SlideShare a Scribd company logo
ESCC 2016
Vehicle Routing Problem
Dr. Georgios K.D. Saharidis
1
With the contribution of the LIFE programme of the European Union - LIFE14
ENV/GR/000611
Presentation structure
 General description of the multi-modal journey planning(MMJP)
problem
 Characteristics of MMJP and previous work
 The proposed solution approach
 The mathematical programming model that our team has developed
 Future work
2
The multi-modal journey planning
problem & similar problems
The journey planning problem: The computation of an optimal, feasible and personalized
journey from a starting point A to an ending point B, where A and B are nodes of a transportation
network.
Similar problems:
• Shortest path problem
• Earliest arrival problem
• Range problem
• Multi-criteria JP problem (environmental cost, CO2
emissions, financial cost, travel time, arrival time,
comfort of travel)
3
The multi-modal journey planning problem: Mostly in public transportation
networks, the multi-modal journey planning problem (MMJP) seeks for journeys
combining schedule-based transportation (buses, trains) with unrestricted
modes (walking, driving).
Characteristics of the MMJP problem
Characteristics:
• Increasing popularity due to strong practical interest &
increasing availability of data.
• General Transit Feed Specification(GTFS), which defines
the file formats. (series of text file describing different
aspects of the data) It is supported by Google and TriMet
since 2005.
• Many open source initiatives that help us deal with the
MMJP problem.
4
Previous work
Extensive work has been conducted for route planning in static networks:
 Solved using shortest path algorithms : A*, Dijkstra’s, Hierarchical techniques
 Most of the approaches are based on heavy precomputation of paths
Modern MMJP applications need to use data from public transport, which are
schedule based and dynamic networks(traffic) and calculate paths for different
criteria.
5
Problems that occur with time-expanded graphs:
- Need to do the vast precomputations
that they are based on frequently
- Need to do precomputations for each
mode of transport and each criteria and then
get to combine them
Proposed method
 We propose a hybrid approach where we get to combine mathematical
programming with some heuristic methods in order to achieve the desired
results both in terms of “paths” generated by the algorithm and speed of
calculations.
 We get to combine a mixed integer-linear program with Dijkstra’s algorithm
and graph partitioning(for unrestricted modes e.g. walking) and graph
selection techniques.
 Dijkstra’s algorithm calculated the parts of the solution that are needed to be
fast and are not characterized by big margins between the optimal and the
heuristically calculated solution.
 MILP program is used to solve the MMJP problem.
6
Proposed method
7
The user inserts the starting and
ending points as well as the
departure time of his journey
Dikjstra's algorithm is applied to find the closest public
network node S (stop or station) to the starting point and
the closest node T to the ending point2, creates a list of 3
points for S and T
The mathematical model is built and solved in order to
compute the optimal journey for all combinations of S
and T
The optimal journey
minimizing both travel time
and environmental cost is
delivered to the user
Selects sub-network according of stations ( ID & OSM)
The mathematical model
8 8
We use those indices to refer to make references
between the different variables of the mathematical
formulation:
i Network’s stations
j Network’s stations
h Network’s stations
k Mode of transport
n Different itineraries
Multi-dimensional constants of the formulation used
to represent the data
Ci,j,k Cost of transportation from i station to j station
using mode k
ΤΤi,j,k Travel time of the transportation from i station to j
station using mode k
ΤoDi,j,k,n Time of departure of the transportation from i
station to j station using mode k and itinerary n
Nomenclature of the single-dimension
constants
N Number of stations considered by the
model
M Number of modes of transport
considered
L Number of different sets of itineraries
S Starting station S (user input)
T Ending station T (user input)
a Weight coefficient for cost
b Weight coefficient for time
DT User’s departure time
AT User’s maximum arrival time
WT1 Walking time 1 from starting point to
entrance point in the network
WT2 Walking time 2 from exit of the
network to the final destination
The mathematical model
9
9
Decision variables
Xi,j,k,n
Binary decision variable, takes values 0 or 1, 1 when the transfer from station i
to station j occurs , with mode k and itinerary n
Si,j,k,n
Positive integer decision variable, and is equal to the departure time of the
transfer from i to j with k and n when it occurs
minimize
The objective function
XTTC nkjikji
N
i
N
j
M
k
L
n
kji
ba ,,,,,
1 1 1 1
,,
*)**(    
The mathematical model
10
10
Constraint Meaning
We always need to
start from starting
point S
We always need to go
to the last station
Transportation from one to
another with any mode and
any itinerary can happen only
once
1
1 1 1
,,,
  
