SlideShare a Scribd company logo
1 of 26
AP CALCULUS AB EXAM
LIMIT
WHAT IS LIMIT
It is defined as the values that a function approaches the output for the
given input values.
It is defined as the value that the function approaches as it goes to a
variable value.
Let 𝑓 π‘₯ be a function defined at all values in an open interval containing
π‘Ž, with the possible exception of itself, and let 𝐿 be a real number. If all
values of the function 𝑓 π‘₯ approaches the real number 𝐿 as the values of
π‘₯ β‰  π‘Ž approach the number π‘Ž, then we say that the limit of 𝑓 π‘₯ as π‘₯
approaches π‘Ž is 𝐿. (In other words, as π‘₯ gets close to π‘Ž, 𝑓 π‘₯ gets close and
stays close to 𝐿)
lim 𝑓 π‘₯ = 𝐿
EXAMPLE OF LIMIT
What is the limit of the function 𝑓 π‘₯ = π‘₯3 as π‘₯ approaches 3 ?
lim
π‘₯β†’3
𝑓 π‘₯ = lim
π‘₯β†’3
π‘₯3
Substitute 3 for π‘₯ in the limit function.
lim
π‘₯β†’3
π‘₯3 = 33 = 27
RIGHT-HAND LIMIT
If π‘₯ approaches π‘Ž from the right side, i.e. from the values greater
than π‘Ž, the function is said to have a right-hand limit. If π‘ž is the
right-hand limit of 𝑓 as π‘₯ approaches π‘Ž, we write as
lim
π‘₯β†’π‘Ž+
𝑓 π‘₯ = π‘ž
EXAMPLE OF RIGHT-HAND LIMIT
When π‘₯ = 3.1, 𝑓 3.1 = 29.791
When π‘₯ = 3.01, 𝑓 3.01 = 27.270901
When π‘₯ = 3.001, 𝑓 3.001 = 27.027009001
When π‘₯ = 3.0001, 𝑓 3.0001 = 27.002700090001
As π‘₯ decrease and approaches 3, 𝑓 π‘₯ still approaches 27.
lim
π‘₯β†’3+
π‘₯3 = 27
LEFT-HAND LIMIT
If π‘₯ approaches π‘Ž from the left side, i.e. from the values lesser
than π‘Ž, the function is said to have a left-hand limit. If 𝑝 is the
right-hand limit of 𝑓 as π‘₯ approaches π‘Ž, we write as
lim
π‘₯β†’π‘Žβˆ’
𝑓 π‘₯ = 𝑝
EXAMPLE OF LEFT-HAND LIMIT
When π‘₯ = 2.9, 𝑓 2.9 = 24.389
When π‘₯ = 2.99, 𝑓 2.99 = 26.730899.
When π‘₯ = 2.999, 𝑓 2.999 = 26.973008999
When π‘₯ = 2.9999, 𝑓 2.9999 = 26.997300089999
As π‘₯ increase and approaches 3, 𝑓 π‘₯ still approaches 27.
lim
π‘₯β†’3βˆ’
π‘₯3 = 27
BASIC RULE FOR LIMIT
For any real number π‘Ž and any constant 𝑐,
lim
π‘₯β†’π‘Ž
π‘₯ = π‘Ž
lim
π‘₯β†’π‘Ž
𝑐 = π‘Ž
For example:
1)
lim
π‘₯β†’2
π‘₯
Substitute 2 for π‘₯ in the limit
function.
lim
π‘₯β†’2
π‘₯ = 2
2)
lim
π‘₯β†’2
5
The limit of a constant is that
constant.
lim
π‘₯β†’2
5 = 5
SUM LAW FOR LIMIT
Let 𝑓 π‘₯ and 𝑔 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that
𝐿 and 𝑀 are real numbers such that lim
π‘₯β†’π‘Ž
𝑓 π‘₯ = 𝐿 and lim
π‘₯β†’π‘Ž
𝑔 π‘₯ = 𝑀. Let 𝑐 be a constant.
lim
π‘₯β†’π‘Ž
𝑓 π‘₯ + 𝑔 π‘₯ = lim
π‘₯β†’π‘Ž
𝑓 π‘₯ + lim
π‘₯β†’π‘Ž
𝑔 π‘₯ = 𝐿 + 𝑀
For example:
Evaluate lim
π‘₯β†’βˆ’3
π‘₯ + 3
Use the sum law for limit, lim
π‘₯β†’π‘Ž
𝑓 π‘₯ + 𝑔 π‘₯ = lim
π‘₯β†’π‘Ž
𝑓 π‘₯ + lim
π‘₯β†’π‘Ž
𝑔 π‘₯
lim
π‘₯β†’βˆ’3
π‘₯ + 3 = lim
π‘₯β†’βˆ’3
π‘₯+ lim
π‘₯β†’βˆ’3
3
Use the basic rule for limit, lim
π‘₯β†’π‘Ž
π‘₯ = π‘Ž and lim
π‘₯β†’π‘Ž
𝑐 = π‘Ž
lim
π‘₯β†’βˆ’3
π‘₯+ lim
π‘₯β†’βˆ’3
3 = βˆ’3 + 3 = 0
DIFFERENCE LAW FOR LIMIT
Let 𝑓 π‘₯ and 𝑔 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that 𝐿 and 𝑀 are
real numbers such that lim
π‘₯β†’π‘Ž
𝑓 π‘₯ = 𝐿 and lim
π‘₯β†’π‘Ž
𝑔 π‘₯ = 𝑀. Let 𝑐 be a constant.
lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ’ 𝑔 π‘₯ = lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ’ lim
π‘₯β†’π‘Ž
𝑔 π‘₯ = 𝐿 βˆ’ 𝑀
For example:
Evaluate lim
π‘₯β†’3
π‘₯ βˆ’ 5
Use the difference law for limit, lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ’ 𝑔 π‘₯ = lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ’ lim
π‘₯β†’π‘Ž
𝑔 π‘₯
lim
π‘₯β†’3
π‘₯ βˆ’ 3 = lim
π‘₯β†’3
π‘₯ βˆ’ lim
π‘₯β†’3
5
Use the basic rule for limit, lim
π‘₯β†’π‘Ž
π‘₯ = π‘Ž and lim
π‘₯β†’π‘Ž
𝑐 = π‘Ž
lim
π‘₯β†’3
π‘₯ βˆ’ lim
π‘₯β†’3
5 = 3 βˆ’ 5 = βˆ’2
PRODUCT LAW FOR LIMIT
Let 𝑓 π‘₯ and 𝑔 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that
𝐿 and 𝑀 are real numbers such that lim
π‘₯β†’π‘Ž
𝑓 π‘₯ = 𝐿 and lim
π‘₯β†’π‘Ž
𝑔 π‘₯ = 𝑀. Let 𝑐 be a constant.
lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ™ 𝑔 π‘₯ = lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ™ lim
π‘₯β†’π‘Ž
𝑔 π‘₯ = 𝐿 βˆ™ 𝑀
For example:
Evaluate lim
π‘₯β†’3
π‘₯ π‘₯ + 5
Use the product law for limit, lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ™ 𝑔 π‘₯ = lim
π‘₯β†’π‘Ž
𝑓 π‘₯ βˆ™ lim
π‘₯β†’π‘Ž
𝑔 π‘₯
lim
π‘₯β†’3
π‘₯ π‘₯ + 5 = lim
π‘₯β†’3
π‘₯ βˆ™ lim
π‘₯β†’3
π‘₯ + 5
Use the sum law for limit, lim
π‘₯β†’π‘Ž
𝑝 π‘₯ + π‘ž π‘₯ = lim
π‘₯β†’π‘Ž
𝑝 π‘₯ + lim
π‘₯β†’π‘Ž
π‘ž π‘₯
lim
π‘₯β†’3
π‘₯ βˆ™ lim
π‘₯β†’3
π‘₯ + 5 = lim
π‘₯β†’3
π‘₯ βˆ™ lim
π‘₯β†’3
π‘₯ + lim
π‘₯β†’3
5
Use the basic rule for limit, lim
π‘₯β†’π‘Ž
π‘₯ = π‘Ž and lim
π‘₯β†’π‘Ž
𝑐 = π‘Ž
lim
π‘₯β†’3
π‘₯ βˆ™ lim
π‘₯β†’3
π‘₯ + lim
π‘₯β†’3
5 = 3 3 + 5 = 3 8 = 24
CONSTANT MULTIPLE LAW FOR LIMIT
Let 𝑓 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that 𝐿 are real numbers
such that lim
π‘₯β†’π‘Ž
𝑓 π‘₯ = 𝐿. Let 𝑐 be a constant.
lim
π‘₯β†’π‘Ž
𝑐𝑓 π‘₯ = 𝑐 lim
π‘₯β†’π‘Ž
𝑓 π‘₯ = 𝑐𝐿
For example:
Evaluate lim
π‘₯β†’3
5π‘₯2
.
Use the constant multiple law for limit, lim
π‘₯β†’π‘Ž
𝑐𝑓 π‘₯ = 𝑐 lim
π‘₯β†’π‘Ž
𝑓 π‘₯
lim
π‘₯β†’3
5π‘₯2
= 5 lim
π‘₯β†’3
π‘₯2
Substitute 5 for π‘₯ in 5 lim
π‘₯β†’3
π‘₯2
.
5 lim
π‘₯β†’3
π‘₯2
= 5 32
= 5 9 = 45
Type equation here.
INFINITE LIMIT FROM THE LEFT
Let 𝑓 π‘₯ be a function defined at all values in an open interval of the form
𝑏, π‘Ž .
If the values of 𝑓 π‘₯ increase without bound as the values of π‘₯ (where π‘₯ < π‘Ž)
approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the
left is positive infinity.
lim
π‘₯β†’π‘Žβˆ’
𝑓 π‘₯ = βˆ’βˆž
If the values of 𝑓 π‘₯ decrease without bound as the values of π‘₯ (where π‘₯ < π‘Ž)
approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the
left is negative infinity.
lim
π‘₯β†’π‘Žβˆ’
𝑓 π‘₯ = +∞
EXAMPLE OF CASE 1
Evaluate the limit lim
π‘₯β†’0βˆ’
βˆ’
1
π‘₯
, if possible.
Here, 𝑓 π‘₯ = βˆ’
1
π‘₯
When π‘₯ = βˆ’0.1, 𝑓 0.1 = 10
When π‘₯ = βˆ’0.01, 𝑓 0.01 = 100
When π‘₯ = βˆ’0.001, 𝑓 0.001 = 1000
When π‘₯ = βˆ’0.0001, 𝑓 0.0001 = 10,000
The value of 𝑓 π‘₯ increase without bound as π‘₯ approaches 0 from the left.
lim
π‘₯β†’0βˆ’
βˆ’
1
π‘₯
= +∞
EXAMPLE OF CASE 2
Evaluate the limit lim
π‘₯β†’0βˆ’
1
π‘₯
, if possible.
