Measurement

Every measurement – associated with an error
No measurement is 100% precise or accurate.

3 Types of Measurement

Not Precise + Not Accurate

Precise + Accurate

2 Types of Errors
Precise + Not Accurate

Systematic Error

Random Error

Affects accuracy

Affects precision

high systematic
error

Accurate
NOT accurate
low systematic error
NOT precise
High systematic
High random error

Precise
low random error

Not accurate
High systematic error

2 Types of Errors

Random Error

•
•
•
•

Measurement random
Instrument imprecise/uncertainty
Fluctuation reading burette/pipette
Small sample size/trials
Statistical fluctuation of
measurement/reading by
someone/unpredictable

Systematic Error

•
•
•
•
•

VS

Measurement too high/ low
Instrument not calibrated
Faulty apparatus (zero error)
Incorrect measurement
Imperfect instrument
Procedure/method incorrect/predictable

Accurate + Precise
Accuracy
Measurement value close to correct value

VS

Precise
Measurement value close to each other

high random error
2 Types of Errors
Systematic Error
Affects accuracy

•
•
•
•
•
•

Random Error
High random
error

High systematic
error

Measurement too high/ low
Instrument not calibrated
Faulty apparatus (zero error)
Incorrect measurement
Imperfect instrument
Procedure/method incorrect
Predictable

lower

Correct
value

•
•
•
•
•

Measurement random
Instrument imprecise/uncertainty
Fluctuation reading burette/pipette
Small sample size/trials
Statistical fluctuation of
measurement/reading by someone
Unpredictable

Correct
value

lower

higher

Direction error – always one side (higher/lower)

higher

Direction error – always random

Can be reduced

Can be identified/eliminated
Improve measuring
technique

Affects precision

Calibrating equipment
for zero error

Improve expt
design

Using precise
instrument

By repeating more
trials/average

✗

Calorimetry expt
Prevent heat loss
using insulator

Heating expt
Cool down before
weighing

✓
Random and Systematic Error
Measuring circumference using a ruler
Recording measurement using
uncertainty of equipment

Radius, r = (3.0 ±0.2) cm
Treatment of Uncertainty
Multiplying or dividing measured quantities

Circumference  2r

% uncertainty = sum of % uncertainty of individual quantities
Radius, r = (3.0 ±0.2)
%uncertainty radius (%Δr) = 0.2 x 100 = 6.6%
3.0
% uncertainty C = % uncertainty r
% ΔC = % Δr
* Constant, pure/counting number has no uncertainty and sf not taken

Random and Systematic Error
Correct value = 20.4
Expt value
= 19 ±6.7%

Circumference  2r
Circumference  2  3.14 3.0  18.8495
0.2
100%  6.6%
3.0
%c  %r
%c  6.6%
Circumference  (18.8495  6.7%)
%r 

AbsoluteC 

6.6
18.8495  1.25
100

Circumference  (18.8495  1.25)
Circumference  (19  1)
%Percentage Error = 6.7%

%Error  (

exp t  correct
) 100%
correct

19  20.4
% Error  (
) 100%  6.7%
20.4

Circumference  (18.8495 6.6%)
% Random Error

%Random Error
6.6%

High random error
Way reduce random error

%Systematic Error
0.1%

Small systematic error
Step/procedure correct
Random and Systematic Error
Measuring displacement using a stopwatch
Recording measurement using
uncertainty of equipment

Time, t = (2.25 ±0.01) cm

Treatment of Uncertainty
1 2
Multiplying or dividing measured quantities Displacement, s  gt

2

% uncertainty = sum of % uncertainty of individual quantities
Time, t = (2.25 ±0.01)
%uncertainty time (%Δt) = 0.01 x 100 = 0.4%
2.25
% uncertainty s = 2 x % uncertainty t
% Δs = 2 x % Δt
* For measurement raised to power of n, multiply % uncertainty by n

Displacement, s 

1 2
gt
2

1
Displacement, s   9.8 x2.25x2.25  24.80
2

0.01
100%  0.4%
2.25
Measurement raised to power of 2,
%s  2  %t
multiply % uncertainty by 2
%s  2  0.4%  0.8%
Displacement  (24.80  0.8%)
%t 

Absolutes 

0.4
 24.80  0.198
100

Random and Systematic Error
Correct value = 23.2
Expt value
= 24.8 ±0.8%

exp t  correct
%Error  (
) 100%
correct
%Error  (

24.8  23.2
) 100%  0.7%
23.2

Displacement  (24.80  0.8%)
% Random Error

Displacement  (24.80  0.198)
Displacement  (24.8  0.2)
%Percentage Error = 0.7%

%Random Error 0.8%

% error fall within the % uncertainty (%Random error)
• Little/No systematic error
• Result is reliable but need to reduce random error
Random and Systematic Error
Measuring period using a ruler
Recording measurement using
uncertainty of equipment