N
j
M
k
L
n
nkjSX
1
1 1 1
,,,
  
N
i
M
k
L
n
nkTiX
Constraint Meaning
There’s no need to visit
S again, that is we make
this decision
unavailable.
We never need to leave
the final station T, so we
make transfers from T
unavailable.
0
1 1 1
,,,
  
N
i
M
k
L
n
nkSiX
0
1 1 1
,,,
  
N
j
M
k
L
n
nkjTX
Tii
N
j
M
k
L
n
nkjiX   
,,1
1 1 1
,,,
Constraint Meaning
When you visit a station you need to leave it too.
This constraint does not apply to the starting and
the ending station.
TShh
N
j
M
k
L
n
nkjh
N
i
M
k
L
n
nkhi XX ,,,0
1 1 1
,,,
1 1 1
,,,
      
The mathematical model
11
11
Constraint Meaning
When the transfer from i to j with k and n occurs then S
variable needs to be equal to the corresponding ToD
We make sure that if ToD is 0, which means that there is
no available itinerary, transfer X can’t happen
This constraint makes sure that there is time continuation
in the problem. By using it we make sure that when you
make a transfer in time from i to h with k and n, the next
transfer from station h to j happens after the travelling
time from i to h and h to j.
By inserting this constraint into our mode we make sure
that the departure time at the first node happens first in
chronological order from the rest that are about to be
calculated next
nkjiM
M
X
ToDSX
nkji
nkjinkjinkji
,,,),1(*
)1(*
,,,
,,,,,,,,,


nkjiToDX nkjinkji
,,,,,,,,,

TShh
N
j
M
k
L
n
nkjh
N
i
M
k
L
n
nkhikhi
N
i
M
k
L
n
nkhi
S
XTTS
,,
)*(
1 1 1
,,,
1 1 1
,,,,,
1 1 1
,,,




  
    
SiM
N
j
M
k
L
n
nkji
N
j
M
k
L
n
nkji
N
j
M
k
L
n
nkjS
X
SS




  
    
,*)1(
1 1 1
,,,
1 1 1
,,,
1 1 1
,,,
The mathematical model
12
Constraint Meaning
If there is no transfer between station i and station j with mode
k and itinerary n then the corresponding variable S should be
zero, too.
The departure time from the semifinal station should be the
biggest in a chronological order
The departure time from starting station S should be bigger in a
chronological order than the departure time of the whole trip
plus the walking time WT1.
Corresponding constraint for the last station the arrival time
there, which equals departure time plus travelling time. We
need the Arrival time at the destination to be bigger in
chronological order than the walking time plus the arrival time
at the last station.
nkjiM XS nkjinkji
,,,* ,,,,,,

Tj
N
i
M
k
L
n
nkji
N
i
M
k
L
n
nkTi SS       
,0
1 1 1
,,,
1 1 1
,,,
DTWT
N
j
M
k
L
n
nkjSS   
1
1 1 1
,,,
ATWT
N
i
M
k
L
n
nkTikTi
N
i
M
k
L
n
nkTi XTTS

      
2
)*(
1 1 1
,,,,,
1 1 1
,,,
Advantages & Future work
Advantages
 Minimal pre-processing time
Disadvantages
 Higher query times (for now of course)
Future work
 Research is still ongoing for the improvement of our algorithm. The mathematical
formulation is still under modification and there will changes in the algorithm.
 Replace high dimensional variables with variables of fewer dimensions
 Reduce the number of constraints
 Integrate decomposition techniques for the mathematical model
 Create a wrapper application that will serve as an API to the algorithm and will allow its use
on online applications
13
Thank you for
your attention!
Any questions?
Learn more at:
http://www.greenyourmove.org/ #

More Related Content

What's hot

Traffic flow model
Traffic flow modelTraffic flow model
Traffic flow model
Harikesh Kumar
 
