SlideShare a Scribd company logo
Concordia University                                                            February 13, 2009

                                Applied Differential Equations
                                          Section J
                                         Exam I (B)



                                         ANSWER KEY



   (1) (10 points) The ODE
                                             dy
                                          x2     = y(1 − x)
                                             dx
       is separable. It can be written in the form
                                             dy   1−x
                                                =     dx,
                                              y    x2
       which, by integration leads to the solution in implicit form
                                                 1
                                     ln | y |= − − ln | x | +C,
                                                 x
       where C is an arbitrary constant.


   (2) (10 points) As the equation y dx − (x + y) dy = 0 is homogeneous, we proceed with the
                                 dy   du
       substitution y = ux (thus    =    x + u).
                                 dx   dx
         We obtain the following ODE for the dependent variable u:

                                          du    u
                                         x   =      − u.
                                          dx   u+1
                                                       du       u2                      u+1
        Furthermore, this is a separable ODE, namely x    =−        . We re-write it as     du =
                                                       dx     u+1                        u2
        1
       − dx and we integrate both sides to obtain:
        x
                          1
                       − + ln |u| = − ln |x| + C, C arbitrary constant.
                         u
                        y
        Recall that u = which leads to the implicit solution of the original ODE in the form
                        x
                       x
                      − + ln |y/x| = − ln |x| + C, C arbitrary constant.
                        y

          Note: One can use the identity ln(a/b) = ln a − ln b to simplify the previous form of the
                    x
       solution to − + ln |y| = C, C arbitrary constant.
                    y


                                                  1
2

    (3) Given
                                                                   1
                            y(y + sin x) dx +   2xy − cos x +              dy = 0,
                                                                  y+3
          we consider f (x, y) such that
                                           ∂f
                                              (x, y) = y(y + sin x)
                                           ∂x
                                    ∂f                                1
                                       (x, y) = 2xy − cos x +      .
                                    ∂y                        y+3
          Integrating the first equation with respect to x, we obtain

                                      f (x, y) = y 2 x − y cos x + c(y).
          To find c(y), we evaluate
                      ∂f                                                       1
                         (x, y) = 2yx − cos x + c (y) = 2xy − cos x +                ,
                      ∂y                                                      y+3
                                                     1
       hence c(y) satisfies the ODE: c (y) =                . Therefore c(y) = 2 y + 3 + C, where C is an
                                                     y+3
       arbitrary constant.
          Finally we have that f (x, y) = y 2 x−y cos x+2 y + 3+C, and we conclude that the general
       solution of the given exact equation is (in implicit form)
                    y 2 x − y cos x + 2 y + 3 = c,   where c is an arbitrary constant.

          Now, y(0) = 1 implies c = 3, hence the solution of the IVP
                                       y 2 x − y cos x + 2 y + 3 = 3.


    (4) Denote by A(t) the number of pounds of salt in the tank at time t. Then we must solve the
        IVP
                                dA            4A
                                     = 10 −         , A(0) = 0.
                                 dt         150 + t
                                                                                 4
          The ODE is linear with an integrating factor µ(t) = exp                     dt   = exp(4 ln(150 +
                                                                              150 + t
       t)) = (150 + t)4 .
                                                                                           10
          So, (150 + t)4 A (t) + 4A(150 + t)3 = 10(150 + t)4 , hence (150 + t)4 A(t) =        (150 + t)5 + C
                                                                                           5
       where C will be determined from A(0) = 0 to be equal to −2 · 1505 .
                                                                                                         4
                                                                                                   150
          Finally, we have A(t) = 2(150 + t) − 2 · 1505 (150 + t)−4 and A(30) = 360 − 300                    ≈
                                                                                                   180
       215.32 lb.