Length, I = (1.25 ±0.05) m

Treatment of Uncertainty
Multiplying or dividing measured quantities

L
g
1.25
T  2
 2.24
9. 8
T  2

0.05
100%  4%
1.25
1
power
%T   %l Measurement raised to by 1/2 of 1/2,
multiply % uncertainty
2
%T  2%
%l 

T  2

L
g

% uncertainty = sum of % uncertainty of individual quantities
Length, I = (1.25 ±0.05)
%uncertainty length (%ΔI) = 0.05 x 100 = 4%
1.25
% uncertainty T = ½ x % uncertainty l
% ΔT = ½ x % ΔI
* For measurement raised to power of n, multiply % uncertainty by n

Random and Systematic Error

T  (2.24  2%)
AbsoluteT 

2
 2.24  0.044
100

T  (2.24  0.044)
T  (2.24  0.04)

Correct value = 2.15
Expt value
= 2.24 ±2%

%Percentage Error = 4.2%

%Error  (

exp t  correct
) 100%
correct

%Error  (

2.24  2.15
) 100%  4.2%
2.15

T  (2.24  2%)

% Random Error

%Random Error = 2%

%Systematic Error = 2.2%

% error fall outside> than % uncertainty (%Random error)
• Random error cannot account for % error
• Systematic error occur – way to reduce systematic error
Random and Systematic Error
Measuring Area using ruler
Recording measurement using
uncertainty of equipment

Length, I = (4.52 ±0.02) cm
Height, h = (2.0 ±0.2)cm3
Treatment of Uncertainty
Multiplying or dividing measured quantities

Area, A  Length, l  height, h

% uncertainty = sum of % uncertainty of individual quantities
Length, l = (4.52 ±0.02)
%uncertainty length (%Δl) = 0.02 x 100 = 0.442%
4.52
Height, h = (2.0 ±0.2)
%uncertainty height (%Δh) = 0.2 x 100 = 10%
2.0
% uncertainty A = % uncertainty length + % uncertainty height
% ΔA =
% ΔI
+
%Δh

Random and Systematic Error

Area  4.52 2.0  9.04
0.02
100%  0.442%
4.52
0.2
%h 
100%  10%
2.0
%A  %l  %h
%A  0.442%  10%  10.442%
Area  (9.04  10%)
%l 

AbsoluteA 

10
 9.04  0.9
100

Area  (9.0  0.9)
%Percentage Error = 9%

Correct value = 22.7
Expt value
= 24.8 ±0.87%

%Error  (

Area, A  Length, l  height, h

exp t  correct
) 100%
correct

24.8  22.7
%Error  (
) 100%  9%
22.7

Area  (9.04  10%)
% Random Error

%Random Error = 10%
% error fall within the % uncertainty (%Random error)
• Little/No systematic error
• Result is reliable – need to reduce random error
Reduce random error – HUGE (10%) – use precise instrument vernier calipers

Vernier caliper
Random and Systematic Error
Measuring moles using
dropper and volumetric flask
Conc, c
= (2.00 ±0.02) cm
Volume, v = (2.0 ±0.1)dm3

Mole, n  Conc, c Volume, v
Mole  2.00 2.0  4.00
0.02
100%  1%
2.00
0.1
%v 
100%  5%
2.0
%n  %c  %v
%c 

Treatment of Uncertainty
Multiplying or dividing measured quantity Mole, n  Conc Vol
% uncertainty = sum of % uncertainty of individual quantity
Conc, c = (2.00 ±0.02)
%uncertainty conc (%Δc) = 0.02 x 100 = 1%
2.00
Volume, v = (2.0 ±0.1)
%uncertainty volume (%Δv) = 0.1 x 100 = 5%
2.0
% uncertainty n = % uncertainty conc + % uncertainty volume
% Δn =
% Δc
+
%Δv

Dropper, volumetric
flask

%n  1%  5%  6%
Mole  (4.00  6%)
Absoluten 

Mole  (4.00  0.24)

6
 4.00  0.24
100

Mole  (4.0  0.2)
%Percentage Error = 10%

Random and Systematic Error
Correct value = 3.63
Expt value
= 4.00 ±6%

exp t  correct
%Error  (
) 100%
correct
% Error  (

4  3.63
) 100%  10%
3.63
Mole  (4.00  6%)
% Random Error

%Random Error = 6%

%Systematic Error = 4%

% error fall outside> than % uncertainty (%Random error)
• Random error cannot account for % error
• Systematic error occur – improve on method/steps used.
Ways to reduce error

Random error (6%)
More precise instrument -pipette

Systematic error (4%)
Calibration of instrument
Random and Systematic Error

Density, D 

Measuring density using mass
and measuring cylinder

Mass, m = (482.63 ±1)g
Volume, v = (258 ±5)cm3

Density, D 

Mass
Volume

482.63
 1.870658
258

1
100%  0.21%
482.63
5
%V 
100%  1.93%
258
%D  %m  %V
%m 

Treatment of Uncertainty
Mass
Multiplying or dividing measured quantities Density, D  Volume
% uncertainty = sum of % uncertainty of individual quantities
Mass, m = (482.63 ±1)
%uncertainty mass (%Δm) = 1
x 100 = 0.21%
482.63
Volume, V = (258 ±5)
%uncertainty vol (%ΔV) = 5 x 100 = 1.93%
258
% uncertainty density = % uncertainty mass + % uncertainty volume
% ΔD =
% Δm
+
%ΔV