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
Hossam Shafiq I
 
L22 Queuing Theory
L22 Queuing TheoryL22 Queuing Theory
L22 Queuing Theory
Hossam Shafiq I
 
TimetablingForPassengers-2
TimetablingForPassengers-2TimetablingForPassengers-2
TimetablingForPassengers-2
Peter Sels
 
Traffic Concepts (Transportation Engineering)
Traffic Concepts (Transportation Engineering)Traffic Concepts (Transportation Engineering)
Traffic Concepts (Transportation Engineering)
Hossam Shafiq I
 
Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)
Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)
Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)
Hossam Shafiq I
 
Traffic stream models
Traffic stream models Traffic stream models
Traffic stream models
Faris Thyab
 
10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...
10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...
10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...
Hossam Shafiq I
 
12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...
12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...
12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...
Hossam Shafiq I
 
Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...
Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...
Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...
BRTCoE
 
13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...
13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...
13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...
Hossam Shafiq I
 
Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...
Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...
Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...
GreenYourMove
 
Presentation escc 2016
Presentation escc 2016Presentation escc 2016
Presentation escc 2016
LIFE GreenYourMove
 
A Dynamic Logistic Dispatching System With Set-Based Particle Swarm Optimization
A Dynamic Logistic Dispatching System With Set-Based Particle Swarm OptimizationA Dynamic Logistic Dispatching System With Set-Based Particle Swarm Optimization
A Dynamic Logistic Dispatching System With Set-Based Particle Swarm Optimization
Rajib Roy
 
Operation Research Technique in Transportation
Operation Research Technique in TransportationOperation Research Technique in Transportation
L2 Microscopic Traffic Flow Parameters
L2 Microscopic Traffic Flow ParametersL2 Microscopic Traffic Flow Parameters
L2 Microscopic Traffic Flow Parameters
Hossam Shafiq I
 
L20 Weaving Merging and Diverging Movements
L20 Weaving Merging and Diverging MovementsL20 Weaving Merging and Diverging Movements
L20 Weaving Merging and Diverging Movements
Hossam Shafiq I
 
Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)
Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)
Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)
Hossam Shafiq I
 
L16.1 Progression Network
L16.1 Progression NetworkL16.1 Progression Network
L16.1 Progression Network
Hossam Shafiq I
 
Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...
Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...
Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...
csandit
 

What's hot (20)

Traffic flow model
Traffic flow modelTraffic flow model
Traffic flow model
 
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-B...
 
L22 Queuing Theory
L22 Queuing TheoryL22 Queuing Theory
L22 Queuing Theory
 
TimetablingForPassengers-2
TimetablingForPassengers-2TimetablingForPassengers-2
TimetablingForPassengers-2
 
Traffic Concepts (Transportation Engineering)
Traffic Concepts (Transportation Engineering)Traffic Concepts (Transportation Engineering)
Traffic Concepts (Transportation Engineering)
 
Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)
Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)
Lec 13A Signalized Intersections (Transportation Engineering Dr.Lina Shbeeb)
 
Traffic stream models
Traffic stream models Traffic stream models
Traffic stream models
 
10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...
10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...
10 Capacity and LOS Analysis for Freeway (Traffic Engineering هندسة المرور & ...
 
12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...
12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...
12 Basic Principle Of Intersection Signalization (Traffic Engineering هندسة ا...
 
Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...
Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...
Webinar: Integrating timetabling and vehicle scheduling to analyze the trade-...
 
13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...
13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...
13 Fundamentals of Signal Timing and Design: Pretimed Signal (Traffic Enginee...
 
Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...
Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...
Presentation of GreenYourMove's hybrid approach in 3rd International Conferen...
 
