SlideShare a Scribd company logo
3.1
3-6 PERFORMANCE3-6 PERFORMANCE
One important issue in networking is theOne important issue in networking is the performanceperformance ofof
the network—how good is it? We discuss quality ofthe network—how good is it? We discuss quality of
service, an overall measurement of networkservice, an overall measurement of network
performance, in greater detail in Chapter 24. In thisperformance, in greater detail in Chapter 24. In this
section, we introduce terms that we need for futuresection, we introduce terms that we need for future
chapters.chapters.
 Bandwidth - capacity of the system
 Throughput - no. of bits that can be
pushed through
 Latency (Delay) - delay incurred by a
bit from start to finish
 Bandwidth-Delay Product
Topics discussed in this section:Topics discussed in this section:
3.2
In networking, we use the term
bandwidth in two contexts.
 The first, bandwidth in hertz, refers to the
range of frequencies in a composite signal
or the range of frequencies that a channel
can pass.
 The second, bandwidth in bits per second,
refers to the speed of bit transmission in a
channel or link. Often referred to as
Capacity.
Note
3.3
The bandwidth of a subscriber line is 4 kHz for voice or
data. The bandwidth of this line for data transmission
can be up to 56,000 bps using a sophisticated modem to
change the digital signal to analog.
Example 3.42
3.4
If the telephone company improves the quality of the line
and increases the bandwidth to 8 kHz, we can send
112,000 bps by using the same technology as mentioned
in Example 3.42.
Example 3.43
3.5
A network with bandwidth of 10 Mbps can pass only an
average of 12,000 frames per minute with each frame
carrying an average of 10,000 bits. What is the
throughput of this network?
Solution
We can calculate the throughput as
Example 3.44
The throughput is almost one-fifth of the bandwidth in
this case.
3.6
3.7
Propagation & Transmission delay
 Propagation speed - speed at which a
bit travels though the medium from
source to destination.
 Transmission speed - the speed at
which all the bits in a message arrive at
the destination. (difference in arrival
time of first and last bit)
3.8
Propagation and Transmission Delay
 Propagation Delay = Distance/Propagation speed
 Transmission Delay = Message size/bandwidth bps
 Latency = Propagation delay + Transmission delay +
Queueing time + Processing time
3.9
What is the propagation time if the distance between the
two points is 12,000 km? Assume the propagation speed
to be 2.4 × 108 m/s in cable.
Solution
We can calculate the propagation time as
Example 3.45
The example shows that a bit can go over the Atlantic
Ocean in only 50 ms if there is a direct cable between the
source and the destination.
3.10
What are the propagation time and the transmission
time for a 2.5-kbyte message (an e-mail) if the
bandwidth of the network is 1 Gbps? Assume that the
distance between the sender and the receiver is 12,000
km and that light travels at 2.4 × 108 m/s.
Solution
We can calculate the propagation and transmission time
as shown on the next slide:
Example 3.46
3.11
Note that in this case, because the message is short and
the bandwidth is high, the dominant factor is the
propagation time, not the transmission time. The
transmission time can be ignored.
Example 3.46 (continued)
3.12
What are the propagation time and the transmission
time for a 5-Mbyte message (an image) if the bandwidth
of the network is 1 Mbps? Assume that the distance
between the sender and the receiver is 12,000 km and
that light travels at 2.4 × 108
m/s.
Solution
We can calculate the propagation and transmission
times as shown on the next slide.
Example 3.47
3.13
Note that in this case, because the message is very long
and the bandwidth is not very high, the dominant factor
is the transmission time, not the propagation time. The
propagation time can be ignored.
Example 3.47 (continued)
3.14
Figure 3.31 Filling the link with bits for case 1
3.15
We can think about the link between two points as a
pipe. The cross section of the pipe represents the
bandwidth, and the length of the pipe represents the
delay. We can say the volume of the pipe defines the
bandwidth-delay product, as shown in Figure 3.33.
Example 3.48
3.16
Figure 3.32 Filling the link with bits in case 2
3.17
The bandwidth-delay product defines
the number of bits that can fill the link.
Note
3.18
Figure 3.33 Concept of bandwidth-delay product