More Related Content

What's hot

Chapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particleChapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particle
Self-employed
 
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdfKunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
MutiaraPutri41
 
A Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex NumbersA Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex Numbers
Scott Bou
 
22 infinite series send-x
22 infinite series send-x22 infinite series send-x
22 infinite series send-x
math266
 
7 cavalieri principle-x
7 cavalieri principle-x7 cavalieri principle-x
7 cavalieri principle-x
math266
 
Geom 7point1
Geom 7point1Geom 7point1
Geom 7point1herbison
 
Factoring quadratic expressions
Factoring quadratic expressionsFactoring quadratic expressions
Factoring quadratic expressions
Alicia Jane
 
5 1 quadratic transformations
5 1 quadratic transformations5 1 quadratic transformations
5 1 quadratic transformations
lothomas
 
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a functionLesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Matthew Leingang
 
Lecture 5 inverse of matrices - section 2-2 and 2-3
Lecture 5   inverse of matrices - section 2-2 and 2-3Lecture 5   inverse of matrices - section 2-2 and 2-3
Lecture 5 inverse of matrices - section 2-2 and 2-3
njit-ronbrown
 
202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotes202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotesEttaoufik Elayedi
 
Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolution
Lawrence De Vera
 
Notes 12.1 multiplying polynomials
Notes 12.1   multiplying polynomialsNotes 12.1   multiplying polynomials
Notes 12.1 multiplying polynomialsLori Rapp
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
Matthew Leingang
 
16 partial derivatives
16 partial derivatives16 partial derivatives
16 partial derivativesmath267
 
Combining like terms
Combining like termsCombining like terms
Combining like terms
smfritsch
 
Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...
Leblancer
 
Add Math(F4) Circular Measure 8.3
Add Math(F4) Circular Measure 8.3Add Math(F4) Circular Measure 8.3
Add Math(F4) Circular Measure 8.3roszelan
 

What's hot (20)

Chapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particleChapter 12 kinematics_of_a_particle
Chapter 12 kinematics_of_a_particle
 
Factoring
FactoringFactoring
Factoring
 
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdfKunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
 
A Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex NumbersA Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex Numbers
 
22 infinite series send-x
22 infinite series send-x22 infinite series send-x
22 infinite series send-x
 
7 cavalieri principle-x
7 cavalieri principle-x7 cavalieri principle-x
7 cavalieri principle-x
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Geom 7point1
Geom 7point1Geom 7point1
Geom 7point1
 
Factoring quadratic expressions
Factoring quadratic expressionsFactoring quadratic expressions
Factoring quadratic expressions
 
5 1 quadratic transformations
5 1 quadratic transformations5 1 quadratic transformations
5 1 quadratic transformations
 
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a functionLesson 7-8: Derivatives and Rates of Change, The Derivative as a function
Lesson 7-8: Derivatives and Rates of Change, The Derivative as a function
 
Lecture 5 inverse of matrices - section 2-2 and 2-3
Lecture 5   inverse of matrices - section 2-2 and 2-3Lecture 5   inverse of matrices - section 2-2 and 2-3
Lecture 5 inverse of matrices - section 2-2 and 2-3
 
202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotes202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotes
 
Lesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolutionLesson 13 volume of solids of revolution
Lesson 13 volume of solids of revolution
 
Notes 12.1 multiplying polynomials
Notes 12.1   multiplying polynomialsNotes 12.1   multiplying polynomials
Notes 12.1 multiplying polynomials
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
16 partial derivatives
16 partial derivatives16 partial derivatives
16 partial derivatives
 
Combining like terms
Combining like termsCombining like terms
Combining like terms
 
Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...
 
Add Math(F4) Circular Measure 8.3
Add Math(F4) Circular Measure 8.3Add Math(F4) Circular Measure 8.3
Add Math(F4) Circular Measure 8.3
 

Viewers also liked

Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009akabaka12
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006akabaka12
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009akabaka12
 
Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009akabaka12
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005akabaka12
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010akabaka12
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006akabaka12
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009akabaka12
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010akabaka12
 
Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009akabaka12
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009akabaka12
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010akabaka12
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005akabaka12
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010akabaka12
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009akabaka12
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009akabaka12
 
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-SampahUndang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Joy Irman
 

Viewers also liked (18)

Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010
 
Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009
 
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-SampahUndang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
 

Similar to Engr 213 midterm 1b sol 2009

Week 2
Week 2 Week 2
Week 2
Hazrul156
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
Hazrul156
 