Presentation escc 2016
Presentation escc 2016Presentation escc 2016
Presentation escc 2016
 
A Dynamic Logistic Dispatching System With Set-Based Particle Swarm Optimization
A Dynamic Logistic Dispatching System With Set-Based Particle Swarm OptimizationA Dynamic Logistic Dispatching System With Set-Based Particle Swarm Optimization
A Dynamic Logistic Dispatching System With Set-Based Particle Swarm Optimization
 
Operation Research Technique in Transportation
Operation Research Technique in TransportationOperation Research Technique in Transportation
Operation Research Technique in Transportation
 
L2 Microscopic Traffic Flow Parameters
L2 Microscopic Traffic Flow ParametersL2 Microscopic Traffic Flow Parameters
L2 Microscopic Traffic Flow Parameters
 
L20 Weaving Merging and Diverging Movements
L20 Weaving Merging and Diverging MovementsL20 Weaving Merging and Diverging Movements
L20 Weaving Merging and Diverging Movements
 
Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)
Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)
Lec 10 Traffic Stream Models (Transportation Engineering Dr.Lina Shbeeb)
 
L16.1 Progression Network
L16.1 Progression NetworkL16.1 Progression Network
L16.1 Progression Network
 
Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...
Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...
Hybrid Ant Colony Optimization for Real-World Delivery Problems Based on Real...
 

Similar to ESCC 2016, July 10-16, Athens, Greece

3rd Conference on Sustainable Urban Mobility
3rd Conference on Sustainable Urban Mobility3rd Conference on Sustainable Urban Mobility
3rd Conference on Sustainable Urban Mobility
LIFE GreenYourMove
 
Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...
Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...
Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...
GreenYourMove
 
Presentation 3rd CSUM
Presentation 3rd CSUM Presentation 3rd CSUM
Presentation 3rd CSUM
LIFE GreenYourMove
 
Central moments of traffic delay at a signalized intersection
Central moments of traffic delay at a signalized intersectionCentral moments of traffic delay at a signalized intersection
Central moments of traffic delay at a signalized intersection
Alexander Decker
 
Traveling Eco-Salesman
Traveling Eco-SalesmanTraveling Eco-Salesman
Traveling Eco-Salesman
Adrian Strugała
 
Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...
Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...
Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...
swenney
 
Cab travel time prediction using ensemble models
Cab travel time prediction using ensemble modelsCab travel time prediction using ensemble models
Cab travel time prediction using ensemble models
Ayan Sengupta
 
Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...
ijaia
 
Traveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed EnvironmentTraveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed Environment
csandit
 
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENTTRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
cscpconf
 
Schedule determination of a multiple route transit system
Schedule determination of a multiple  route transit systemSchedule determination of a multiple  route transit system
Schedule determination of a multiple route transit system
Pranamesh Chakraborty
 
A Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic AssignmentA Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic Assignment
Kelly Taylor
 
Where Next
Where NextWhere Next
Where Next
Roberto Trasarti
 
Fakhre alam
Fakhre alamFakhre alam
Fakhre alam
Fakhre Alam
 
Crowd Dynamics and Networks
Crowd Dynamics and NetworksCrowd Dynamics and Networks
Crowd Dynamics and Networks
Serge Hoogendoorn
 
MS Project
MS ProjectMS Project
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
eSAT Publishing House
 
IEEE-ITSC 2023 Keynote - What Crowds can Teach Us
IEEE-ITSC 2023 Keynote - What Crowds can Teach UsIEEE-ITSC 2023 Keynote - What Crowds can Teach Us
IEEE-ITSC 2023 Keynote - What Crowds can Teach Us
Serge Hoogendoorn
 
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic AlgorithmComparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
IOSR Journals
 
E017512630
E017512630E017512630
E017512630
IOSR Journals
 

Similar to ESCC 2016, July 10-16, Athens, Greece (20)

3rd Conference on Sustainable Urban Mobility
3rd Conference on Sustainable Urban Mobility3rd Conference on Sustainable Urban Mobility
3rd Conference on Sustainable Urban Mobility
 
Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...
Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...
Presentation of GreenYourMove's hybrid approach in the 3rd Conference on Sust...
 
Presentation 3rd CSUM
Presentation 3rd CSUM Presentation 3rd CSUM
Presentation 3rd CSUM
 
Central moments of traffic delay at a signalized intersection
Central moments of traffic delay at a signalized intersectionCentral moments of traffic delay at a signalized intersection
Central moments of traffic delay at a signalized intersection
 
Traveling Eco-Salesman
Traveling Eco-SalesmanTraveling Eco-Salesman
Traveling Eco-Salesman
 
Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...
Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...
Itzhak Benenson - OGiC - Shortest path and service area algorithms and their ...
 
