SlideShare a Scribd company logo
3rd Conference on Sustainable Urban Mobility
26-27 May, 2016, Volos, Greece
A Hybrid Approach to the Problem of
Journey Planning with the Use of
Mathematical Programming and Modern
Techniques
Authors
• Georgios K.D. Saharidis
• Dimitrios Rizopoulos
• Afroditi Temourtzidou
• Antonios Fragkogios
• Nikolaos Cholevas
• Asimina Galanou
• George Emmanouelidis
• Chrysostomos Chatzigeorgiou
• Labros Bizas
Department of
Mechanical Engineering
Polytechnic School
University of Thessaly
Presentation structure
• GreenYourMove Project
• The journey planning problem
• Proposed method
• Conclusion
GreenYourMove Project
• GreenYourMove (GYM) is a European Research Project co-funded
by LIFE, the EU financial instrument for the environment - LIFE14
ENV/GR/000611.
• GreenYourMove’s main objective is the development and
promotion of a co-modal journey application to minimize GHG
emission in Europe. GreenYourMove develops a multi-modal
transport planner (both routing & ticketing system) considering all
kinds of urban public transportation (urban and sub-urban buses,
metro, tram, trolley, trains), where the user gets alternative routes
combining more than one transport modes if necessary. The
routes are the environmentally friendliest ones, since emissions
are calculated for different scenarios
• Target: Creation of a web platform and smartphone app.
GreenYourMove Project
• Partners:
– University of Thessaly
– AVMAP
– CHAPS (Czech Republic)
– EMISIA
– PLANNERSTACK (The Netherlands)
– TRAINOSE
• Total Budget: 1,245,052 €
– Start: September 2015
– Finish: August 2018
The journey planning problem
• The computation of an optimal,
feasible and personalized
journey from a starting point A
to an ending point B. Generally,
the important task is to
calculate the path from a point
A to another point B, such that
the total distance/time travelled
from A to B will be the
minimum.
The journey planning problem
• Multi-Modal Journey Planning (MMJP)
– In public transportation networks, the multi-modal
journey planning problem (MMJP) seeks for journeys
combining schedule-based transportation (buses, trains)
with unrestricted modes (walking, driving).
The journey planning problem
• Multi-Modal Journey Planning (MMJP)
– Earliest Arrival Problem (EAP): Given a source stop A, a
target stop B and a departure time T, the problem asks
for a journey that departs from A, no earlier than T, and
arrives at B as early as possible.
– Range Problem (RP): Takes as input a time range (e.g. 6-
9am) and asks for the journey with the least travel time
that depart within that range.
The journey planning problem
• Multi-Modal Journey Planning (MMJP)
– Multi-Criteria Problem (MCP): Different optimization
criteria:
• The number of transfers
• The total journey cost
• Ecological footprint (Environmental MMJP): Minimization of
GreenHouse Gas (GHG) emissions
• Etc.
Journey, which is the most environmental friendly
Proposed Method
• Hybrid approach, because it is a combination of:
– Dijkstra’s algorithm
– Mathematical model for the MMJP
Proposed Method
The user inserts the starting and
ending points as well as the
departure time of his journey
Dikjstra's algorithm is applied to find the closest public
network node S (stop or station) to the starting point and the
closest node T to the ending point
The mathematical model is built and solved in order to
compute the optimal journey between S and T
The optimal journey minimizing
both travel time and environmental
cost is delivered to the user
Proposed Method
Dijkstra’s algorithm
Mathematical Model
Proposed Method
• Dijkstra’s Algorithm
– The mostly known Shortest Path algorithm, which is a
label setting algorithm introduced by Dijkstra in 1959.
Source Target
Total distance: 28
Proposed Method
• Dijkstra’s Algorithm
– Scan nodes near Source and Target until you hop on a
stop of the Public Transportation network.
Proposed Method
• Mathematical model for the MMJP
– Mixed Integer Linear Program (MILP) in order to
compute the optimal journey between the departure
and arrival stops of the public network.
– In-between those two stations, the model prompts the
user to use up to a number of different modes of
transport, depending on his/her input. While in the
network, the user follows an optimal journey that
minimizes the travel time and the environmental cost.
Proposed Method
• Mathematical model for the MMJP
– Indices
• i, j, h Nodes of the network.
• k Modes or transport.
• n Trips.
Proposed Method
• Mathematical model for the MMJP
– Data
• Ci,j,k Environmental cost of moving from i to j with mode k.
• TTi,j,k Time of transfer from i to j with mode k.
• ToDi,j,k Time of departure of trip n with mode k from i to j.
• N Number of nodes.
• M Number of modes of transport.
• L Maximum Number of trips in all available modes.
• S The departure station.
• T The arrival station.
• a Coefficient in the objective function.
• b Coefficient in the objective function.
• DT Departure time of the user from the starting point.
• AT Latest arrival time of the user to the ending point.
• WT1 Walking Time from starting point to S.
• WT2 Walking Time from T to ending point.
Proposed Method
• Mathematical model for the MMJP
– Decision variables
• Xi,j,k,n Binary Variable used to represent whether a
transfer is made from i to j with mode k and trip n.
X is equal to 1 when transfer is made and 0 when
it is NOT.
• Si,j,k,n Non-negative continuous variable used to
represent the departure time from i to j with k
and n. If the transfer is NOT made S is equal to 0
Proposed Method
• Mathematical model for the MMJP
– Constraints
, , ,
1 1 1
1
N M L
S j k n
j k n
X  