Here, 𝑓 π‘₯ =
1
π‘₯
When π‘₯ = βˆ’0.1, 𝑓 0.1 = βˆ’10
When π‘₯ = βˆ’0.01, 𝑓 0.01 = βˆ’100
When π‘₯ = βˆ’0.001, 𝑓 0.001 = βˆ’1000
When π‘₯ = βˆ’0.0001, 𝑓 0.0001 = βˆ’10,000
The value of 𝑓 π‘₯ decrease without bound as π‘₯ approaches 0 from the left.
lim
π‘₯β†’0βˆ’
1
π‘₯
= βˆ’βˆž
INFINITE LIMIT FROM THE RIGHT
Let 𝑓 π‘₯ be a function defined at all values in an open interval of the form
π‘Ž, 𝑐 .
If the values of 𝑓 π‘₯ increase without bound as the values of π‘₯ (where π‘₯ > π‘Ž)
approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the
right is positive infinity.
lim
π‘₯β†’π‘Ž+
𝑓 π‘₯ = +∞
If the values of 𝑓 π‘₯ decrease without bound as the values of π‘₯ (where π‘₯ > π‘Ž)
approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the
right is negative infinity.
lim
π‘₯β†’π‘Ž+
𝑓 π‘₯ = βˆ’βˆž
EXAMPLE OF CASE 1
Evaluate the limit lim
π‘₯β†’0+
1
π‘₯
, if possible.
Here, 𝑓 π‘₯ =
1
π‘₯
When π‘₯ = 0.1, 𝑓 0.1 = 10
When π‘₯ = 0.01, 𝑓 0.01 = 100
When π‘₯ = 0.001, 𝑓 0.001 = 1000
When π‘₯ = 0.0001, 𝑓 0.0001 = 10,000
The value of 𝑓 π‘₯ increase without bound as π‘₯ approaches 0 from the right.
lim
π‘₯β†’0+
1
π‘₯
= +∞
EXAMPLE FOR CASE 2
Evaluate the limit lim
π‘₯β†’0+
βˆ’
1
π‘₯
, if possible.
Here, 𝑓 π‘₯ = βˆ’
1
π‘₯
When π‘₯ = 0.1, 𝑓 0.1 = βˆ’10
When π‘₯ = 0.01, 𝑓 0.01 = βˆ’100
When π‘₯ = 0.001, 𝑓 0.001 = βˆ’1000
When π‘₯ = 0.0001, 𝑓 0.0001 = βˆ’10,000
The value of 𝑓 π‘₯ decrease without bound as π‘₯ approaches 0 from the right.
lim
π‘₯β†’0+
βˆ’
1
π‘₯
= βˆ’βˆž
INFINITE LIMITS FROM POSITIVE EVEN
INTEGERS
If 𝑛 is a positive even integer, then
lim
π‘₯β†’π‘Ž
1
π‘₯ βˆ’ π‘Ž 𝑛
= +∞
lim
π‘₯β†’π‘Ž+
1
π‘₯ βˆ’ π‘Ž 𝑛
= +∞
lim
π‘₯β†’π‘Žβˆ’
1
π‘₯ βˆ’ π‘Ž 𝑛
= +∞
EXAMPLE
Evaluate lim
π‘₯β†’βˆ’3
1
π‘₯+3 4
lim
π‘₯β†’βˆ’3
1
(βˆ’3) + 3 4 =
1
0
= +∞
Evaluate lim
π‘₯β†’βˆ’3+
1
π‘₯+3 4
lim
β„Žβ†’0
1
(βˆ’3 + β„Ž) + 3 4
= lim
β„Žβ†’0
1
β„Ž4
=
1
0
= +∞
Evaluate lim
π‘₯β†’βˆ’3βˆ’
1
π‘₯+3 4
lim
β„Žβ†’0
1
(βˆ’3 βˆ’ β„Ž) + 3 4
= lim
β„Žβ†’0
1
(βˆ’β„Ž)4
= lim
β„Žβ†’0
1
β„Ž4
=
1
0
= +∞
INFINITE LIMITS FROM POSITIVE ODD
INTEGERS
If 𝑛 is a positive odd integer, then
lim
π‘₯β†’π‘Ž
1
π‘₯ βˆ’ π‘Ž 𝑛
= 𝐷𝑁𝐸
lim
π‘₯β†’π‘Ž+
1
π‘₯ βˆ’ π‘Ž 𝑛
= +∞
lim
π‘₯β†’π‘Žβˆ’
1
π‘₯ βˆ’ π‘Ž 𝑛
= βˆ’βˆž
EXAMPLE
Evaluate lim
π‘₯β†’βˆ’3+
1
π‘₯+3 3
lim
β„Žβ†’0
1
(βˆ’3 + β„Ž) + 3 3
= lim
β„Žβ†’0
1
β„Ž3
=
1
0
= +∞
Evaluate lim
π‘₯β†’βˆ’3βˆ’
1
π‘₯+3 3
lim
β„Žβ†’0
1
(βˆ’3 βˆ’ β„Ž) + 3 3
= lim
β„Žβ†’0
1
(βˆ’β„Ž)3
= βˆ’lim
β„Žβ†’0
1
β„Ž3
= βˆ’
1
0
= βˆ’βˆž
Evaluate lim
π‘₯β†’βˆ’3
1
π‘₯+3 3
lim
π‘₯β†’βˆ’3
1
(βˆ’3) + 3 3
= 𝐷𝑁𝐸
Because lim
π‘₯β†’βˆ’3+
1
π‘₯+3 3 β‰  lim
π‘₯β†’βˆ’3βˆ’
1
π‘₯+3 3
LIMIT AT INFINITY FOR RATIONAL
FUNCTION
For rational function 𝑓 π‘₯ =
𝑝 π‘₯
π‘ž π‘₯
, the limit at infinity is determined by
the relationship between the degree of 𝑝 and π‘ž.