%D  0.21%  1.93%  2.1%
Density  (1.87  2.1%)
AbsoluteD 

2.1
1.87  0.04
100

Density  (1.87  0.04)
%Percentage Error = 5%

Random and Systematic Error

Correct value = 1.78
Expt value
= 1.87 ±2.1%
%Random Error = 2.1%

exp t  correct
%Error  (
) 100%
correct
1.87  1.78
%Error  (
) 100%  5%
1.78

%Systematic Error = 2.9%

% error fall outside> than % uncertainty (%Random error)
• Random error cannot account for % error
• Systematic error occurs

Ways to reduce error

Density  (1.87  2.1%)
Random error (6%)
Precise instrument
mass balance

% Random Error
Precise balance

Systematic error (4%)
Use different method like
displacement can
Displacement can
Random and Systematic Error
Measuring Enthalpy change using calorimeter/thermometer
Recording measurement using
uncertainty of equipment

Mass water = (2.00 ±0.02)g
ΔTemp
= (2.0 ±0.4) C
Treatment of Uncertainty
Multiplying or dividing measured quantities Enthalpy, H
% uncertainty = sum of % uncertainty of individual quantities
Mass, m = (2.00 ±0.02)
%uncertainty mass (%Δm) = 0.02 x 100 = 1%
2.00
ΔTemp = (2.0 ±0.4)
%uncertainty temp (%ΔT) = 0.4 x 100 = 20%
2.0
% uncertainty H = % uncertainty mass + % uncertainty temp
% ΔH =
% Δm
+
%ΔT

 m  c  T

Enthalpy, H  2.00 4.18 2.0  16.72
0.02
100%  1%
2.00
0.4
%T 
100%  20%
2.0
%H  %m  %T
%m 

%H  1%  20%  21%
Enthalpy  (16.72  21%)
AbsoluteH 

21
16.72  3.51
100

Enthalpy  (16.72  3.51)
Enthalpy  (17  4)

Random and Systematic Error

%Percentage Error = 50%

Correct value = 33.44
Expt value
= 16.72 ±21%

%Error  (

Enthalpy, H  m  c  T

exp t  correct
) 100%
correct

%Random Error =21%

16.72  33.44
% Error  (
) 100%  50%
33.44
Enthalpy  (16.72  21%)

%Systematic Error = 29%

% error fall outside> than % uncertainty (%Random error)
• Random error cannot account for % error
• Systematic error occurs – reduce this error
Ways to reduce error

Random error (21%)
Precise Temp sensor

% Random Error

Temp sensor

Systematic error (29%)
Reduce heat loss
using styrofoam cup
Random and Systematic Error
Measuring speed change using stopwatch
Recording measurement using
uncertainty of equipment
G = (20 ± 0.5)
H = (16 ± 0.5)
Z = (106 ± 1.0)
Treatment of Uncertainty
Multiplying or dividing measured quantities

Speed, s 

✔

Addition
add absolute uncertainty

Speed, s 

G+H = (36 ± 1)
Z = (106 ± 1.0)

(G  H )
Z

% uncertainty = sum of % uncertainty of individual quantities
(G + H) = (36 ±1)
%uncertainty (G+H) (%ΔG+H) = 1 x 100 = 2.77%
36
Z = (106 ±1.0)
%uncertainty Z (%Δz) = 1.0 x 100 = 0.94%
106
%uncertainty s = %uncertainty(G+H) + %uncertainty(Z)
% Δs = % Δ(G+H)
+
%Δz

(G  H )
Z

(20  16)
 0.339
106
1.0
%(G  H ) 
100%  2.77%
36
1.0
%Z 
100%  0.94%
106
Speed, s 

%S  %(G  H )  %Z
%S  2.77%  0.94%  3.7%

Speed, s  (0.339  3.7%)
AbsoluteS 

*Adding or subtracting- Max absolute uncertainty is the SUM of individual uncertainties

Random and Systematic Error

3.7
 0.339  0.012
100

Speed, s  (0.339  0.012)
%Percentage Error = 3%

Correct value = 0.330
Expt value
= 0.339 ±3.7%

%Error  (

%Error  (

exp t  correct
) 100%
correct

%Random Error = 3.7%

% error fall within the % uncertainty (%Random error)
• Little/No systematic error
• Result is reliable – need to reduce random error

0.339  0.330
) 100%  3%
0.330

Ways to reduce error

Speed  (0.339  3.7%)
Random error (3.7%)
Precise time sensor
% Random Error

precise time sensor

No systematic error
Steps/method are reliable.
Random and Systematic Error
Recording measurement using
uncertainty of equipment
Volt, v = (2.0 ± 0.2)
Current, I = ( 3.0 ± 0.6)
Temp, t = (4.52 ± 0.02)

