst radio transmission,” in Proc.
IEEE Global Commun..conf., pp.1-4
[2]. Cherubini. G, Eleftheriou. E, Oker. S, and Cioffi. J, (2000) “Filter bank modulation techniques for very
high speed digital subscriber lines,”IEEECommun. Mag…vol.38, pp. 98-104.
[3]. Ciblat. P and Serpedin. E, (2004) “A fine blind frequency offset estimator for OFDM/OQAM
systems,” IEEE Trans. Signal Process..vol.52, pp.291-296.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-8-320.jpg)
![International Journal of Scientific Research and Management Studies (IJSRMS)
Volume 1 Issue 1, pg: 42-50
http://www.ijsrms.com All Rights Reserved pg. 50
[4]. DavideMattera and Mario Tanda“Blind Symbol Timing and CFO Estimation for OFDM/OQAM
Systems”IEEE transactions on wireless communications,.
[5]. Fusco. T and Tanda. M, (2007) “Blind frequency-offset estimation for OFDM/OQAM systems,” IEEE
Trans. Signal Process..vol.55, pp.1828-1838.
[6]. Fusco. T, Petrella. A, and Tanda. M, (2009) “Data-aided symbol timing and CFO synchronization for
filter-bank multicarrier systems,”IEEETrans.WirelessCommun..vol.8, pp.2705-2715.
[7]. Le Floch. B, Alard. M, and Berrou. C, “Coded orthogonal frequency division multiplex,” Proc.
IEEEvol. 83, pp. 982–996.
[8]. Mattera. D and Tanda.M, “A new method for blind synchronization for OFDM/OQAM systems,” in
Proc.,International Symp.Image Signal Process,. Analysis.](https://image.slidesharecdn.com/7n1-ijsrms0101505v1is142-50-140506114444-phpapp02/85/ESTIMATION-OF-SYMBOL-TIMING-AND-CARRIER-FREQUENCY-OFFSET-USING-SYNCHRONIZATION-SCHEME-9-320.jpg)