If the degree of 𝑝 is less than the degree of π‘ž, then the line 𝑦 = 0 is a
horizontal asymptote for 𝑓.
If the degree of 𝑝 is equal to the degree of π‘ž, then the line 𝑦 =
π‘Žπ‘›
𝑏𝑛
is a
horizontal asymptote for 𝑓, where π‘Žπ‘› and 𝑏𝑛 are the leading
coefficients of 𝑝 and π‘ž.
If the degree of 𝑝 is greater than the degree of π‘ž, then 𝑓 approaches ∞
or βˆ’βˆž at each end.
EXAMPLE FOR CASE 1
Evaluate lim
π‘₯β†’βˆž
3π‘₯2+2π‘₯
4π‘₯3βˆ’5π‘₯+7
lim
π‘₯β†’βˆž
3π‘₯2+2π‘₯
4π‘₯3βˆ’5π‘₯+7
= lim
π‘₯β†’βˆž
3π‘₯2+2π‘₯
π‘₯3 4βˆ’
5
π‘₯2+
7
π‘₯3
= lim
π‘₯β†’βˆž
3
π‘₯
+
2
π‘₯2
4βˆ’
5
π‘₯2+
7
π‘₯3
=
3(0) + 2(0)
4 βˆ’ 5(0) + 7(0)
=
0
4
= 0
EXAMPLE FOR CASE 2
Evaluate lim
π‘₯β†’βˆž
2π‘₯+3
3π‘₯βˆ’2
lim
π‘₯β†’βˆž
2π‘₯+3
3π‘₯βˆ’2
= lim
π‘₯β†’βˆž
π‘₯ 2+
3
π‘₯
π‘₯ 3βˆ’
2
π‘₯
= lim
π‘₯β†’βˆž
2+
3
π‘₯
3βˆ’
2
π‘₯
=
2 + 0
3 βˆ’ 0
=
2
3
EXAMPLE FOR CASE 3
Evaluate lim
π‘₯β†’βˆž
3π‘₯2+4π‘₯
π‘₯+2
lim
π‘₯β†’βˆž
3π‘₯2+4π‘₯
π‘₯+2
= lim
π‘₯β†’βˆž
π‘₯2 3+
4
π‘₯
π‘₯ 1+
2
π‘₯
= lim
π‘₯β†’βˆž
π‘₯ 3+
4
π‘₯
1+
2
π‘₯
=
∞ 3 + 0
1 + 0
=
∞
1
=∞

More Related Content

Similar to Limit Part(1).pptx

Limits and its theorem In Calculus
Limits and its theorem  In CalculusLimits and its theorem  In Calculus
Limits and its theorem In CalculusUzair Ahmad
Β 
Binary Operations.pptx
Binary Operations.pptxBinary Operations.pptx
Binary Operations.pptxSoyaMathew1
Β 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptxSakibAhmed402053
Β 
JoeAr-LIMITSReports in Math- MAT 2024 403
JoeAr-LIMITSReports in Math- MAT 2024 403JoeAr-LIMITSReports in Math- MAT 2024 403
JoeAr-LIMITSReports in Math- MAT 2024 403JoelynRubio1
Β 
Integers and matrices (slides)
Integers and matrices (slides)Integers and matrices (slides)
Integers and matrices (slides)IIUM
Β 
Rational function 11
Rational function 11Rational function 11
Rational function 11AjayQuines
Β 
Infinite Series Presentation by Jatin Dhola
Infinite Series Presentation by Jatin DholaInfinite Series Presentation by Jatin Dhola
Infinite Series Presentation by Jatin DholaJatin Dhola
Β 
Q3-2-limit-theorem.pptx.....................................
Q3-2-limit-theorem.pptx.....................................Q3-2-limit-theorem.pptx.....................................
Q3-2-limit-theorem.pptx.....................................ChristianLloydAguila1
Β 
PPT Antiderivatives and Indefinite Integration.pptx
PPT Antiderivatives and Indefinite Integration.pptxPPT Antiderivatives and Indefinite Integration.pptx
PPT Antiderivatives and Indefinite Integration.pptxKenneth Arlando
Β 
Lesson 1: The Real Number System
Lesson 1: The Real Number SystemLesson 1: The Real Number System
Lesson 1: The Real Number SystemKevin Johnson
Β 
2. Random Variables.pdf
2. Random Variables.pdf2. Random Variables.pdf
2. Random Variables.pdfSurajRajTripathy
Β 
A disproof of the Riemann hypothesis
A disproof of the Riemann hypothesisA disproof of the Riemann hypothesis
A disproof of the Riemann hypothesisiosrjce
Β 
__limite functions.sect22-24
  __limite functions.sect22-24  __limite functions.sect22-24
__limite functions.sect22-24argonaut2
Β 
Differentiation
Differentiation Differentiation
Differentiation EFREN ARCHIDE
Β 
5. Limit Fungsi yang menjadi Aljabar.pptx
5. Limit Fungsi yang menjadi Aljabar.pptx5. Limit Fungsi yang menjadi Aljabar.pptx
5. Limit Fungsi yang menjadi Aljabar.pptxBanjarMasin4
Β 
Basic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxBasic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxSalwaAbdulkarim1
Β 

Similar to Limit Part(1).pptx (20)

Limits and its theorem In Calculus
Limits and its theorem  In CalculusLimits and its theorem  In Calculus
Limits and its theorem In Calculus
Β 
Binary Operations.pptx
Binary Operations.pptxBinary Operations.pptx
Binary Operations.pptx
Β 
Aed.pptx
Aed.pptxAed.pptx
Aed.pptx
Β 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptx
Β 
JoeAr-LIMITSReports in Math- MAT 2024 403
JoeAr-LIMITSReports in Math- MAT 2024 403JoeAr-LIMITSReports in Math- MAT 2024 403
JoeAr-LIMITSReports in Math- MAT 2024 403
Β 
Integers and matrices (slides)
Integers and matrices (slides)Integers and matrices (slides)
Integers and matrices (slides)
Β 
Rational function 11
Rational function 11Rational function 11
Rational function 11
Β 
Infinite Series Presentation by Jatin Dhola
Infinite Series Presentation by Jatin DholaInfinite Series Presentation by Jatin Dhola
Infinite Series Presentation by Jatin Dhola
Β 
Differentiation
DifferentiationDifferentiation
Differentiation
Β 
Q3-2-limit-theorem.pptx.....................................
