LimitsBy Kathleen Hook
Limit DefinitionNotation: limf(x)=LX -> aThe Range (Y) Values the function is approaching as the domain (X) values get closer to a
Solving LimitsWhen x -> a number Plug the number into the functionLim  x  -> Lim (a) X-> aX-> a
Solving limitsEx) lim (3x) =X-> 4Substitute the number:lim 3(4) = 12X-> 4
Sum LawLimit of sum = sum of limitsex) lim(x²+2x-5) =X->2lim x² + lim 2x – lim5 =X->2X->2X->2(2)²+ 2(2) -5 = 3
Product LawLimit of product = product of limitsEx) Lim(X+6)(X-4) =X-> 2lim(x+6) lim (x-4) = X-> 2X-> 2(2+6) (2-4) = (8) (-2) = -16
Quotient LawLimit of quotient = quotient of limits Ex) lim(x+1)   =(x-2)X-> 4Lim (x+1)=(4+1)   =   5(4-2)        2X-> 4_________________Lim (x-2)X-> 4
Solving Limits whenSubstituting makes the function undefined Undefined: When the bottom is zeroSolve to eliminate like terms
Solving Undefinedex) lim (x²-16)	           (x—4) X-> 4Plugging in 4 will equal zeroFactor the top:x² -16 -> (x+4)(x-4) -> (x+4)(x-4) 								(x-4) Cancel like termsLim (x+4) = (4+4) = 8X->4
Numerator equals zeroThe limit is still definedEx) lim(x-6)  =	         (8-x) X-> 6(6-6)   =  0    =  0(8-x)       2
Solving LimitsWhen X approaches infinityNotation:   lim f(x)8x ->  There are multiple approaches
Infinity by GraphingEx) Lim1x8X-> Graph: Y values approaching zero
Limit by PlottingEx) Lim  1	         x*already found the limit is ZeroX->8Proof: X          f(X)1           15           1/5F(x) values approaching zero100        1/1001000      1/1000
Infinity New WayPolynomial Functions: Determined by highest power Even:Ex) limx² =          ….         = +InfinityOdd:Ex) lim5-3x=      …  = -Infinity
Rational FunctionsDenominator increase faster lim=0Ex) lim1     = 0            5xEx) lim3x= 0           x²+1
Rational FunctionsNumerator increases faster lim =   -or888Ex) 4x-8x²   = -	   2x-1EX)  x²+2x  = 	    x+98If Powers Even: ex) lim4x+1= 43x-8       3

Edu presentation1