1. Connection from point S to a next point happens
, , ,
1 1 1
0
N M L
i S k n
i k n
X  

2. Once a journey has departed from S, it will never go through S again
, , ,
1 1 1
1
N M L
i T k n
i k n
X  

3. A connection between any point and T is made
Proposed Method
• Mathematical model for the MMJP
– Constraints
4. The journey reaches the target node and it never departs from it again
, , ,
1 1 1
0
N M L
T j k n
j k n
X  

, , ,
1 1 1
1, ,
N M L
i j k n
i k n
i i TX  
  
5. The journey goes through each node at most once
, , , , , ,
1 1 1 1 1 1
0, , ,
N M L N M L
i h k n h j k n
i k n j k n
h h S TX X     
    
6. Whatever node of the network we visit, we have to leave from it as well
Proposed Method
• Mathematical model for the MMJP
– Constraints
7. When X is 1, then S gets equal to ToD. The constraint relaxes, when X is 0
8. The departure that corresponds to X will not happen if ToD is 0, meaning there is
no transfer available
9. Time continuity in the problem
, , , , , ,, , , , , ,
*(1 ) *(1 ), , , ,i j k n i j k ni j k n i j k n
M M i j k nS ToDX X      
, , , , , ,
, , ,i j k n i j k n
i j k nToDX  
, , , , ,, , , , , ,
1 1 1 1 1 1 1 1 1
( * ) , ,
N M L N M L N M L
i h k i h k ni h k n h j k n
i k n i k n j k n
h h S TS STT X        
     
Proposed Method
• Mathematical model for the MMJP
– Constraints
10. The departure time from the first node is the smallest
11. It initializes S to 0 if there is no transfer between i and j with mode k and trip n
12. The time of departure from the node before T is the largest time of departure
in the journey delivered
, , ,, , , , , ,
1 1 1 1 1 1 1 1 1
(1 )* ,
N M L N M L N M L
i j k nS j k n i j k n
j k n j k n j k n
M i SS S X        
      
, , ,, , ,
* , , ,i j k ni j k n
M i j k nS X 
, , , , , ,
1 1 1 1 1 1
0,
N M L N M L
i T k n i j k n
i k n i k n
j TS S     
    
Proposed Method
• Mathematical model for the MMJP
– Constraints
13. Uses the solution from Dijkstra’s algorithm, which we have run before the
construction of the mathematical model.
It makes sure that the first departure from a node of the network happens after the
departure time of the traveler plus the walking time from the starting point to the
station S
, , ,
1 1 1
1
N M L
S j k n
j k n
WT DTS  
 
