This document provides an overview of natural language processing (NLP) research trends presented at ACL 2020, including shifting away from large labeled datasets towards unsupervised and data augmentation techniques. It discusses the resurgence of retrieval models combined with language models, the focus on explainable NLP models, and reflections on current achievements and limitations in the field. Key papers on BERT and XLNet are summarized, outlining their main ideas and achievements in advancing the state-of-the-art on various NLP tasks.