Maths Notes - Differential Equations
Maths Notes - Differential EquationsMaths Notes - Differential Equations
Maths Notes - Differential Equations
James McMurray
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
Kuan-Lun Wang
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
Kuan-Lun Wang
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]
Hazrul156
 
DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONDIFFERENTIAL EQUATION
DIFFERENTIAL EQUATION
shahzadebaujiti
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]
Hazrul156
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
Edu Assignment Help
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Double integration
Double integrationDouble integration
Double integration
Abhishek N Nair
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
Christos Loizos
 
Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
Debora Elluisa Manurung
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
Krishna Peshivadiya
 

Similar to Engr 213 midterm 1b sol 2009 (20)

Week 2
Week 2 Week 2
Week 2
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
Maths Notes - Differential Equations
Maths Notes - Differential EquationsMaths Notes - Differential Equations
Maths Notes - Differential Equations
 
Hw2 s
Hw2 sHw2 s
Hw2 s
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Assignment6
Assignment6Assignment6
Assignment6
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]
 
DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONDIFFERENTIAL EQUATION
DIFFERENTIAL EQUATION
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Double integration
Double integrationDouble integration
Double integration
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 

Engr 213 midterm 1b sol 2009

  • 1. Concordia University February 13, 2009 Applied Differential Equations Section J Exam I (B) ANSWER KEY (1) (10 points) The ODE dy x2 = y(1 − x) dx is separable. It can be written in the form dy 1−x = dx, y x2 which, by integration leads to the solution in implicit form 1 ln | y |= − − ln | x | +C, x where C is an arbitrary constant. (2) (10 points) As the equation y dx − (x + y) dy = 0 is homogeneous, we proceed with the dy du substitution y = ux (thus = x + u). dx dx We obtain the following ODE for the dependent variable u: du u x = − u. dx u+1 du u2 u+1 Furthermore, this is a separable ODE, namely x =− . We re-write it as du = dx u+1 u2 1 − dx and we integrate both sides to obtain: x 1 − + ln |u| = − ln |x| + C, C arbitrary constant. u y Recall that u = which leads to the implicit solution of the original ODE in the form x x − + ln |y/x| = − ln |x| + C, C arbitrary constant. y Note: One can use the identity ln(a/b) = ln a − ln b to simplify the previous form of the x solution to − + ln |y| = C, C arbitrary constant. y 1
  • 2. 2 (3) Given 1 y(y + sin x) dx + 2xy − cos x + dy = 0, y+3 we consider f (x, y) such that ∂f (x, y) = y(y + sin x) ∂x ∂f 1 (x, y) = 2xy − cos x + . ∂y y+3 Integrating the first equation with respect to x, we obtain f (x, y) = y 2 x − y cos x + c(y). To find c(y), we evaluate ∂f 1 (x, y) = 2yx − cos x + c (y) = 2xy − cos x + , ∂y y+3 1 hence c(y) satisfies the ODE: c (y) = . Therefore c(y) = 2 y + 3 + C, where C is an y+3 arbitrary constant. Finally we have that f (x, y) = y 2 x−y cos x+2 y + 3+C, and we conclude that the general solution of the given exact equation is (in implicit form) y 2 x − y cos x + 2 y + 3 = c, where c is an arbitrary constant. Now, y(0) = 1 implies c = 3, hence the solution of the IVP y 2 x − y cos x + 2 y + 3 = 3. (4) Denote by A(t) the number of pounds of salt in the tank at time t. Then we must solve the IVP dA 4A = 10 − , A(0) = 0. dt 150 + t 4 The ODE is linear with an integrating factor µ(t) = exp dt = exp(4 ln(150 + 150 + t t)) = (150 + t)4 . 10 So, (150 + t)4 A (t) + 4A(150 + t)3 = 10(150 + t)4 , hence (150 + t)4 A(t) = (150 + t)5 + C 5 where C will be determined from A(0) = 0 to be equal to −2 · 1505 . 4 150 Finally, we have A(t) = 2(150 + t) − 2 · 1505 (150 + t)−4 and A(30) = 360 − 300 ≈ 180 215.32 lb.