Q3-2-limit-theorem.pptx.....................................Q3-2-limit-theorem.pptx.....................................
Q3-2-limit-theorem.pptx.....................................
Β 
Number Theory (part 1)
Number Theory (part 1)Number Theory (part 1)
Number Theory (part 1)
Β 
PPT Antiderivatives and Indefinite Integration.pptx
PPT Antiderivatives and Indefinite Integration.pptxPPT Antiderivatives and Indefinite Integration.pptx
PPT Antiderivatives and Indefinite Integration.pptx
Β 
Lesson 1: The Real Number System
Lesson 1: The Real Number SystemLesson 1: The Real Number System
Lesson 1: The Real Number System
Β 
2. Random Variables.pdf
2. Random Variables.pdf2. Random Variables.pdf
2. Random Variables.pdf
Β 
A disproof of the Riemann hypothesis
A disproof of the Riemann hypothesisA disproof of the Riemann hypothesis
A disproof of the Riemann hypothesis
Β 
__limite functions.sect22-24
  __limite functions.sect22-24  __limite functions.sect22-24
__limite functions.sect22-24
Β 
Differentiation
Differentiation Differentiation
Differentiation
Β 
5. Limit Fungsi yang menjadi Aljabar.pptx
5. Limit Fungsi yang menjadi Aljabar.pptx5. Limit Fungsi yang menjadi Aljabar.pptx
5. Limit Fungsi yang menjadi Aljabar.pptx
Β 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Β 
Basic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxBasic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docx
Β 

Recently uploaded

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
Β 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
Β 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
Β 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdfssuser54595a
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
Β 

Recently uploaded (20)

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
Β 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
Β 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Β 
CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1
Β 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
Β 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Β 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Β 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
Β 

Limit Part(1).pptx

  • 1. AP CALCULUS AB EXAM LIMIT
  • 2. WHAT IS LIMIT It is defined as the values that a function approaches the output for the given input values. It is defined as the value that the function approaches as it goes to a variable value. Let 𝑓 π‘₯ be a function defined at all values in an open interval containing π‘Ž, with the possible exception of itself, and let 𝐿 be a real number. If all values of the function 𝑓 π‘₯ approaches the real number 𝐿 as the values of π‘₯ β‰  π‘Ž approach the number π‘Ž, then we say that the limit of 𝑓 π‘₯ as π‘₯ approaches π‘Ž is 𝐿. (In other words, as π‘₯ gets close to π‘Ž, 𝑓 π‘₯ gets close and stays close to 𝐿) lim 𝑓 π‘₯ = 𝐿
  • 3. EXAMPLE OF LIMIT What is the limit of the function 𝑓 π‘₯ = π‘₯3 as π‘₯ approaches 3 ? lim π‘₯β†’3 𝑓 π‘₯ = lim π‘₯β†’3 π‘₯3 Substitute 3 for π‘₯ in the limit function. lim π‘₯β†’3 π‘₯3 = 33 = 27
  • 4. RIGHT-HAND LIMIT If π‘₯ approaches π‘Ž from the right side, i.e. from the values greater than π‘Ž, the function is said to have a right-hand limit. If π‘ž is the right-hand limit of 𝑓 as π‘₯ approaches π‘Ž, we write as lim π‘₯β†’π‘Ž+ 𝑓 π‘₯ = π‘ž
  • 5. EXAMPLE OF RIGHT-HAND LIMIT When π‘₯ = 3.1, 𝑓 3.1 = 29.791 When π‘₯ = 3.01, 𝑓 3.01 = 27.270901 When π‘₯ = 3.001, 𝑓 3.001 = 27.027009001 When π‘₯ = 3.0001, 𝑓 3.0001 = 27.002700090001 As π‘₯ decrease and approaches 3, 𝑓 π‘₯ still approaches 27. lim π‘₯β†’3+ π‘₯3 = 27