More Related Content

What's hot

Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
Neha Kurale
 
04 Digital Transmission
04 Digital Transmission04 Digital Transmission
04 Digital Transmission
Ahmar Hashmi
 
Ch3 1 Data communication and networking
Ch3 1 Data communication and networkingCh3 1 Data communication and networking
Ch3 1 Data communication and networking
Neha Kurale
 
BANDWIDTH UTILIZATION
BANDWIDTH UTILIZATIONBANDWIDTH UTILIZATION
BANDWIDTH UTILIZATION
Avijeet Negel
 
Ch3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kuraleCh3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kurale
Neha Kurale
 
Data bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwaData bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwa
Abhishek Wadhwa
 
03 Data and_Signals
03 Data and_Signals03 Data and_Signals
03 Data and_Signals
Ahmar Hashmi
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
bhagavanprasad
 
Ch3 1 v1
Ch3 1 v1Ch3 1 v1
Ch3 1 v1
bhagavanprasad
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
Faisal Mehmood
 
Data and signals
Data and signalsData and signals
Data and signals
HamzahMohammed4
 
Data Communication And Networking - DIGITAL TRANSMISSION
Data Communication And Networking - DIGITAL TRANSMISSIONData Communication And Networking - DIGITAL TRANSMISSION
Data Communication And Networking - DIGITAL TRANSMISSION
Avijeet Negel
 
Data Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacityData Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacity
Dr Rajiv Srivastava
 
Ch 03
Ch 03Ch 03
Chapter 4
Chapter 4Chapter 4
Chapter 4
Faisal Mehmood
 
Data Communication And Networking - DATA & SIGNALS
Data Communication And Networking - DATA & SIGNALSData Communication And Networking - DATA & SIGNALS
Data Communication And Networking - DATA & SIGNALS
Avijeet Negel
 
Unit 4 bandwidth utilization
Unit 4 bandwidth utilizationUnit 4 bandwidth utilization
Unit 4 bandwidth utilization
Anjuman College of Engg. & Tech.
 
Ch4 1 v1
Ch4 1 v1Ch4 1 v1
Ch4 1 v1
bhagavanprasad
 
06 Bandwidth Utilization_Multiplexing_and_Spreading
06 Bandwidth Utilization_Multiplexing_and_Spreading06 Bandwidth Utilization_Multiplexing_and_Spreading
06 Bandwidth Utilization_Multiplexing_and_Spreading
Ahmar Hashmi
 
Chapter 3: Data & Signals
Chapter 3: Data & SignalsChapter 3: Data & Signals
Chapter 3: Data & Signals
Shafaan Khaliq Bhatti
 

What's hot (20)

Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
 
04 Digital Transmission
04 Digital Transmission04 Digital Transmission
04 Digital Transmission
 
Ch3 1 Data communication and networking
Ch3 1 Data communication and networkingCh3 1 Data communication and networking
Ch3 1 Data communication and networking
 
BANDWIDTH UTILIZATION
BANDWIDTH UTILIZATIONBANDWIDTH UTILIZATION
BANDWIDTH UTILIZATION
 
Ch3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kuraleCh3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kurale
 
Data bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwaData bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwa
 
03 Data and_Signals
03 Data and_Signals03 Data and_Signals
03 Data and_Signals
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
Ch3 1 v1
Ch3 1 v1Ch3 1 v1
Ch3 1 v1
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Data and signals
Data and signalsData and signals
Data and signals
 
Data Communication And Networking - DIGITAL TRANSMISSION
Data Communication And Networking - DIGITAL TRANSMISSIONData Communication And Networking - DIGITAL TRANSMISSION
Data Communication And Networking - DIGITAL TRANSMISSION
 
Data Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacityData Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacity
 
Ch 03
Ch 03Ch 03
Ch 03
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Data Communication And Networking - DATA & SIGNALS
Data Communication And Networking - DATA & SIGNALSData Communication And Networking - DATA & SIGNALS
Data Communication And Networking - DATA & SIGNALS
 