Proposed Method
• Mathematical model for the MMJP
– Objective Function
Minimization of 2 criteria, the total environmental cost and the total travel time of the
journey, which is proposed to the user. Coefficients a and b are predefined by the user.
The Environmental Cost Ci,j,k is pre-computed for each arc i-j and mode k of the
public transportation network. This pre-computation is made using emission calculation
models, that take into consideration several parameters, such as the type of fuel
(gasoline, diesel, electricity etc.) and the fuel consumption, which concern the vehicle
of the public means of transport. Other parameters concern the trip, which the vehicle
follows, such as the distance and the gradient between the stops.
, , , , ,, ,
1 1 1 1
( * * )*
N N M L
i j k i j k ni j k
i j k n
Min z a bC TT X   
 
Conclusion
• Novel approach for solving the Environmental
Multi-Modal Journey Planning problem. The
proposed hybrid algorithm combines the Dijkstra’s
algorithm with a Mixed Integer Linear Program
(MILP) in order to deliver the journey with the least
travel time and environmental cost.
• Research is still ongoing for the improvement of our
algorithm. The mathematical formulation is still
under modification and there may be slight changes
in the algorithm.
Conclusion
• Future work
– The objective function shall be split into two, one for the
minimization of the travel time and one for the
minimization of the environmental cost. Thus, the
computation of a Pareto set of optimal journeys will be
possible so that the user has more options to consider.
– Addition of more objective functions for the
minimization of number of transfers, the total fare of the
journey etc.
Conclusion
• Future work
– A decomposition method, such as Benders
Decomposition method, shall be implemented on the
MILP so that it will be easier to solve for big data sets.
– Finally, the integration of the algorithm in an online
platform having data from the public transportation
network of Greece will make possible the wide use of it
by the passengers with a large benefit both for them and
the environment
Thank you for your attention
Learn more at:
http://www.greenyourmove.org/

More Related Content

What's hot

Route choice
Route choiceRoute choice
Route choice
António Oliveira
 
Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...
Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...
Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...
IJRES Journal
 
tAnt colony optimization for
tAnt colony optimization fortAnt colony optimization for
tAnt colony optimization for
csandit
 
ITS for Crowds
ITS for CrowdsITS for Crowds
ITS for Crowds
Serge Hoogendoorn
 
Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...
ijaia
 
Future of Traffic Management and ITS
Future of Traffic Management and ITSFuture of Traffic Management and ITS
Future of Traffic Management and ITS
Serge Hoogendoorn
 
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
CSCJournals
 
Vehicle Headway Distribution Models on Two-Lane Two-Way Undivided Roads
Vehicle Headway Distribution Models on Two-Lane Two-Way Undivided RoadsVehicle Headway Distribution Models on Two-Lane Two-Way Undivided Roads
Vehicle Headway Distribution Models on Two-Lane Two-Way Undivided Roads
AM Publications
 
(Slides) A Personal Navigation System with a Schedule Planning Facility Based...
(Slides) A Personal Navigation System with a Schedule Planning Facility Based...(Slides) A Personal Navigation System with a Schedule Planning Facility Based...
(Slides) A Personal Navigation System with a Schedule Planning Facility Based...
Naoki Shibata
 
paper
paperpaper
Dynamic Path Planning
Dynamic Path PlanningDynamic Path Planning
Dynamic Path Planning
dare2kreate
 
Path Planning And Navigation
Path Planning And NavigationPath Planning And Navigation
Path Planning And Navigation
guest90654fd
 
Dcm
DcmDcm
Prediction of traveller information and route choice
Prediction of traveller information and route choicePrediction of traveller information and route choice
Prediction of traveller information and route choice
ayishairshad
 
Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...
Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...
Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...
Waqas Tariq
 
Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...
Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...
Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...
Nooria Sukmaningtyas
 
5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...
5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...
5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...
Hossam Shafiq I
 

What's hot (17)

Route choice
Route choiceRoute choice
Route choice
 
Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...
Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...
Experimental Comparison of Trajectory Planning Algorithms for Wheeled Mobile ...
 
tAnt colony optimization for
tAnt colony optimization fortAnt colony optimization for
tAnt colony optimization for
 
ITS for Crowds
ITS for CrowdsITS for Crowds
ITS for Crowds
 
Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...Solving real world delivery problem using improved max-min ant system with lo...
Solving real world delivery problem using improved max-min ant system with lo...
 