  • 6. LEFT-HAND LIMIT If π‘₯ approaches π‘Ž from the left side, i.e. from the values lesser than π‘Ž, the function is said to have a left-hand limit. If 𝑝 is the right-hand limit of 𝑓 as π‘₯ approaches π‘Ž, we write as lim π‘₯β†’π‘Žβˆ’ 𝑓 π‘₯ = 𝑝
  • 7. EXAMPLE OF LEFT-HAND LIMIT When π‘₯ = 2.9, 𝑓 2.9 = 24.389 When π‘₯ = 2.99, 𝑓 2.99 = 26.730899. When π‘₯ = 2.999, 𝑓 2.999 = 26.973008999 When π‘₯ = 2.9999, 𝑓 2.9999 = 26.997300089999 As π‘₯ increase and approaches 3, 𝑓 π‘₯ still approaches 27. lim π‘₯β†’3βˆ’ π‘₯3 = 27
  • 8. BASIC RULE FOR LIMIT For any real number π‘Ž and any constant 𝑐, lim π‘₯β†’π‘Ž π‘₯ = π‘Ž lim π‘₯β†’π‘Ž 𝑐 = π‘Ž For example: 1) lim π‘₯β†’2 π‘₯ Substitute 2 for π‘₯ in the limit function. lim π‘₯β†’2 π‘₯ = 2 2) lim π‘₯β†’2 5 The limit of a constant is that constant. lim π‘₯β†’2 5 = 5
  • 9. SUM LAW FOR LIMIT Let 𝑓 π‘₯ and 𝑔 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that 𝐿 and 𝑀 are real numbers such that lim π‘₯β†’π‘Ž 𝑓 π‘₯ = 𝐿 and lim π‘₯β†’π‘Ž 𝑔 π‘₯ = 𝑀. Let 𝑐 be a constant. lim π‘₯β†’π‘Ž 𝑓 π‘₯ + 𝑔 π‘₯ = lim π‘₯β†’π‘Ž 𝑓 π‘₯ + lim π‘₯β†’π‘Ž 𝑔 π‘₯ = 𝐿 + 𝑀 For example: Evaluate lim π‘₯β†’βˆ’3 π‘₯ + 3 Use the sum law for limit, lim π‘₯β†’π‘Ž 𝑓 π‘₯ + 𝑔 π‘₯ = lim π‘₯β†’π‘Ž 𝑓 π‘₯ + lim π‘₯β†’π‘Ž 𝑔 π‘₯ lim π‘₯β†’βˆ’3 π‘₯ + 3 = lim π‘₯β†’βˆ’3 π‘₯+ lim π‘₯β†’βˆ’3 3 Use the basic rule for limit, lim π‘₯β†’π‘Ž π‘₯ = π‘Ž and lim π‘₯β†’π‘Ž 𝑐 = π‘Ž lim π‘₯β†’βˆ’3 π‘₯+ lim π‘₯β†’βˆ’3 3 = βˆ’3 + 3 = 0
  • 10. DIFFERENCE LAW FOR LIMIT Let 𝑓 π‘₯ and 𝑔 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that 𝐿 and 𝑀 are real numbers such that lim π‘₯β†’π‘Ž 𝑓 π‘₯ = 𝐿 and lim π‘₯β†’π‘Ž 𝑔 π‘₯ = 𝑀. Let 𝑐 be a constant. lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ’ 𝑔 π‘₯ = lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ’ lim π‘₯β†’π‘Ž 𝑔 π‘₯ = 𝐿 βˆ’ 𝑀 For example: Evaluate lim π‘₯β†’3 π‘₯ βˆ’ 5 Use the difference law for limit, lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ’ 𝑔 π‘₯ = lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ’ lim π‘₯β†’π‘Ž 𝑔 π‘₯ lim π‘₯β†’3 π‘₯ βˆ’ 3 = lim π‘₯β†’3 π‘₯ βˆ’ lim π‘₯β†’3 5 Use the basic rule for limit, lim π‘₯β†’π‘Ž π‘₯ = π‘Ž and lim π‘₯β†’π‘Ž 𝑐 = π‘Ž lim π‘₯β†’3 π‘₯ βˆ’ lim π‘₯β†’3 5 = 3 βˆ’ 5 = βˆ’2
  • 11. PRODUCT LAW FOR LIMIT Let 𝑓 π‘₯ and 𝑔 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that 𝐿 and 𝑀 are real numbers such that lim π‘₯β†’π‘Ž 𝑓 π‘₯ = 𝐿 and lim π‘₯β†’π‘Ž 𝑔 π‘₯ = 𝑀. Let 𝑐 be a constant. lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ™ 𝑔 π‘₯ = lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ™ lim π‘₯β†’π‘Ž 𝑔 π‘₯ = 𝐿 βˆ™ 𝑀 For example: Evaluate lim π‘₯β†’3 π‘₯ π‘₯ + 5 Use the product law for limit, lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ™ 𝑔 π‘₯ = lim π‘₯β†’π‘Ž 𝑓 π‘₯ βˆ™ lim π‘₯β†’π‘Ž 𝑔 π‘₯ lim π‘₯β†’3 π‘₯ π‘₯ + 5 = lim π‘₯β†’3 π‘₯ βˆ™ lim π‘₯β†’3 π‘₯ + 5 Use the sum law for limit, lim π‘₯β†’π‘Ž 𝑝 π‘₯ + π‘ž π‘₯ = lim π‘₯β†’π‘Ž 𝑝 π‘₯ + lim π‘₯β†’π‘Ž π‘ž π‘₯ lim π‘₯β†’3 π‘₯ βˆ™ lim π‘₯β†’3 π‘₯ + 5 = lim π‘₯β†’3 π‘₯ βˆ™ lim π‘₯β†’3 π‘₯ + lim π‘₯β†’3 5 Use the basic rule for limit, lim π‘₯β†’π‘Ž π‘₯ = π‘Ž and lim π‘₯β†’π‘Ž 𝑐 = π‘Ž lim π‘₯β†’3 π‘₯ βˆ™ lim π‘₯β†’3 π‘₯ + lim π‘₯β†’3 5 = 3 3 + 5 = 3 8 = 24
  • 12. CONSTANT MULTIPLE LAW FOR LIMIT Let 𝑓 π‘₯ be defined for all π‘₯ β‰  π‘Ž over some open interval containing π‘Ž. Assume that 𝐿 are real numbers such that lim π‘₯β†’π‘Ž 𝑓 π‘₯ = 𝐿. Let 𝑐 be a constant. lim π‘₯β†’π‘Ž 𝑐𝑓 π‘₯ = 𝑐 lim π‘₯β†’π‘Ž 𝑓 π‘₯ = 𝑐𝐿 For example: Evaluate lim π‘₯β†’3 5π‘₯2 . Use the constant multiple law for limit, lim π‘₯β†’π‘Ž 𝑐𝑓 π‘₯ = 𝑐 lim π‘₯β†’π‘Ž 𝑓 π‘₯ lim π‘₯β†’3 5π‘₯2 = 5 lim π‘₯β†’3 π‘₯2 Substitute 5 for π‘₯ in 5 lim π‘₯β†’3 π‘₯2 . 5 lim π‘₯β†’3 π‘₯2 = 5 32 = 5 9 = 45 Type equation here.