Unit 4 bandwidth utilization
Unit 4 bandwidth utilizationUnit 4 bandwidth utilization
Unit 4 bandwidth utilization
 
Ch4 1 v1
Ch4 1 v1Ch4 1 v1
Ch4 1 v1
 
06 Bandwidth Utilization_Multiplexing_and_Spreading
06 Bandwidth Utilization_Multiplexing_and_Spreading06 Bandwidth Utilization_Multiplexing_and_Spreading
06 Bandwidth Utilization_Multiplexing_and_Spreading
 
Chapter 3: Data & Signals
Chapter 3: Data & SignalsChapter 3: Data & Signals
Chapter 3: Data & Signals
 

Similar to Data Communication And Networking

Bandwidth.ppt
Bandwidth.pptBandwidth.ppt
Bandwidth.ppt
ILMohamedHasmy
 
Unit_I - 3
Unit_I - 3Unit_I - 3
10069380.ppt
10069380.ppt10069380.ppt
10069380.ppt
Kevin317696
 
Ch1 v1
Ch1 v1Ch1 v1
MULTIPLEXING TECHNIQUES-coomunications.pptx
MULTIPLEXING TECHNIQUES-coomunications.pptxMULTIPLEXING TECHNIQUES-coomunications.pptx
MULTIPLEXING TECHNIQUES-coomunications.pptx
RueGustilo2
 
Multiplexing
MultiplexingMultiplexing
Multiplexing
nimay1
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
bhagavanprasad
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
sayyed sabir
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
Sehrish Rafiq
 
Multiplexing ppt15 sep
Multiplexing ppt15 sepMultiplexing ppt15 sep
Multiplexing ppt15 sep
Srashti Vyas
 
Availability Computer Communication Network .pdf
Availability Computer Communication Network .pdfAvailability Computer Communication Network .pdf
Availability Computer Communication Network .pdf
YashShirude1
 
Note 4 physical layer ii (1) spread spectrum(fhss&dsss)
Note 4 physical layer ii (1) spread spectrum(fhss&dsss)Note 4 physical layer ii (1) spread spectrum(fhss&dsss)
Note 4 physical layer ii (1) spread spectrum(fhss&dsss)
Faculty of Engineering, Alexandria University, Egypt
 
A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...
A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...
A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...
Elizabeth Williams
 
Mux ppt unit 2 data comm
Mux ppt unit 2 data commMux ppt unit 2 data comm
Mux ppt unit 2 data comm
Srashti Vyas
 
Text book 2 computer networks_a systems approach_peterson solution manual
Text book 2 computer networks_a systems approach_peterson solution manualText book 2 computer networks_a systems approach_peterson solution manual
Text book 2 computer networks_a systems approach_peterson solution manual
gopivrajan
 
Shannon Capacity.pptx
Shannon Capacity.pptxShannon Capacity.pptx
Shannon Capacity.pptx
Rhishav Poudyal
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
tarekrahat
 
Multiplexing : Wave Division Multiplexing
Multiplexing : Wave Division MultiplexingMultiplexing : Wave Division Multiplexing
Multiplexing : Wave Division Multiplexing
Dr Rajiv Srivastava
 
COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3
BON SECOURS COLLEGE FOR WOMEN
 
24 Multiplexing_Techniques.pdf
24 Multiplexing_Techniques.pdf24 Multiplexing_Techniques.pdf
24 Multiplexing_Techniques.pdf
Mohamedshabana38
 

Similar to Data Communication And Networking (20)

Bandwidth.ppt
Bandwidth.pptBandwidth.ppt
Bandwidth.ppt
 
Unit_I - 3
Unit_I - 3Unit_I - 3
Unit_I - 3
 
10069380.ppt
10069380.ppt10069380.ppt
10069380.ppt
 
Ch1 v1
Ch1 v1Ch1 v1
Ch1 v1
 
MULTIPLEXING TECHNIQUES-coomunications.pptx
MULTIPLEXING TECHNIQUES-coomunications.pptxMULTIPLEXING TECHNIQUES-coomunications.pptx
MULTIPLEXING TECHNIQUES-coomunications.pptx
 