Cab travel time prediction using ensemble models
Cab travel time prediction using ensemble modelsCab travel time prediction using ensemble models
Cab travel time prediction using ensemble models
 
Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...
 
Traveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed EnvironmentTraveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed Environment
 
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENTTRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
 
Schedule determination of a multiple route transit system
Schedule determination of a multiple  route transit systemSchedule determination of a multiple  route transit system
Schedule determination of a multiple route transit system
 
A Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic AssignmentA Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic Assignment
 
Where Next
Where NextWhere Next
Where Next
 
Fakhre alam
Fakhre alamFakhre alam
Fakhre alam
 
Crowd Dynamics and Networks
Crowd Dynamics and NetworksCrowd Dynamics and Networks
Crowd Dynamics and Networks
 
MS Project
MS ProjectMS Project
MS Project
 
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
 
IEEE-ITSC 2023 Keynote - What Crowds can Teach Us
IEEE-ITSC 2023 Keynote - What Crowds can Teach UsIEEE-ITSC 2023 Keynote - What Crowds can Teach Us
IEEE-ITSC 2023 Keynote - What Crowds can Teach Us
 
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic AlgorithmComparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
 
E017512630
E017512630E017512630
E017512630
 

More from LIFE GreenYourMove

Gym 7th research activity day
Gym 7th research activity dayGym 7th research activity day
Gym 7th research activity day
LIFE GreenYourMove
 
Timetable synchronization
Timetable synchronization Timetable synchronization
Timetable synchronization
LIFE GreenYourMove
 
Benders Decomposition
Benders Decomposition Benders Decomposition
Benders Decomposition
LIFE GreenYourMove
 
co-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentationco-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentation
LIFE GreenYourMove
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
LIFE GreenYourMove
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
LIFE GreenYourMove
 
LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove
 
LIFE GreenYourMove Project
LIFE GreenYourMove ProjectLIFE GreenYourMove Project
LIFE GreenYourMove Project
LIFE GreenYourMove
 
ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, Greece
LIFE GreenYourMove
 
LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GreenYourMove
 
LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove
 
Presentation data collection and gtfs
Presentation data collection and gtfsPresentation data collection and gtfs
Presentation data collection and gtfs
LIFE GreenYourMove
 
Conference Volos
Conference VolosConference Volos
Conference Volos
LIFE GreenYourMove
 
GreenYourMove 1st workshop
GreenYourMove  1st workshop GreenYourMove  1st workshop
GreenYourMove 1st workshop
LIFE GreenYourMove
 
GreenYourMove Presentation
GreenYourMove Presentation GreenYourMove Presentation
GreenYourMove Presentation
LIFE GreenYourMove
 

More from LIFE GreenYourMove (15)

Gym 7th research activity day
Gym 7th research activity dayGym 7th research activity day
Gym 7th research activity day
 
Timetable synchronization
Timetable synchronization Timetable synchronization
Timetable synchronization
 
Benders Decomposition
Benders Decomposition Benders Decomposition
Benders Decomposition
 
co-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentationco-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentation
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
 
LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data
 
LIFE GreenYourMove Project
LIFE GreenYourMove ProjectLIFE GreenYourMove Project
LIFE GreenYourMove Project
 
ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, Greece
 
LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation
 
LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop
 
Presentation data collection and gtfs
Presentation data collection and gtfsPresentation data collection and gtfs
Presentation data collection and gtfs
 
Conference Volos
Conference VolosConference Volos
Conference Volos
 
GreenYourMove 1st workshop
GreenYourMove  1st workshop GreenYourMove  1st workshop
GreenYourMove 1st workshop
 
GreenYourMove Presentation
GreenYourMove Presentation GreenYourMove Presentation
GreenYourMove Presentation
 

Recently uploaded

Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
terusbelajar5
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
SSR02
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
Texas Alliance of Groundwater Districts
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
RitabrataSarkar3
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
pablovgd
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
Sérgio Sacani
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
RASHMI M G
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
RASHMI M G
 

Recently uploaded (20)