  • 13. INFINITE LIMIT FROM THE LEFT Let 𝑓 π‘₯ be a function defined at all values in an open interval of the form 𝑏, π‘Ž . If the values of 𝑓 π‘₯ increase without bound as the values of π‘₯ (where π‘₯ < π‘Ž) approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the left is positive infinity. lim π‘₯β†’π‘Žβˆ’ 𝑓 π‘₯ = βˆ’βˆž If the values of 𝑓 π‘₯ decrease without bound as the values of π‘₯ (where π‘₯ < π‘Ž) approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the left is negative infinity. lim π‘₯β†’π‘Žβˆ’ 𝑓 π‘₯ = +∞
  • 14. EXAMPLE OF CASE 1 Evaluate the limit lim π‘₯β†’0βˆ’ βˆ’ 1 π‘₯ , if possible. Here, 𝑓 π‘₯ = βˆ’ 1 π‘₯ When π‘₯ = βˆ’0.1, 𝑓 0.1 = 10 When π‘₯ = βˆ’0.01, 𝑓 0.01 = 100 When π‘₯ = βˆ’0.001, 𝑓 0.001 = 1000 When π‘₯ = βˆ’0.0001, 𝑓 0.0001 = 10,000 The value of 𝑓 π‘₯ increase without bound as π‘₯ approaches 0 from the left. lim π‘₯β†’0βˆ’ βˆ’ 1 π‘₯ = +∞
  • 15. EXAMPLE OF CASE 2 Evaluate the limit lim π‘₯β†’0βˆ’ 1 π‘₯ , if possible. Here, 𝑓 π‘₯ = 1 π‘₯ When π‘₯ = βˆ’0.1, 𝑓 0.1 = βˆ’10 When π‘₯ = βˆ’0.01, 𝑓 0.01 = βˆ’100 When π‘₯ = βˆ’0.001, 𝑓 0.001 = βˆ’1000 When π‘₯ = βˆ’0.0001, 𝑓 0.0001 = βˆ’10,000 The value of 𝑓 π‘₯ decrease without bound as π‘₯ approaches 0 from the left. lim π‘₯β†’0βˆ’ 1 π‘₯ = βˆ’βˆž
  • 16. INFINITE LIMIT FROM THE RIGHT Let 𝑓 π‘₯ be a function defined at all values in an open interval of the form π‘Ž, 𝑐 . If the values of 𝑓 π‘₯ increase without bound as the values of π‘₯ (where π‘₯ > π‘Ž) approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the right is positive infinity. lim π‘₯β†’π‘Ž+ 𝑓 π‘₯ = +∞ If the values of 𝑓 π‘₯ decrease without bound as the values of π‘₯ (where π‘₯ > π‘Ž) approach the number π‘Ž, then we sat that the limit as π‘₯ approaches π‘Ž from the right is negative infinity. lim π‘₯β†’π‘Ž+ 𝑓 π‘₯ = βˆ’βˆž
  • 17. EXAMPLE OF CASE 1 Evaluate the limit lim π‘₯β†’0+ 1 π‘₯ , if possible. Here, 𝑓 π‘₯ = 1 π‘₯ When π‘₯ = 0.1, 𝑓 0.1 = 10 When π‘₯ = 0.01, 𝑓 0.01 = 100 When π‘₯ = 0.001, 𝑓 0.001 = 1000 When π‘₯ = 0.0001, 𝑓 0.0001 = 10,000 The value of 𝑓 π‘₯ increase without bound as π‘₯ approaches 0 from the right. lim π‘₯β†’0+ 1 π‘₯ = +∞
  • 18. EXAMPLE FOR CASE 2 Evaluate the limit lim π‘₯β†’0+ βˆ’ 1 π‘₯ , if possible. Here, 𝑓 π‘₯ = βˆ’ 1 π‘₯ When π‘₯ = 0.1, 𝑓 0.1 = βˆ’10 When π‘₯ = 0.01, 𝑓 0.01 = βˆ’100 When π‘₯ = 0.001, 𝑓 0.001 = βˆ’1000 When π‘₯ = 0.0001, 𝑓 0.0001 = βˆ’10,000 The value of 𝑓 π‘₯ decrease without bound as π‘₯ approaches 0 from the right. lim π‘₯β†’0+ βˆ’ 1 π‘₯ = βˆ’βˆž
