The document describes a study that uses GloVe word embeddings to measure semantic similarity between short texts. GloVe is an unsupervised learning algorithm for obtaining vector representations of words. The study trains GloVe word embeddings on a large corpus, then uses the embeddings to encode short texts and calculate their semantic similarity, comparing the accuracy to methods that use Word2Vec embeddings. It aims to show that GloVe embeddings may provide better performance for short text semantic similarity tasks.