Future of Traffic Management and ITS
Future of Traffic Management and ITSFuture of Traffic Management and ITS
Future of Traffic Management and ITS
 
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
 
Vehicle Headway Distribution Models on Two-Lane Two-Way Undivided Roads
Vehicle Headway Distribution Models on Two-Lane Two-Way Undivided RoadsVehicle Headway Distribution Models on Two-Lane Two-Way Undivided Roads
Vehicle Headway Distribution Models on Two-Lane Two-Way Undivided Roads
 
(Slides) A Personal Navigation System with a Schedule Planning Facility Based...
(Slides) A Personal Navigation System with a Schedule Planning Facility Based...(Slides) A Personal Navigation System with a Schedule Planning Facility Based...
(Slides) A Personal Navigation System with a Schedule Planning Facility Based...
 
paper
paperpaper
paper
 
Dynamic Path Planning
Dynamic Path PlanningDynamic Path Planning
Dynamic Path Planning
 
Path Planning And Navigation
Path Planning And NavigationPath Planning And Navigation
Path Planning And Navigation
 
Dcm
DcmDcm
Dcm
 
Prediction of traveller information and route choice
Prediction of traveller information and route choicePrediction of traveller information and route choice
Prediction of traveller information and route choice
 
Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...
Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...
Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marc...
 
Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...
Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...
Robot Three Dimensional Space Path-planning Applying the Improved Ant Colony ...
 
5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...
5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...
5-Modal Split & Traffic Assignment-( Transportation and Traffic Engineering D...
 

Similar to 3rd Conference on Sustainable Urban Mobility

Presentation 3rd CSUM
Presentation 3rd CSUM Presentation 3rd CSUM
Presentation 3rd CSUM
LIFE GreenYourMove
 
ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, Greece
LIFE GreenYourMove
 
Edward Robson
Edward RobsonEdward Robson
Edward Robson
JumpingJaq
 
Crowd Dynamics and Networks
Crowd Dynamics and NetworksCrowd Dynamics and Networks
Crowd Dynamics and Networks
Serge Hoogendoorn
 
Particle Swarm Optimization to Solve Multiple Traveling Salesman Problem
Particle Swarm Optimization to Solve Multiple Traveling Salesman ProblemParticle Swarm Optimization to Solve Multiple Traveling Salesman Problem
Particle Swarm Optimization to Solve Multiple Traveling Salesman Problem
IRJET Journal
 
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
eSAT Publishing House
 
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
IOSRJM
 
Webinar: Linear bus holding model for real time traffic network control
Webinar: Linear bus holding model for real time traffic network controlWebinar: Linear bus holding model for real time traffic network control
Webinar: Linear bus holding model for real time traffic network control
BRTCoE
 
20151216 convergence of quasi dynamic assignment models
20151216 convergence of quasi dynamic assignment models 20151216 convergence of quasi dynamic assignment models
20151216 convergence of quasi dynamic assignment models
Luuk Brederode
 
Cab travel time prediction using ensemble models
Cab travel time prediction using ensemble modelsCab travel time prediction using ensemble models
Cab travel time prediction using ensemble models
Ayan Sengupta
 
Prediction of taxi rides ETA
Prediction of taxi rides ETAPrediction of taxi rides ETA
Prediction of taxi rides ETA
Daniel Marcous
 
Fakhre alam
Fakhre alamFakhre alam
Fakhre alam
Fakhre Alam
 
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic AlgorithmComparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
IOSR Journals
 
Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...
Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...
Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...
Chien-Chun Ni
 
Modal split analysis
Modal split analysis Modal split analysis
Modal split analysis
ashahit
 
Traveling Salesman Problem (TSP)
Traveling Salesman Problem (TSP)Traveling Salesman Problem (TSP)
Traveling Salesman Problem (TSP)
Maksym Voitko
 