Multiplexing
MultiplexingMultiplexing
Multiplexing
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
Multiplexing ppt15 sep
Multiplexing ppt15 sepMultiplexing ppt15 sep
Multiplexing ppt15 sep
 
Availability Computer Communication Network .pdf
Availability Computer Communication Network .pdfAvailability Computer Communication Network .pdf
Availability Computer Communication Network .pdf
 
Note 4 physical layer ii (1) spread spectrum(fhss&dsss)
Note 4 physical layer ii (1) spread spectrum(fhss&dsss)Note 4 physical layer ii (1) spread spectrum(fhss&dsss)
Note 4 physical layer ii (1) spread spectrum(fhss&dsss)
 
A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...
A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...
A Heuristic Algorithm For The Resource Assignment Problem In Satellite Teleco...
 
Mux ppt unit 2 data comm
Mux ppt unit 2 data commMux ppt unit 2 data comm
Mux ppt unit 2 data comm
 
Text book 2 computer networks_a systems approach_peterson solution manual
Text book 2 computer networks_a systems approach_peterson solution manualText book 2 computer networks_a systems approach_peterson solution manual
Text book 2 computer networks_a systems approach_peterson solution manual
 
Shannon Capacity.pptx
Shannon Capacity.pptxShannon Capacity.pptx
Shannon Capacity.pptx
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
 
Multiplexing : Wave Division Multiplexing
Multiplexing : Wave Division MultiplexingMultiplexing : Wave Division Multiplexing
Multiplexing : Wave Division Multiplexing
 
COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3
 
24 Multiplexing_Techniques.pdf
24 Multiplexing_Techniques.pdf24 Multiplexing_Techniques.pdf
24 Multiplexing_Techniques.pdf
 

More from Avijeet Negel

TCP/IP
TCP/IPTCP/IP
Upper OSI LAYER
Upper OSI LAYERUpper OSI LAYER
Upper OSI LAYER
Avijeet Negel
 
SONET/SDH
SONET/SDHSONET/SDH
SONET/SDH
Avijeet Negel
 
ATM
ATMATM
Frame Relay
Frame RelayFrame Relay
Frame Relay
Avijeet Negel
 
X.25
X.25X.25
Integrated Services Digital Network (ISDN)
Integrated Services Digital Network (ISDN)Integrated Services Digital Network (ISDN)
Integrated Services Digital Network (ISDN)
Avijeet Negel
 
Switching
SwitchingSwitching
Switching
Avijeet Negel
 
Point to Point Protocol
Point to Point ProtocolPoint to Point Protocol
Point to Point Protocol
Avijeet Negel
 
Networking and Networking Devices
Networking and Networking DevicesNetworking and Networking Devices
Networking and Networking Devices
Avijeet Negel
 
DATA Link Control
DATA Link ControlDATA Link Control
DATA Link Control
Avijeet Negel
 
CRC
CRCCRC
Error Detection and Correction
Error Detection and CorrectionError Detection and Correction
Error Detection and Correction
Avijeet Negel
 
Telephone Network
Telephone NetworkTelephone Network
Telephone Network
Avijeet Negel
 
Time Division Multiplexing
Time Division MultiplexingTime Division Multiplexing
Time Division Multiplexing
Avijeet Negel
 
MULTIPLEXING
MULTIPLEXINGMULTIPLEXING
MULTIPLEXING
Avijeet Negel
 
Radio Communication Band
Radio Communication BandRadio Communication Band
Radio Communication Band
Avijeet Negel
 
Transmission Media
Transmission MediaTransmission Media
Transmission Media
Avijeet Negel
 
DB-37 AND DB-9 CONNECTORS
DB-37 AND DB-9 CONNECTORSDB-37 AND DB-9 CONNECTORS
DB-37 AND DB-9 CONNECTORS
Avijeet Negel
 
Transmission Of Digital Data
Transmission Of Digital DataTransmission Of Digital Data
Transmission Of Digital Data
Avijeet Negel
 

