This document summarizes Jessica Hullman's project modeling word sense disambiguation using support vector machines. She used a dataset from Senseval-2 and achieved an average accuracy of 87% at assigning word senses, with a standard deviation of 15% and median of 92%. The project involved modifying an existing implementation that used part-of-speech tags of neighboring words to classify word senses, training support vector machine classifiers on the Senseval-2 data.