Session 38 Xiaoliang Ma
Session 38 Xiaoliang MaSession 38 Xiaoliang Ma
Session 38 Xiaoliang Ma
Transportforum (VTI)
 
Traveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed EnvironmentTraveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed Environment
csandit
 
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENTTRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
cscpconf
 
Data driven public_transportation_operation_by_trips_jaehong_min
Data driven public_transportation_operation_by_trips_jaehong_minData driven public_transportation_operation_by_trips_jaehong_min
Data driven public_transportation_operation_by_trips_jaehong_min
Jaehong MIN
 

Similar to 3rd Conference on Sustainable Urban Mobility (20)

Presentation 3rd CSUM
Presentation 3rd CSUM Presentation 3rd CSUM
Presentation 3rd CSUM
 
ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, Greece
 
Edward Robson
Edward RobsonEdward Robson
Edward Robson
 
Crowd Dynamics and Networks
Crowd Dynamics and NetworksCrowd Dynamics and Networks
Crowd Dynamics and Networks
 
Particle Swarm Optimization to Solve Multiple Traveling Salesman Problem
Particle Swarm Optimization to Solve Multiple Traveling Salesman ProblemParticle Swarm Optimization to Solve Multiple Traveling Salesman Problem
Particle Swarm Optimization to Solve Multiple Traveling Salesman Problem
 
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...Quantum inspired evolutionary algorithm for solving multiple travelling sales...
Quantum inspired evolutionary algorithm for solving multiple travelling sales...
 
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
“An Alternate Approach to Find an Optimal Solution of a Transportation Problem.”
 
Webinar: Linear bus holding model for real time traffic network control
Webinar: Linear bus holding model for real time traffic network controlWebinar: Linear bus holding model for real time traffic network control
Webinar: Linear bus holding model for real time traffic network control
 
20151216 convergence of quasi dynamic assignment models
20151216 convergence of quasi dynamic assignment models 20151216 convergence of quasi dynamic assignment models
20151216 convergence of quasi dynamic assignment models
 
Cab travel time prediction using ensemble models
Cab travel time prediction using ensemble modelsCab travel time prediction using ensemble models
Cab travel time prediction using ensemble models
 
Prediction of taxi rides ETA
Prediction of taxi rides ETAPrediction of taxi rides ETA
Prediction of taxi rides ETA
 
Fakhre alam
Fakhre alamFakhre alam
Fakhre alam
 
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic AlgorithmComparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm
 
Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...
Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...
Capacitated Kinetic Clustering in Mobile Networks by Optimal Transportation T...
 
Modal split analysis
Modal split analysis Modal split analysis
Modal split analysis
 
Traveling Salesman Problem (TSP)
Traveling Salesman Problem (TSP)Traveling Salesman Problem (TSP)
Traveling Salesman Problem (TSP)
 
Session 38 Xiaoliang Ma
Session 38 Xiaoliang MaSession 38 Xiaoliang Ma
Session 38 Xiaoliang Ma
 
Traveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed EnvironmentTraveling Salesman Problem in Distributed Environment
Traveling Salesman Problem in Distributed Environment
 
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENTTRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
TRAVELING SALESMAN PROBLEM IN DISTRIBUTED ENVIRONMENT
 
Data driven public_transportation_operation_by_trips_jaehong_min
Data driven public_transportation_operation_by_trips_jaehong_minData driven public_transportation_operation_by_trips_jaehong_min
Data driven public_transportation_operation_by_trips_jaehong_min
 

More from LIFE GreenYourMove

Gym 7th research activity day
Gym 7th research activity dayGym 7th research activity day
Gym 7th research activity day
LIFE GreenYourMove
 
Timetable synchronization
Timetable synchronization Timetable synchronization
Timetable synchronization
LIFE GreenYourMove
 
Benders Decomposition
Benders Decomposition Benders Decomposition
Benders Decomposition
LIFE GreenYourMove
 
co-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentationco-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentation
LIFE GreenYourMove
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
LIFE GreenYourMove
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
LIFE GreenYourMove
 
LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove
 
LIFE GreenYourMove Project
LIFE GreenYourMove ProjectLIFE GreenYourMove Project
LIFE GreenYourMove Project
LIFE GreenYourMove
 
ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, Greece
LIFE GreenYourMove
 
LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GreenYourMove
 
LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove
 
Presentation data collection and gtfs
Presentation data collection and gtfsPresentation data collection and gtfs
Presentation data collection and gtfs
LIFE GreenYourMove
 
Conference Volos
Conference VolosConference Volos
Conference Volos
LIFE GreenYourMove
 
GreenYourMove 1st workshop
GreenYourMove  1st workshop GreenYourMove  1st workshop
GreenYourMove 1st workshop
LIFE GreenYourMove
 
GreenYourMove Presentation
GreenYourMove Presentation GreenYourMove Presentation
GreenYourMove Presentation
LIFE GreenYourMove
 

More from LIFE GreenYourMove (15)

Gym 7th research activity day
Gym 7th research activity dayGym 7th research activity day
Gym 7th research activity day
 
Timetable synchronization
Timetable synchronization Timetable synchronization
Timetable synchronization
 
Benders Decomposition
Benders Decomposition Benders Decomposition
Benders Decomposition
 
co-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentationco-modal emission calculation and inventory-presentation
co-modal emission calculation and inventory-presentation
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Rizopoulos D, Saha...
 
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
ESCC2018, Mykonos, Greece, June 4-8, 2018, presentation by Fragkogios A., Sah...
 
LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data LIFE GreenYourMove Project - GTFS data
LIFE GreenYourMove Project - GTFS data
 
LIFE GreenYourMove Project
LIFE GreenYourMove ProjectLIFE GreenYourMove Project
LIFE GreenYourMove Project
 
ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, Greece
 
LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation LIFE GYM 5th Hellenic forum for science technology and innovation
LIFE GYM 5th Hellenic forum for science technology and innovation
 
LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop LIFE GreenYourMove project: 1st workshop
LIFE GreenYourMove project: 1st workshop
 
Presentation data collection and gtfs
Presentation data collection and gtfsPresentation data collection and gtfs
Presentation data collection and gtfs
 
Conference Volos
Conference VolosConference Volos
Conference Volos
 
GreenYourMove 1st workshop
GreenYourMove  1st workshop GreenYourMove  1st workshop
GreenYourMove 1st workshop
 
GreenYourMove Presentation
GreenYourMove Presentation GreenYourMove Presentation
GreenYourMove Presentation
 

Recently uploaded

Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
Mukeshwaran Balu
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
drwaing
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
PauloRodrigues104553
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 

Recently uploaded (20)

Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Series of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.pptSeries of visio cisco devices Cisco_Icons.ppt
Series of visio cisco devices Cisco_Icons.ppt
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 