More from Avijeet Negel (20)

TCP/IP
TCP/IPTCP/IP
TCP/IP
 
Upper OSI LAYER
Upper OSI LAYERUpper OSI LAYER
Upper OSI LAYER
 
SONET/SDH
SONET/SDHSONET/SDH
SONET/SDH
 
ATM
ATMATM
ATM
 
Frame Relay
Frame RelayFrame Relay
Frame Relay
 
X.25
X.25X.25
X.25
 
Integrated Services Digital Network (ISDN)
Integrated Services Digital Network (ISDN)Integrated Services Digital Network (ISDN)
Integrated Services Digital Network (ISDN)
 
Switching
SwitchingSwitching
Switching
 
Point to Point Protocol
Point to Point ProtocolPoint to Point Protocol
Point to Point Protocol
 
Networking and Networking Devices
Networking and Networking DevicesNetworking and Networking Devices
Networking and Networking Devices
 
DATA Link Control
DATA Link ControlDATA Link Control
DATA Link Control
 
CRC
CRCCRC
CRC
 
Error Detection and Correction
Error Detection and CorrectionError Detection and Correction
Error Detection and Correction
 
Telephone Network
Telephone NetworkTelephone Network
Telephone Network
 
Time Division Multiplexing
Time Division MultiplexingTime Division Multiplexing
Time Division Multiplexing
 
MULTIPLEXING
MULTIPLEXINGMULTIPLEXING
MULTIPLEXING
 
Radio Communication Band
Radio Communication BandRadio Communication Band
Radio Communication Band
 
Transmission Media
Transmission MediaTransmission Media
Transmission Media
 
DB-37 AND DB-9 CONNECTORS
DB-37 AND DB-9 CONNECTORSDB-37 AND DB-9 CONNECTORS
DB-37 AND DB-9 CONNECTORS
 
Transmission Of Digital Data
Transmission Of Digital DataTransmission Of Digital Data
Transmission Of Digital Data
 

Recently uploaded

P5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civilP5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civil
AnasAhmadNoor
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
Kamal Acharya
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
OKORIE1
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
sydezfe
 
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
Paris Salesforce Developer Group
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
aryanpankaj78
 
Object Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOADObject Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOAD
PreethaV16
 
Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
Shiny Christobel
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Transcat
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
Kamal Acharya
 
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
ijseajournal
 
Generative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdfGenerative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdf
mahaffeycheryld
 
一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理
uqyfuc
 
Levelised Cost of Hydrogen (LCOH) Calculator Manual
Levelised Cost of Hydrogen  (LCOH) Calculator ManualLevelised Cost of Hydrogen  (LCOH) Calculator Manual
Levelised Cost of Hydrogen (LCOH) Calculator Manual
Massimo Talia
 
openshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoinopenshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoin
snaprevwdev
 

Recently uploaded (20)

P5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civilP5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civil
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
DESIGN AND MANUFACTURE OF CEILING BOARD USING SAWDUST AND WASTE CARTON MATERI...
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
 
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
 
Digital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptxDigital Twins Computer Networking Paper Presentation.pptx
Digital Twins Computer Networking Paper Presentation.pptx
 
Object Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOADObject Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOAD
 
Zener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and ApplicationsZener Diode and its V-I Characteristics and Applications
Zener Diode and its V-I Characteristics and Applications
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
 
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
 
Generative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdfGenerative AI Use cases applications solutions and implementation.pdf
Generative AI Use cases applications solutions and implementation.pdf
 
一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理
 
Levelised Cost of Hydrogen (LCOH) Calculator Manual
Levelised Cost of Hydrogen  (LCOH) Calculator ManualLevelised Cost of Hydrogen  (LCOH) Calculator Manual
Levelised Cost of Hydrogen (LCOH) Calculator Manual
 
openshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoinopenshift technical overview - Flow of openshift containerisatoin
openshift technical overview - Flow of openshift containerisatoin
 