Treatment of Uncertainty
Multiplying or dividing measured quantities

Energy, E 

0.02
 100%  0.442%
4.52
0 .6
% I 
 100%  20%
3 .0
0.2
% v 
 100%  10%
2.0
1
%E  %t  2  % I   %v
2
% t 

tI2
v1/ 2

% uncertainty = sum of % uncertainty of individual quantity
Time, t = (4.52 ±0.02)
%uncertainty temp (%Δt) = 0.02 x 100 = 0.442%
4.52
Current, I = (3.0 ±0.6)
%uncertainty current (%ΔI) = 0.6 x 100 = 20%
3.0
Volt, v = (2.0±0.2)
%uncertainty volt (%Δv) = 0.2 x 100 = 10%
2.0
% ΔE = %Δt + 2 x %ΔI + ½ x %ΔV

%E  

tI2
Energy, E  1/ 2
v
4.52(3.0) 2
Energy, E 
 28.638
2.01/ 2

0.02
0.6
1 0.2
100%    2  100%     100%   45%
4.52
3.0
2 2.0

Energy, E  (28.638  45%)
AbsoluteE 

Energy, E  (29  13)

45
 28.638  13
100

Random and Systematic Error
%Percentage Error = 50%

Correct value = 19.092
Expt value
= 28.638 ±45%

%Error  (

exp t  correct
) 100%
correct

%Random Error = 45%

% error fall outside> than % uncertainty (%Random error)
• Random error cannot account for % error
• Systematic error occur – small compared to random error

28.638  19.092
%Error  (
) 100%  50%
19.092

Energy, E  (28.638  45%)
% Random Error

%Systematic Error = 5%

Reduce random error – HUGE (45%)
Precise instrument.
Temp sensor
Expt on enthalpy change of displacement between Zinc and copper sulphate
25 ml (1M) (0.025mole) CuSO4 solution added to cup. Initial Temp, T1 taken. Excess zinc powder was added.
Final Temp T2 was taken. Calculate ΔH for reaction.

Treatment of uncertainty

Adding or subtracting
Max absolute uncertainty is the SUM of individual uncertainties

Addition/Subtraction/Multiply/Divide

Multiplying or dividing
Max %uncertainty is the SUM of individual %uncertainties
Addition/Subtraction
Add absolute uncertainty

Initial mass beaker, M1
= (20.00 ±0.01) g
Final mass beaker + CuSO4 M2 = (45.00 ±0.01)g
Mass CuSO4 m = (M2 –M1)
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02

Initial Temp, T1 = (20.0 ±0.2)C
Final Temp, T2 = (70.6 ±0.2)C
Diff Temp ΔT = (T2 –T1)
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4

Enthalpy, H = (M2-M1) x c x (T2-T1)
Enthalpy, H  m  c  T

Multiplication
Add % uncertainty

Enthalpy, H  25.00  4.18  50.6  5.29
Mass CuSO4 m = (45.00 –20.00) = 25.00
Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02
Mass CuSO4 m = (25.00 ±0.02)g

Mass CuSO4 m = (25.00 ±0.02)g

Diff Temp ΔT = (70.6 –20.0) = 50.6
Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4
Diff Temp, ΔT = (50.6 ±0.4)

ΔTemp = (50.6 ±0.4) C

Treatment of Uncertainty
Multiplying or dividing measured quantities Enthalpy, H  m  c  T
% uncertainty = sum of % uncertainty of individual quantities
Mass, m = (25.00 ±0.02)
%uncertainty mass (%Δm) = 0.02 x 100 = 0.08%
25.00
ΔTemp = (50.6 ±0.4)
%uncertainty temp (%ΔT) = 0.4 x 100 = 0.8%
50.6
% uncertainty H = % uncertainty mass + % uncertainty temp
% ΔH =
% Δm
+
%ΔT

0.025moleCuSO4  5.29

1moleCuSO4  5.29 

1
 212
0.025

0.02
 100%  0.08%
25.00
0.4
%T 
100%  0.8%
50.6
%H  %m  %T
%m 

%H  0.08%  0.8%  0.88%
Enthalpy  (212  0.88%)
AbsoluteH 

Enthalpy  (212  1.8)
Enthalpy  (212  2)

0.88
 212  1.86
100
Continue  next slide
Random and Systematic Error
Measuring Enthalpy change using calorimeter/thermometer

Enthalpy = (212 ± 0.88%)

Recording measurement using
uncertainty of equipment

Mass CuSO4 = (25.00 ±0.02)g
ΔTemp
= (50.6 ±0.4) C

%Percentage Error = 15%

Random and Systematic Error

Correct value = 250
Expt value
= 212 ±0.8%
%Random Error =0.88%

%Error  (
% Error  (

exp t  correct
) 100%
correct

%Systematic Error = 14.1%

% error fall outside> than % uncertainty (%Random error)
• Small random error cannot account for % error
• Systematic error occurs – reduce this error