Medical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptxMedical Orthopedic PowerPoint Templates.pptx
Medical Orthopedic PowerPoint Templates.pptx
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 
Nucleophilic Addition of carbonyl compounds.pptx
Nucleophilic Addition of carbonyl  compounds.pptxNucleophilic Addition of carbonyl  compounds.pptx
Nucleophilic Addition of carbonyl compounds.pptx
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
Eukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptxEukaryotic Transcription Presentation.pptx
Eukaryotic Transcription Presentation.pptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptxBREEDING METHODS FOR DISEASE RESISTANCE.pptx
BREEDING METHODS FOR DISEASE RESISTANCE.pptx
 

ESCC 2016, July 10-16, Athens, Greece

  • 1. ESCC 2016 Vehicle Routing Problem Dr. Georgios K.D. Saharidis 1 With the contribution of the LIFE programme of the European Union - LIFE14 ENV/GR/000611
  • 2. Presentation structure  General description of the multi-modal journey planning(MMJP) problem  Characteristics of MMJP and previous work  The proposed solution approach  The mathematical programming model that our team has developed  Future work 2
  • 3. The multi-modal journey planning problem & similar problems The journey planning problem: The computation of an optimal, feasible and personalized journey from a starting point A to an ending point B, where A and B are nodes of a transportation network. Similar problems: • Shortest path problem • Earliest arrival problem • Range problem • Multi-criteria JP problem (environmental cost, CO2 emissions, financial cost, travel time, arrival time, comfort of travel) 3 The multi-modal journey planning problem: Mostly in public transportation networks, the multi-modal journey planning problem (MMJP) seeks for journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving).
  • 4. Characteristics of the MMJP problem Characteristics: • Increasing popularity due to strong practical interest & increasing availability of data. • General Transit Feed Specification(GTFS), which defines the file formats. (series of text file describing different aspects of the data) It is supported by Google and TriMet since 2005. • Many open source initiatives that help us deal with the MMJP problem. 4
  • 5. Previous work Extensive work has been conducted for route planning in static networks:  Solved using shortest path algorithms : A*, Dijkstra’s, Hierarchical techniques  Most of the approaches are based on heavy precomputation of paths Modern MMJP applications need to use data from public transport, which are schedule based and dynamic networks(traffic) and calculate paths for different criteria. 5 Problems that occur with time-expanded graphs: - Need to do the vast precomputations that they are based on frequently - Need to do precomputations for each mode of transport and each criteria and then get to combine them
  • 6. Proposed method  We propose a hybrid approach where we get to combine mathematical programming with some heuristic methods in order to achieve the desired results both in terms of “paths” generated by the algorithm and speed of calculations.  We get to combine a mixed integer-linear program with Dijkstra’s algorithm and graph partitioning(for unrestricted modes e.g. walking) and graph selection techniques.  Dijkstra’s algorithm calculated the parts of the solution that are needed to be fast and are not characterized by big margins between the optimal and the heuristically calculated solution.  MILP program is used to solve the MMJP problem. 6
  • 7. Proposed method 7 The user inserts the starting and ending points as well as the departure time of his journey Dikjstra's algorithm is applied to find the closest public network node S (stop or station) to the starting point and the closest node T to the ending point2, creates a list of 3 points for S and T The mathematical model is built and solved in order to compute the optimal journey for all combinations of S and T The optimal journey minimizing both travel time and environmental cost is delivered to the user Selects sub-network according of stations ( ID & OSM)
  • 8. The mathematical model 8 8 We use those indices to refer to make references between the different variables of the mathematical formulation: i Network’s stations j Network’s stations h Network’s stations k Mode of transport n Different itineraries Multi-dimensional constants of the formulation used to represent the data Ci,j,k Cost of transportation from i station to j station using mode k ΤΤi,j,k Travel time of the transportation from i station to j station using mode k ΤoDi,j,k,n Time of departure of the transportation from i station to j station using mode k and itinerary n Nomenclature of the single-dimension constants N Number of stations considered by the model M Number of modes of transport considered L Number of different sets of itineraries S Starting station S (user input) T Ending station T (user input) a Weight coefficient for cost b Weight coefficient for time DT User’s departure time AT User’s maximum arrival time WT1 Walking time 1 from starting point to entrance point in the network WT2 Walking time 2 from exit of the network to the final destination