3rd Conference on Sustainable Urban Mobility

  • 1. 3rd Conference on Sustainable Urban Mobility 26-27 May, 2016, Volos, Greece A Hybrid Approach to the Problem of Journey Planning with the Use of Mathematical Programming and Modern Techniques
  • 2. Authors • Georgios K.D. Saharidis • Dimitrios Rizopoulos • Afroditi Temourtzidou • Antonios Fragkogios • Nikolaos Cholevas • Asimina Galanou • George Emmanouelidis • Chrysostomos Chatzigeorgiou • Labros Bizas Department of Mechanical Engineering Polytechnic School University of Thessaly
  • 3. Presentation structure • GreenYourMove Project • The journey planning problem • Proposed method • Conclusion
  • 4. GreenYourMove Project • GreenYourMove (GYM) is a European Research Project co-funded by LIFE, the EU financial instrument for the environment - LIFE14 ENV/GR/000611. • GreenYourMove’s main objective is the development and promotion of a co-modal journey application to minimize GHG emission in Europe. GreenYourMove develops a multi-modal transport planner (both routing & ticketing system) considering all kinds of urban public transportation (urban and sub-urban buses, metro, tram, trolley, trains), where the user gets alternative routes combining more than one transport modes if necessary. The routes are the environmentally friendliest ones, since emissions are calculated for different scenarios • Target: Creation of a web platform and smartphone app.
  • 5. GreenYourMove Project • Partners: – University of Thessaly – AVMAP – CHAPS (Czech Republic) – EMISIA – PLANNERSTACK (The Netherlands) – TRAINOSE • Total Budget: 1,245,052 € – Start: September 2015 – Finish: August 2018
  • 6. The journey planning problem • The computation of an optimal, feasible and personalized journey from a starting point A to an ending point B. Generally, the important task is to calculate the path from a point A to another point B, such that the total distance/time travelled from A to B will be the minimum.
  • 7. The journey planning problem • Multi-Modal Journey Planning (MMJP) – In public transportation networks, the multi-modal journey planning problem (MMJP) seeks for journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving).
  • 8. The journey planning problem • Multi-Modal Journey Planning (MMJP) – Earliest Arrival Problem (EAP): Given a source stop A, a target stop B and a departure time T, the problem asks for a journey that departs from A, no earlier than T, and arrives at B as early as possible. – Range Problem (RP): Takes as input a time range (e.g. 6- 9am) and asks for the journey with the least travel time that depart within that range.
  • 9. The journey planning problem • Multi-Modal Journey Planning (MMJP) – Multi-Criteria Problem (MCP): Different optimization criteria: • The number of transfers • The total journey cost • Ecological footprint (Environmental MMJP): Minimization of GreenHouse Gas (GHG) emissions • Etc. Journey, which is the most environmental friendly
  • 10. Proposed Method • Hybrid approach, because it is a combination of: – Dijkstra’s algorithm – Mathematical model for the MMJP
  • 11. Proposed Method The user inserts the starting and ending points as well as the departure time of his journey Dikjstra's algorithm is applied to find the closest public network node S (stop or station) to the starting point and the closest node T to the ending point The mathematical model is built and solved in order to compute the optimal journey between S and T The optimal journey minimizing both travel time and environmental cost is delivered to the user
  • 13. Proposed Method • Dijkstra’s Algorithm – The mostly known Shortest Path algorithm, which is a label setting algorithm introduced by Dijkstra in 1959. Source Target Total distance: 28
  • 14. Proposed Method • Dijkstra’s Algorithm – Scan nodes near Source and Target until you hop on a stop of the Public Transportation network.
  • 15. Proposed Method • Mathematical model for the MMJP – Mixed Integer Linear Program (MILP) in order to compute the optimal journey between the departure and arrival stops of the public network. – In-between those two stations, the model prompts the user to use up to a number of different modes of transport, depending on his/her input. While in the network, the user follows an optimal journey that minimizes the travel time and the environmental cost.
  • 16. Proposed Method • Mathematical model for the MMJP – Indices • i, j, h Nodes of the network. • k Modes or transport. • n Trips.
  • 17. Proposed Method • Mathematical model for the MMJP – Data • Ci,j,k Environmental cost of moving from i to j with mode k. • TTi,j,k Time of transfer from i to j with mode k. • ToDi,j,k Time of departure of trip n with mode k from i to j. • N Number of nodes. • M Number of modes of transport. • L Maximum Number of trips in all available modes. • S The departure station. • T The arrival station. • a Coefficient in the objective function. • b Coefficient in the objective function. • DT Departure time of the user from the starting point. • AT Latest arrival time of the user to the ending point. • WT1 Walking Time from starting point to S. • WT2 Walking Time from T to ending point.