Data Communication And Networking

  • 1. 3.1 3-6 PERFORMANCE3-6 PERFORMANCE One important issue in networking is theOne important issue in networking is the performanceperformance ofof the network—how good is it? We discuss quality ofthe network—how good is it? We discuss quality of service, an overall measurement of networkservice, an overall measurement of network performance, in greater detail in Chapter 24. In thisperformance, in greater detail in Chapter 24. In this section, we introduce terms that we need for futuresection, we introduce terms that we need for future chapters.chapters.  Bandwidth - capacity of the system  Throughput - no. of bits that can be pushed through  Latency (Delay) - delay incurred by a bit from start to finish  Bandwidth-Delay Product Topics discussed in this section:Topics discussed in this section:
  • 2. 3.2 In networking, we use the term bandwidth in two contexts.  The first, bandwidth in hertz, refers to the range of frequencies in a composite signal or the range of frequencies that a channel can pass.  The second, bandwidth in bits per second, refers to the speed of bit transmission in a channel or link. Often referred to as Capacity. Note
  • 3. 3.3 The bandwidth of a subscriber line is 4 kHz for voice or data. The bandwidth of this line for data transmission can be up to 56,000 bps using a sophisticated modem to change the digital signal to analog. Example 3.42
  • 4. 3.4 If the telephone company improves the quality of the line and increases the bandwidth to 8 kHz, we can send 112,000 bps by using the same technology as mentioned in Example 3.42. Example 3.43
  • 5. 3.5 A network with bandwidth of 10 Mbps can pass only an average of 12,000 frames per minute with each frame carrying an average of 10,000 bits. What is the throughput of this network? Solution We can calculate the throughput as Example 3.44 The throughput is almost one-fifth of the bandwidth in this case.
  • 6. 3.6
  • 7. 3.7 Propagation & Transmission delay  Propagation speed - speed at which a bit travels though the medium from source to destination.  Transmission speed - the speed at which all the bits in a message arrive at the destination. (difference in arrival time of first and last bit)
  • 8. 3.8 Propagation and Transmission Delay  Propagation Delay = Distance/Propagation speed  Transmission Delay = Message size/bandwidth bps  Latency = Propagation delay + Transmission delay + Queueing time + Processing time
  • 9. 3.9 What is the propagation time if the distance between the two points is 12,000 km? Assume the propagation speed to be 2.4 × 108 m/s in cable. Solution We can calculate the propagation time as Example 3.45 The example shows that a bit can go over the Atlantic Ocean in only 50 ms if there is a direct cable between the source and the destination.
  • 10. 3.10 What are the propagation time and the transmission time for a 2.5-kbyte message (an e-mail) if the bandwidth of the network is 1 Gbps? Assume that the distance between the sender and the receiver is 12,000 km and that light travels at 2.4 × 108 m/s. Solution We can calculate the propagation and transmission time as shown on the next slide: Example 3.46
  • 11. 3.11 Note that in this case, because the message is short and the bandwidth is high, the dominant factor is the propagation time, not the transmission time. The transmission time can be ignored. Example 3.46 (continued)
  • 12. 3.12 What are the propagation time and the transmission time for a 5-Mbyte message (an image) if the bandwidth of the network is 1 Mbps? Assume that the distance between the sender and the receiver is 12,000 km and that light travels at 2.4 × 108 m/s. Solution We can calculate the propagation and transmission times as shown on the next slide. Example 3.47
  • 13. 3.13 Note that in this case, because the message is very long and the bandwidth is not very high, the dominant factor is the transmission time, not the propagation time. The propagation time can be ignored. Example 3.47 (continued)
  • 14. 3.14 Figure 3.31 Filling the link with bits for case 1
  • 15. 3.15 We can think about the link between two points as a pipe. The cross section of the pipe represents the bandwidth, and the length of the pipe represents the delay. We can say the volume of the pipe defines the bandwidth-delay product, as shown in Figure 3.33. Example 3.48
  • 16. 3.16 Figure 3.32 Filling the link with bits in case 2
  • 17. 3.17 The bandwidth-delay product defines the number of bits that can fill the link. Note
  • 18. 3.18 Figure 3.33 Concept of bandwidth-delay product