  • 9. The mathematical model 9 9 Decision variables Xi,j,k,n Binary decision variable, takes values 0 or 1, 1 when the transfer from station i to station j occurs , with mode k and itinerary n Si,j,k,n Positive integer decision variable, and is equal to the departure time of the transfer from i to j with k and n when it occurs minimize The objective function XTTC nkjikji N i N j M k L n kji ba ,,,,, 1 1 1 1 ,, *)**(    
  • 10. The mathematical model 10 10 Constraint Meaning We always need to start from starting point S We always need to go to the last station Transportation from one to another with any mode and any itinerary can happen only once 1 1 1 1 ,,,    N j M k L n nkjSX 1 1 1 1 ,,,    N i M k L n nkTiX Constraint Meaning There’s no need to visit S again, that is we make this decision unavailable. We never need to leave the final station T, so we make transfers from T unavailable. 0 1 1 1 ,,,    N i M k L n nkSiX 0 1 1 1 ,,,    N j M k L n nkjTX Tii N j M k L n nkjiX    ,,1 1 1 1 ,,, Constraint Meaning When you visit a station you need to leave it too. This constraint does not apply to the starting and the ending station. TShh N j M k L n nkjh N i M k L n nkhi XX ,,,0 1 1 1 ,,, 1 1 1 ,,,       
  • 11. The mathematical model 11 11 Constraint Meaning When the transfer from i to j with k and n occurs then S variable needs to be equal to the corresponding ToD We make sure that if ToD is 0, which means that there is no available itinerary, transfer X can’t happen This constraint makes sure that there is time continuation in the problem. By using it we make sure that when you make a transfer in time from i to h with k and n, the next transfer from station h to j happens after the travelling time from i to h and h to j. By inserting this constraint into our mode we make sure that the departure time at the first node happens first in chronological order from the rest that are about to be calculated next nkjiM M X ToDSX nkji nkjinkjinkji ,,,),1(* )1(* ,,, ,,,,,,,,,   nkjiToDX nkjinkji ,,,,,,,,,  TShh N j M k L n nkjh N i M k L n nkhikhi N i M k L n nkhi S XTTS ,, )*( 1 1 1 ,,, 1 1 1 ,,,,, 1 1 1 ,,,             SiM N j M k L n nkji N j M k L n nkji N j M k L n nkjS X SS             ,*)1( 1 1 1 ,,, 1 1 1 ,,, 1 1 1 ,,,
  • 12. The mathematical model 12 Constraint Meaning If there is no transfer between station i and station j with mode k and itinerary n then the corresponding variable S should be zero, too. The departure time from the semifinal station should be the biggest in a chronological order The departure time from starting station S should be bigger in a chronological order than the departure time of the whole trip plus the walking time WT1. Corresponding constraint for the last station the arrival time there, which equals departure time plus travelling time. We need the Arrival time at the destination to be bigger in chronological order than the walking time plus the arrival time at the last station. nkjiM XS nkjinkji ,,,* ,,,,,,  Tj N i M k L n nkji N i M k L n nkTi SS        ,0 1 1 1 ,,, 1 1 1 ,,, DTWT N j M k L n nkjSS    1 1 1 1 ,,, ATWT N i M k L n nkTikTi N i M k L n nkTi XTTS         2 )*( 1 1 1 ,,,,, 1 1 1 ,,,
  • 13. Advantages & Future work Advantages  Minimal pre-processing time Disadvantages  Higher query times (for now of course) Future work  Research is still ongoing for the improvement of our algorithm. The mathematical formulation is still under modification and there will changes in the algorithm.  Replace high dimensional variables with variables of fewer dimensions  Reduce the number of constraints  Integrate decomposition techniques for the mathematical model  Create a wrapper application that will serve as an API to the algorithm and will allow its use on online applications 13
  • 14. Thank you for your attention! Any questions? Learn more at: http://www.greenyourmove.org/ #

Editor's Notes

  1. NP hard (non deterministic-polynomial-time hard), at least as hard as np-complete
  2. 1. Precomputation for each mode, precomputation for each criteria, precomputation often
  3. If asked: Selection happens right now according to IDs of the route in GTFS & TRAINOSE DATA ALWAYS
  4. Cijk is set to 0, or we could minimize SUMi,k,n of SiTkn
  5. 10 minutes / 1.56 minutes