212  250
) 100%  15%
250

Ways to reduce error

Enthalpy  (212  0.88%)
% Random Error

Reduce heat loss
use styrofoam cup

Extrapolate to higher temp
(Temp correction)

Small random error
Equipments OK

Systematic error (14.2%)

Stir the solution to
distribute heat

stirrer

•
•
•
•

Assumption wrong
Heat capacity cup is significant
Specific heat capacity CuSO4 is not 4.18
Thermometer has measurable heat capacity
Density solution not 1.00g/dm3

✗

IB Chemistry on Uncertainty, Error Analysis, Random and Systematic Error

  • 1.
    Measurement Every measurement –associated with an error No measurement is 100% precise or accurate. 3 Types of Measurement Not Precise + Not Accurate Precise + Accurate 2 Types of Errors Precise + Not Accurate Systematic Error Random Error Affects accuracy Affects precision high systematic error Accurate NOT accurate low systematic error NOT precise High systematic High random error Precise low random error Not accurate High systematic error 2 Types of Errors Random Error • • • • Measurement random Instrument imprecise/uncertainty Fluctuation reading burette/pipette Small sample size/trials Statistical fluctuation of measurement/reading by someone/unpredictable Systematic Error • • • • • VS Measurement too high/ low Instrument not calibrated Faulty apparatus (zero error) Incorrect measurement Imperfect instrument Procedure/method incorrect/predictable Accurate + Precise Accuracy Measurement value close to correct value VS Precise Measurement value close to each other high random error
  • 2.
    2 Types ofErrors Systematic Error Affects accuracy • • • • • • Random Error High random error High systematic error Measurement too high/ low Instrument not calibrated Faulty apparatus (zero error) Incorrect measurement Imperfect instrument Procedure/method incorrect Predictable lower Correct value • • • • • Measurement random Instrument imprecise/uncertainty Fluctuation reading burette/pipette Small sample size/trials Statistical fluctuation of measurement/reading by someone Unpredictable Correct value lower higher Direction error – always one side (higher/lower) higher Direction error – always random Can be reduced Can be identified/eliminated Improve measuring technique Affects precision Calibrating equipment for zero error Improve expt design Using precise instrument By repeating more trials/average ✗ Calorimetry expt Prevent heat loss using insulator Heating expt Cool down before weighing ✓
  • 3.
    Random and SystematicError Measuring circumference using a ruler Recording measurement using uncertainty of equipment Radius, r = (3.0 ±0.2) cm Treatment of Uncertainty Multiplying or dividing measured quantities Circumference  2r % uncertainty = sum of % uncertainty of individual quantities Radius, r = (3.0 ±0.2) %uncertainty radius (%Δr) = 0.2 x 100 = 6.6% 3.0 % uncertainty C = % uncertainty r % ΔC = % Δr * Constant, pure/counting number has no uncertainty and sf not taken Random and Systematic Error Correct value = 20.4 Expt value = 19 ±6.7% Circumference  2r Circumference  2  3.14 3.0  18.8495 0.2 100%  6.6% 3.0 %c  %r %c  6.6% Circumference  (18.8495  6.7%) %r  AbsoluteC  6.6 18.8495  1.25 100 Circumference  (18.8495  1.25) Circumference  (19  1) %Percentage Error = 6.7% %Error  ( exp t  correct ) 100% correct 19  20.4 % Error  ( ) 100%  6.7% 20.4 Circumference  (18.8495 6.6%) % Random Error %Random Error 6.6% High random error Way reduce random error %Systematic Error 0.1% Small systematic error Step/procedure correct
  • 4.
    Random and SystematicError Measuring displacement using a stopwatch Recording measurement using uncertainty of equipment Time, t = (2.25 ±0.01) cm Treatment of Uncertainty 1 2 Multiplying or dividing measured quantities Displacement, s  gt 2 % uncertainty = sum of % uncertainty of individual quantities Time, t = (2.25 ±0.01) %uncertainty time (%Δt) = 0.01 x 100 = 0.4% 2.25 % uncertainty s = 2 x % uncertainty t % Δs = 2 x % Δt * For measurement raised to power of n, multiply % uncertainty by n Displacement, s  1 2 gt 2 1 Displacement, s   9.8 x2.25x2.25  24.80 2 0.01 100%  0.4% 2.25 Measurement raised to power of 2, %s  2  %t multiply % uncertainty by 2 %s  2  0.4%  0.8% Displacement  (24.80  0.8%) %t  Absolutes  0.4  24.80  0.198 100 Random and Systematic Error Correct value = 23.2 Expt value = 24.8 ±0.8% exp t  correct %Error  ( ) 100% correct %Error  ( 24.8  23.2 ) 100%  0.7% 23.2 Displacement  (24.80  0.8%) % Random Error Displacement  (24.80  0.198) Displacement  (24.8  0.2) %Percentage Error = 0.7% %Random Error 0.8% % error fall within the % uncertainty (%Random error) • Little/No systematic error • Result is reliable but need to reduce random error