  • 18. Proposed Method • Mathematical model for the MMJP – Decision variables • Xi,j,k,n Binary Variable used to represent whether a transfer is made from i to j with mode k and trip n. X is equal to 1 when transfer is made and 0 when it is NOT. • Si,j,k,n Non-negative continuous variable used to represent the departure time from i to j with k and n. If the transfer is NOT made S is equal to 0
  • 19. Proposed Method • Mathematical model for the MMJP – Constraints , , , 1 1 1 1 N M L S j k n j k n X    1. Connection from point S to a next point happens , , , 1 1 1 0 N M L i S k n i k n X    2. Once a journey has departed from S, it will never go through S again , , , 1 1 1 1 N M L i T k n i k n X    3. A connection between any point and T is made
  • 20. Proposed Method • Mathematical model for the MMJP – Constraints 4. The journey reaches the target node and it never departs from it again , , , 1 1 1 0 N M L T j k n j k n X    , , , 1 1 1 1, , N M L i j k n i k n i i TX      5. The journey goes through each node at most once , , , , , , 1 1 1 1 1 1 0, , , N M L N M L i h k n h j k n i k n j k n h h S TX X           6. Whatever node of the network we visit, we have to leave from it as well
  • 21. Proposed Method • Mathematical model for the MMJP – Constraints 7. When X is 1, then S gets equal to ToD. The constraint relaxes, when X is 0 8. The departure that corresponds to X will not happen if ToD is 0, meaning there is no transfer available 9. Time continuity in the problem , , , , , ,, , , , , , *(1 ) *(1 ), , , ,i j k n i j k ni j k n i j k n M M i j k nS ToDX X       , , , , , , , , ,i j k n i j k n i j k nToDX   , , , , ,, , , , , , 1 1 1 1 1 1 1 1 1 ( * ) , , N M L N M L N M L i h k i h k ni h k n h j k n i k n i k n j k n h h S TS STT X              
  • 22. Proposed Method • Mathematical model for the MMJP – Constraints 10. The departure time from the first node is the smallest 11. It initializes S to 0 if there is no transfer between i and j with mode k and trip n 12. The time of departure from the node before T is the largest time of departure in the journey delivered , , ,, , , , , , 1 1 1 1 1 1 1 1 1 (1 )* , N M L N M L N M L i j k nS j k n i j k n j k n j k n j k n M i SS S X                , , ,, , , * , , ,i j k ni j k n M i j k nS X  , , , , , , 1 1 1 1 1 1 0, N M L N M L i T k n i j k n i k n i k n j TS S          
  • 23. Proposed Method • Mathematical model for the MMJP – Constraints 13. Uses the solution from Dijkstra’s algorithm, which we have run before the construction of the mathematical model. It makes sure that the first departure from a node of the network happens after the departure time of the traveler plus the walking time from the starting point to the station S , , , 1 1 1 1 N M L S j k n j k n WT DTS    
  • 24. Proposed Method • Mathematical model for the MMJP – Objective Function Minimization of 2 criteria, the total environmental cost and the total travel time of the journey, which is proposed to the user. Coefficients a and b are predefined by the user. The Environmental Cost Ci,j,k is pre-computed for each arc i-j and mode k of the public transportation network. This pre-computation is made using emission calculation models, that take into consideration several parameters, such as the type of fuel (gasoline, diesel, electricity etc.) and the fuel consumption, which concern the vehicle of the public means of transport. Other parameters concern the trip, which the vehicle follows, such as the distance and the gradient between the stops. , , , , ,, , 1 1 1 1 ( * * )* N N M L i j k i j k ni j k i j k n Min z a bC TT X     
  • 25. Conclusion • Novel approach for solving the Environmental Multi-Modal Journey Planning problem. The proposed hybrid algorithm combines the Dijkstra’s algorithm with a Mixed Integer Linear Program (MILP) in order to deliver the journey with the least travel time and environmental cost. • Research is still ongoing for the improvement of our algorithm. The mathematical formulation is still under modification and there may be slight changes in the algorithm.
  • 26. Conclusion • Future work – The objective function shall be split into two, one for the minimization of the travel time and one for the minimization of the environmental cost. Thus, the computation of a Pareto set of optimal journeys will be possible so that the user has more options to consider. – Addition of more objective functions for the minimization of number of transfers, the total fare of the journey etc.
  • 27. Conclusion • Future work – A decomposition method, such as Benders Decomposition method, shall be implemented on the MILP so that it will be easier to solve for big data sets. – Finally, the integration of the algorithm in an online platform having data from the public transportation network of Greece will make possible the wide use of it by the passengers with a large benefit both for them and the environment
  • 28. Thank you for your attention Learn more at: http://www.greenyourmove.org/