This document summarizes a research paper that proposes a novel approach to improving the k-means clustering algorithm. The standard k-means algorithm is computationally expensive and produces results that depend heavily on the initial centroid selection. The proposed approach determines initial centroids systematically and uses a heuristic to efficiently assign data points to clusters. It improves both the accuracy and efficiency of k-means clustering by ensuring the entire process takes O(n2) time without sacrificing cluster quality.