  • 5.
    Random and SystematicError Measuring period using a ruler Recording measurement using uncertainty of equipment Length, I = (1.25 ±0.05) m Treatment of Uncertainty Multiplying or dividing measured quantities L g 1.25 T  2  2.24 9. 8 T  2 0.05 100%  4% 1.25 1 power %T   %l Measurement raised to by 1/2 of 1/2, multiply % uncertainty 2 %T  2% %l  T  2 L g % uncertainty = sum of % uncertainty of individual quantities Length, I = (1.25 ±0.05) %uncertainty length (%ΔI) = 0.05 x 100 = 4% 1.25 % uncertainty T = ½ x % uncertainty l % ΔT = ½ x % ΔI * For measurement raised to power of n, multiply % uncertainty by n Random and Systematic Error T  (2.24  2%) AbsoluteT  2  2.24  0.044 100 T  (2.24  0.044) T  (2.24  0.04) Correct value = 2.15 Expt value = 2.24 ±2% %Percentage Error = 4.2% %Error  ( exp t  correct ) 100% correct %Error  ( 2.24  2.15 ) 100%  4.2% 2.15 T  (2.24  2%) % Random Error %Random Error = 2% %Systematic Error = 2.2% % error fall outside> than % uncertainty (%Random error) • Random error cannot account for % error • Systematic error occur – way to reduce systematic error
  • 6.
    Random and SystematicError Measuring Area using ruler Recording measurement using uncertainty of equipment Length, I = (4.52 ±0.02) cm Height, h = (2.0 ±0.2)cm3 Treatment of Uncertainty Multiplying or dividing measured quantities Area, A  Length, l  height, h % uncertainty = sum of % uncertainty of individual quantities Length, l = (4.52 ±0.02) %uncertainty length (%Δl) = 0.02 x 100 = 0.442% 4.52 Height, h = (2.0 ±0.2) %uncertainty height (%Δh) = 0.2 x 100 = 10% 2.0 % uncertainty A = % uncertainty length + % uncertainty height % ΔA = % ΔI + %Δh Random and Systematic Error Area  4.52 2.0  9.04 0.02 100%  0.442% 4.52 0.2 %h  100%  10% 2.0 %A  %l  %h %A  0.442%  10%  10.442% Area  (9.04  10%) %l  AbsoluteA  10  9.04  0.9 100 Area  (9.0  0.9) %Percentage Error = 9% Correct value = 22.7 Expt value = 24.8 ±0.87% %Error  ( Area, A  Length, l  height, h exp t  correct ) 100% correct 24.8  22.7 %Error  ( ) 100%  9% 22.7 Area  (9.04  10%) % Random Error %Random Error = 10% % error fall within the % uncertainty (%Random error) • Little/No systematic error • Result is reliable – need to reduce random error Reduce random error – HUGE (10%) – use precise instrument vernier calipers Vernier caliper
  • 7.
    Random and SystematicError Measuring moles using dropper and volumetric flask Conc, c = (2.00 ±0.02) cm Volume, v = (2.0 ±0.1)dm3 Mole, n  Conc, c Volume, v Mole  2.00 2.0  4.00 0.02 100%  1% 2.00 0.1 %v  100%  5% 2.0 %n  %c  %v %c  Treatment of Uncertainty Multiplying or dividing measured quantity Mole, n  Conc Vol % uncertainty = sum of % uncertainty of individual quantity Conc, c = (2.00 ±0.02) %uncertainty conc (%Δc) = 0.02 x 100 = 1% 2.00 Volume, v = (2.0 ±0.1) %uncertainty volume (%Δv) = 0.1 x 100 = 5% 2.0 % uncertainty n = % uncertainty conc + % uncertainty volume % Δn = % Δc + %Δv Dropper, volumetric flask %n  1%  5%  6% Mole  (4.00  6%) Absoluten  Mole  (4.00  0.24) 6  4.00  0.24 100 Mole  (4.0  0.2) %Percentage Error = 10% Random and Systematic Error Correct value = 3.63 Expt value = 4.00 ±6% exp t  correct %Error  ( ) 100% correct % Error  ( 4  3.63 ) 100%  10% 3.63 Mole  (4.00  6%) % Random Error %Random Error = 6% %Systematic Error = 4% % error fall outside> than % uncertainty (%Random error) • Random error cannot account for % error • Systematic error occur – improve on method/steps used. Ways to reduce error Random error (6%) More precise instrument -pipette Systematic error (4%) Calibration of instrument