  • 19. INFINITE LIMITS FROM POSITIVE EVEN INTEGERS If 𝑛 is a positive even integer, then lim π‘₯β†’π‘Ž 1 π‘₯ βˆ’ π‘Ž 𝑛 = +∞ lim π‘₯β†’π‘Ž+ 1 π‘₯ βˆ’ π‘Ž 𝑛 = +∞ lim π‘₯β†’π‘Žβˆ’ 1 π‘₯ βˆ’ π‘Ž 𝑛 = +∞
  • 20. EXAMPLE Evaluate lim π‘₯β†’βˆ’3 1 π‘₯+3 4 lim π‘₯β†’βˆ’3 1 (βˆ’3) + 3 4 = 1 0 = +∞ Evaluate lim π‘₯β†’βˆ’3+ 1 π‘₯+3 4 lim β„Žβ†’0 1 (βˆ’3 + β„Ž) + 3 4 = lim β„Žβ†’0 1 β„Ž4 = 1 0 = +∞ Evaluate lim π‘₯β†’βˆ’3βˆ’ 1 π‘₯+3 4 lim β„Žβ†’0 1 (βˆ’3 βˆ’ β„Ž) + 3 4 = lim β„Žβ†’0 1 (βˆ’β„Ž)4 = lim β„Žβ†’0 1 β„Ž4 = 1 0 = +∞
  • 21. INFINITE LIMITS FROM POSITIVE ODD INTEGERS If 𝑛 is a positive odd integer, then lim π‘₯β†’π‘Ž 1 π‘₯ βˆ’ π‘Ž 𝑛 = 𝐷𝑁𝐸 lim π‘₯β†’π‘Ž+ 1 π‘₯ βˆ’ π‘Ž 𝑛 = +∞ lim π‘₯β†’π‘Žβˆ’ 1 π‘₯ βˆ’ π‘Ž 𝑛 = βˆ’βˆž
  • 22. EXAMPLE Evaluate lim π‘₯β†’βˆ’3+ 1 π‘₯+3 3 lim β„Žβ†’0 1 (βˆ’3 + β„Ž) + 3 3 = lim β„Žβ†’0 1 β„Ž3 = 1 0 = +∞ Evaluate lim π‘₯β†’βˆ’3βˆ’ 1 π‘₯+3 3 lim β„Žβ†’0 1 (βˆ’3 βˆ’ β„Ž) + 3 3 = lim β„Žβ†’0 1 (βˆ’β„Ž)3 = βˆ’lim β„Žβ†’0 1 β„Ž3 = βˆ’ 1 0 = βˆ’βˆž Evaluate lim π‘₯β†’βˆ’3 1 π‘₯+3 3 lim π‘₯β†’βˆ’3 1 (βˆ’3) + 3 3 = 𝐷𝑁𝐸 Because lim π‘₯β†’βˆ’3+ 1 π‘₯+3 3 β‰  lim π‘₯β†’βˆ’3βˆ’ 1 π‘₯+3 3
  • 23. LIMIT AT INFINITY FOR RATIONAL FUNCTION For rational function 𝑓 π‘₯ = 𝑝 π‘₯ π‘ž π‘₯ , the limit at infinity is determined by the relationship between the degree of 𝑝 and π‘ž. If the degree of 𝑝 is less than the degree of π‘ž, then the line 𝑦 = 0 is a horizontal asymptote for 𝑓. If the degree of 𝑝 is equal to the degree of π‘ž, then the line 𝑦 = π‘Žπ‘› 𝑏𝑛 is a horizontal asymptote for 𝑓, where π‘Žπ‘› and 𝑏𝑛 are the leading coefficients of 𝑝 and π‘ž. If the degree of 𝑝 is greater than the degree of π‘ž, then 𝑓 approaches ∞ or βˆ’βˆž at each end.
  • 24. EXAMPLE FOR CASE 1 Evaluate lim π‘₯β†’βˆž 3π‘₯2+2π‘₯ 4π‘₯3βˆ’5π‘₯+7 lim π‘₯β†’βˆž 3π‘₯2+2π‘₯ 4π‘₯3βˆ’5π‘₯+7 = lim π‘₯β†’βˆž 3π‘₯2+2π‘₯ π‘₯3 4βˆ’ 5 π‘₯2+ 7 π‘₯3 = lim π‘₯β†’βˆž 3 π‘₯ + 2 π‘₯2 4βˆ’ 5 π‘₯2+ 7 π‘₯3 = 3(0) + 2(0) 4 βˆ’ 5(0) + 7(0) = 0 4 = 0
  • 25. EXAMPLE FOR CASE 2 Evaluate lim π‘₯β†’βˆž 2π‘₯+3 3π‘₯βˆ’2 lim π‘₯β†’βˆž 2π‘₯+3 3π‘₯βˆ’2 = lim π‘₯β†’βˆž π‘₯ 2+ 3 π‘₯ π‘₯ 3βˆ’ 2 π‘₯ = lim π‘₯β†’βˆž 2+ 3 π‘₯ 3βˆ’ 2 π‘₯ = 2 + 0 3 βˆ’ 0 = 2 3
  • 26. EXAMPLE FOR CASE 3 Evaluate lim π‘₯β†’βˆž 3π‘₯2+4π‘₯ π‘₯+2 lim π‘₯β†’βˆž 3π‘₯2+4π‘₯ π‘₯+2 = lim π‘₯β†’βˆž π‘₯2 3+ 4 π‘₯ π‘₯ 1+ 2 π‘₯ = lim π‘₯β†’βˆž π‘₯ 3+ 4 π‘₯ 1+ 2 π‘₯ = ∞ 3 + 0 1 + 0 = ∞ 1 =∞