  • 8.
    Random and SystematicError Density, D  Measuring density using mass and measuring cylinder Mass, m = (482.63 ±1)g Volume, v = (258 ±5)cm3 Density, D  Mass Volume 482.63  1.870658 258 1 100%  0.21% 482.63 5 %V  100%  1.93% 258 %D  %m  %V %m  Treatment of Uncertainty Mass Multiplying or dividing measured quantities Density, D  Volume % uncertainty = sum of % uncertainty of individual quantities Mass, m = (482.63 ±1) %uncertainty mass (%Δm) = 1 x 100 = 0.21% 482.63 Volume, V = (258 ±5) %uncertainty vol (%ΔV) = 5 x 100 = 1.93% 258 % uncertainty density = % uncertainty mass + % uncertainty volume % ΔD = % Δm + %ΔV %D  0.21%  1.93%  2.1% Density  (1.87  2.1%) AbsoluteD  2.1 1.87  0.04 100 Density  (1.87  0.04) %Percentage Error = 5% Random and Systematic Error Correct value = 1.78 Expt value = 1.87 ±2.1% %Random Error = 2.1% exp t  correct %Error  ( ) 100% correct 1.87  1.78 %Error  ( ) 100%  5% 1.78 %Systematic Error = 2.9% % error fall outside> than % uncertainty (%Random error) • Random error cannot account for % error • Systematic error occurs Ways to reduce error Density  (1.87  2.1%) Random error (6%) Precise instrument mass balance % Random Error Precise balance Systematic error (4%) Use different method like displacement can Displacement can
  • 9.
    Random and SystematicError Measuring Enthalpy change using calorimeter/thermometer Recording measurement using uncertainty of equipment Mass water = (2.00 ±0.02)g ΔTemp = (2.0 ±0.4) C Treatment of Uncertainty Multiplying or dividing measured quantities Enthalpy, H % uncertainty = sum of % uncertainty of individual quantities Mass, m = (2.00 ±0.02) %uncertainty mass (%Δm) = 0.02 x 100 = 1% 2.00 ΔTemp = (2.0 ±0.4) %uncertainty temp (%ΔT) = 0.4 x 100 = 20% 2.0 % uncertainty H = % uncertainty mass + % uncertainty temp % ΔH = % Δm + %ΔT  m  c  T Enthalpy, H  2.00 4.18 2.0  16.72 0.02 100%  1% 2.00 0.4 %T  100%  20% 2.0 %H  %m  %T %m  %H  1%  20%  21% Enthalpy  (16.72  21%) AbsoluteH  21 16.72  3.51 100 Enthalpy  (16.72  3.51) Enthalpy  (17  4) Random and Systematic Error %Percentage Error = 50% Correct value = 33.44 Expt value = 16.72 ±21% %Error  ( Enthalpy, H  m  c  T exp t  correct ) 100% correct %Random Error =21% 16.72  33.44 % Error  ( ) 100%  50% 33.44 Enthalpy  (16.72  21%) %Systematic Error = 29% % error fall outside> than % uncertainty (%Random error) • Random error cannot account for % error • Systematic error occurs – reduce this error Ways to reduce error Random error (21%) Precise Temp sensor % Random Error Temp sensor Systematic error (29%) Reduce heat loss using styrofoam cup
  • 10.
    Random and SystematicError Measuring speed change using stopwatch Recording measurement using uncertainty of equipment G = (20 ± 0.5) H = (16 ± 0.5) Z = (106 ± 1.0) Treatment of Uncertainty Multiplying or dividing measured quantities Speed, s  ✔ Addition add absolute uncertainty Speed, s  G+H = (36 ± 1) Z = (106 ± 1.0) (G  H ) Z % uncertainty = sum of % uncertainty of individual quantities (G + H) = (36 ±1) %uncertainty (G+H) (%ΔG+H) = 1 x 100 = 2.77% 36 Z = (106 ±1.0) %uncertainty Z (%Δz) = 1.0 x 100 = 0.94% 106 %uncertainty s = %uncertainty(G+H) + %uncertainty(Z) % Δs = % Δ(G+H) + %Δz (G  H ) Z (20  16)  0.339 106 1.0 %(G  H )  100%  2.77% 36 1.0 %Z  100%  0.94% 106 Speed, s  %S  %(G  H )  %Z %S  2.77%  0.94%  3.7% Speed, s  (0.339  3.7%) AbsoluteS  *Adding or subtracting- Max absolute uncertainty is the SUM of individual uncertainties Random and Systematic Error 3.7  0.339  0.012 100 Speed, s  (0.339  0.012) %Percentage Error = 3% Correct value = 0.330 Expt value = 0.339 ±3.7% %Error  ( %Error  ( exp t  correct ) 100% correct %Random Error = 3.7% % error fall within the % uncertainty (%Random error) • Little/No systematic error • Result is reliable – need to reduce random error 0.339  0.330 ) 100%  3% 0.330 Ways to reduce error Speed  (0.339  3.7%) Random error (3.7%) Precise time sensor % Random Error precise time sensor No systematic error Steps/method are reliable.
  • 11.
    Random and SystematicError Recording measurement using uncertainty of equipment Volt, v = (2.0 ± 0.2) Current, I = ( 3.0 ± 0.6) Temp, t = (4.52 ± 0.02) Treatment of Uncertainty Multiplying or dividing measured quantities Energy, E  0.02  100%  0.442% 4.52 0 .6 % I   100%  20% 3 .0 0.2 % v   100%  10% 2.0 1 %E  %t  2  % I   %v 2 % t  tI2 v1/ 2 % uncertainty = sum of % uncertainty of individual quantity Time, t = (4.52 ±0.02) %uncertainty temp (%Δt) = 0.02 x 100 = 0.442% 4.52 Current, I = (3.0 ±0.6) %uncertainty current (%ΔI) = 0.6 x 100 = 20% 3.0 Volt, v = (2.0±0.2) %uncertainty volt (%Δv) = 0.2 x 100 = 10% 2.0 % ΔE = %Δt + 2 x %ΔI + ½ x %ΔV %E   tI2 Energy, E  1/ 2 v 4.52(3.0) 2 Energy, E   28.638 2.01/ 2 0.02 0.6 1 0.2 100%    2  100%     100%   45% 4.52 3.0 2 2.0 Energy, E  (28.638  45%) AbsoluteE  Energy, E  (29  13) 45  28.638  13 100 Random and Systematic Error %Percentage Error = 50% Correct value = 19.092 Expt value = 28.638 ±45% %Error  ( exp t  correct ) 100% correct %Random Error = 45% % error fall outside> than % uncertainty (%Random error) • Random error cannot account for % error • Systematic error occur – small compared to random error 28.638  19.092 %Error  ( ) 100%  50% 19.092 Energy, E  (28.638  45%) % Random Error %Systematic Error = 5% Reduce random error – HUGE (45%) Precise instrument. Temp sensor
  • 12.
    Expt on enthalpychange of displacement between Zinc and copper sulphate 25 ml (1M) (0.025mole) CuSO4 solution added to cup. Initial Temp, T1 taken. Excess zinc powder was added. Final Temp T2 was taken. Calculate ΔH for reaction. Treatment of uncertainty Adding or subtracting Max absolute uncertainty is the SUM of individual uncertainties Addition/Subtraction/Multiply/Divide Multiplying or dividing Max %uncertainty is the SUM of individual %uncertainties Addition/Subtraction Add absolute uncertainty Initial mass beaker, M1 = (20.00 ±0.01) g Final mass beaker + CuSO4 M2 = (45.00 ±0.01)g Mass CuSO4 m = (M2 –M1) Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Initial Temp, T1 = (20.0 ±0.2)C Final Temp, T2 = (70.6 ±0.2)C Diff Temp ΔT = (T2 –T1) Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Enthalpy, H = (M2-M1) x c x (T2-T1) Enthalpy, H  m  c  T Multiplication Add % uncertainty Enthalpy, H  25.00  4.18  50.6  5.29 Mass CuSO4 m = (45.00 –20.00) = 25.00 Absolute uncertainty, Δm = (0.01 + 0.01) = 0.02 Mass CuSO4 m = (25.00 ±0.02)g Mass CuSO4 m = (25.00 ±0.02)g Diff Temp ΔT = (70.6 –20.0) = 50.6 Absolute uncertainty, ΔT = (0.2 + 0.2) = 0.4 Diff Temp, ΔT = (50.6 ±0.4) ΔTemp = (50.6 ±0.4) C Treatment of Uncertainty Multiplying or dividing measured quantities Enthalpy, H  m  c  T % uncertainty = sum of % uncertainty of individual quantities Mass, m = (25.00 ±0.02) %uncertainty mass (%Δm) = 0.02 x 100 = 0.08% 25.00 ΔTemp = (50.6 ±0.4) %uncertainty temp (%ΔT) = 0.4 x 100 = 0.8% 50.6 % uncertainty H = % uncertainty mass + % uncertainty temp % ΔH = % Δm + %ΔT 0.025moleCuSO4  5.29 1moleCuSO4  5.29  1  212 0.025 0.02  100%  0.08% 25.00 0.4 %T  100%  0.8% 50.6 %H  %m  %T %m  %H  0.08%  0.8%  0.88% Enthalpy  (212  0.88%) AbsoluteH  Enthalpy  (212  1.8) Enthalpy  (212  2) 0.88  212  1.86 100 Continue  next slide
  • 13.
    Random and SystematicError Measuring Enthalpy change using calorimeter/thermometer Enthalpy = (212 ± 0.88%) Recording measurement using uncertainty of equipment Mass CuSO4 = (25.00 ±0.02)g ΔTemp = (50.6 ±0.4) C %Percentage Error = 15% Random and Systematic Error Correct value = 250 Expt value = 212 ±0.8% %Random Error =0.88% %Error  ( % Error  ( exp t  correct ) 100% correct %Systematic Error = 14.1% % error fall outside> than % uncertainty (%Random error) • Small random error cannot account for % error • Systematic error occurs – reduce this error 212  250 ) 100%  15% 250 Ways to reduce error Enthalpy  (212  0.88%) % Random Error Reduce heat loss use styrofoam cup Extrapolate to higher temp (Temp correction) Small random error Equipments OK Systematic error (14.2%) Stir the solution to distribute heat stirrer • • • • Assumption wrong Heat capacity cup is significant Specific heat capacity CuSO4 is not 4.18 Thermometer has measurable heat capacity Density solution not 1.00g/dm3 ✗