SlideShare a Scribd company logo
DATA RATE LIMITS
A very important consideration in data communications
is how fast we can send data, in bits per second, over a
channel. Data rate depends on three factors:
1. The bandwidth available
2. The level of the signals we use
3. The quality of the channel (the level of noise)
 Noiseless Channel: Nyquist Bit Rate
 Noisy Channel: Shannon Capacity
 Using Both Limits
Topics discussed in this section:
Increasing the levels of a signal
increases the probability of an error
occurring, in other words it reduces the
reliability of the system. Why??
Note
Capacity of a System
 The bit rate of a system increases with an
increase in the number of signal levels we
use to denote a symbol.
 A symbol can consist of a single bit or “n”
bits.
 The number of signal levels = 2n.
 As the number of levels goes up, the spacing
between level decreases -> increasing the
probability of an error occurring in the
presence of transmission impairments.
Nyquist Theorem
 Nyquist gives the upper bound for the bit rate
of a transmission system by calculating the
bit rate directly from the number of bits in a
symbol (or signal levels) and the bandwidth
of the system (assuming 2 symbols/per cycle
and first harmonic).
 Nyquist theorem states that for a noiseless
channel:
C = 2 B log22n
C= capacity in bps
B = bandwidth in Hz
Does the Nyquist theorem bit rate agree with the
intuitive bit rate described in baseband transmission?
Solution
They match when we have only two levels. We said, in
baseband transmission, the bit rate is 2 times the
bandwidth if we use only the first harmonic in the worst
case. However, the Nyquist formula is more general than
what we derived intuitively; it can be applied to baseband
transmission and modulation. Also, it can be applied
when we have two or more levels of signals.
Example 3.33
Consider a noiseless channel with a bandwidth of 3000
Hz transmitting a signal with two signal levels. The
maximum bit rate can be calculated as
Example 3.34
Consider the same noiseless channel transmitting a
signal with four signal levels (for each level, we send 2
bits). The maximum bit rate can be calculated as
Example 3.35
We need to send 265 kbps over a noiseless channel with
a bandwidth of 20 kHz. How many signal levels do we
need?
Solution
We can use the Nyquist formula as shown:
Example 3.36
Since this result is not a power of 2, we need to either
increase the number of levels or reduce the bit rate. If we
have 128 levels, the bit rate is 280 kbps. If we have 64
levels, the bit rate is 240 kbps.
Shannon’s Theorem
 Shannon’s theorem gives the capacity
of a system in the presence of noise.
C = B log2(1 + SNR)
Consider an extremely noisy channel in which the value
of the signal-to-noise ratio is almost zero. In other
words, the noise is so strong that the signal is faint. For
this channel the capacity C is calculated as
Example 3.37
This means that the capacity of this channel is zero
regardless of the bandwidth. In other words, we cannot
receive any data through this channel.
We can calculate the theoretical highest bit rate of a
regular telephone line. A telephone line normally has a
bandwidth of 3000. The signal-to-noise ratio is usually
3162. For this channel the capacity is calculated as
Example 3.38
This means that the highest bit rate for a telephone line
is 34.860 kbps. If we want to send data faster than this,
we can either increase the bandwidth of the line or
improve the signal-to-noise ratio.
The signal-to-noise ratio is often given in decibels.
Assume that SNRdB = 36 and the channel bandwidth is 2
MHz. The theoretical channel capacity can be calculated
as
Example 3.39
For practical purposes, when the SNR is very high, we
can assume that SNR + 1 is almost the same as SNR. In
these cases, the theoretical channel capacity can be
simplified to
Example 3.40
For example, we can calculate the theoretical capacity of
the previous example as
We have a channel with a 1-MHz bandwidth. The SNR
for this channel is 63. What are the appropriate bit rate
and signal level?
Solution
First, we use the Shannon formula to find the upper
limit.
Example 3.41
The Shannon formula gives us 6 Mbps, the upper limit.
For better performance we choose something lower, 4
Mbps, for example. Then we use the Nyquist formula to
find the number of signal levels.
Example 3.41 (continued)
The Shannon capacity gives us the
upper limit; the Nyquist formula tells us
how many signal levels we need.
Note

More Related Content

What's hot

Chap 3 data and signals
Chap 3 data and signalsChap 3 data and signals
Chap 3 data and signals
Mukesh Tekwani
 
Data transmission rate and bandwidth
Data transmission rate and bandwidth Data transmission rate and bandwidth
Data transmission rate and bandwidth
Kajal Chaudhari
 
Edge Detection using Hough Transform
Edge Detection using Hough TransformEdge Detection using Hough Transform
Edge Detection using Hough Transform
Mrunal Selokar
 
Chap5 analog transmission
Chap5 analog transmissionChap5 analog transmission
Chap5 analog transmissionarslan_akbar90
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
Faisal Mehmood
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital Transmission
Wayne Jones Jnr
 
DATA RATE LIMITS
DATA RATE LIMITSDATA RATE LIMITS
DATA RATE LIMITS
ChAwais15
 
Shannon Capacity.pptx
Shannon Capacity.pptxShannon Capacity.pptx
Shannon Capacity.pptx
Rhishav Poudyal
 
Cloud applications - Protein Structure Predication and gene expression data...
Cloud applications - Protein Structure Predication  and  gene expression data...Cloud applications - Protein Structure Predication  and  gene expression data...
Cloud applications - Protein Structure Predication and gene expression data...
Pushpendra Singh Dangi
 
3. overview of data communication part 2
3. overview of data communication   part 23. overview of data communication   part 2
3. overview of data communication part 2
JAIGANESH SEKAR
 
Physical Layer Questions
Physical Layer QuestionsPhysical Layer Questions
Physical Layer Questions
Manisha Keim
 
Smoothing Filters in Spatial Domain
Smoothing Filters in Spatial DomainSmoothing Filters in Spatial Domain
Smoothing Filters in Spatial Domain
Madhu Bala
 
Data link layer
Data link layer Data link layer
Data link layer
Mukesh Chinta
 
Data communications Class notes
Data communications  Class notesData communications  Class notes
Data communications Class notes
Dr.YNM
 
Chapter 23
Chapter 23Chapter 23
Chapter 23
Faisal Mehmood
 
Data communication and networks by B. Forouzan
Data communication and networks by B. ForouzanData communication and networks by B. Forouzan
Data communication and networks by B. Forouzan
Preethi T G
 
Congestion control
Congestion controlCongestion control
Congestion control
Nithin Raj
 

What's hot (20)

Chap 3 data and signals
Chap 3 data and signalsChap 3 data and signals
Chap 3 data and signals
 
Data transmission rate and bandwidth
Data transmission rate and bandwidth Data transmission rate and bandwidth
Data transmission rate and bandwidth
 
Edge Detection using Hough Transform
Edge Detection using Hough TransformEdge Detection using Hough Transform
Edge Detection using Hough Transform
 
Chap5 analog transmission
Chap5 analog transmissionChap5 analog transmission
Chap5 analog transmission
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital Transmission
 
DATA RATE LIMITS
DATA RATE LIMITSDATA RATE LIMITS
DATA RATE LIMITS
 
Shannon Capacity.pptx
Shannon Capacity.pptxShannon Capacity.pptx
Shannon Capacity.pptx
 
Audio compression
Audio compressionAudio compression
Audio compression
 
Cloud applications - Protein Structure Predication and gene expression data...
Cloud applications - Protein Structure Predication  and  gene expression data...Cloud applications - Protein Structure Predication  and  gene expression data...
Cloud applications - Protein Structure Predication and gene expression data...
 
3. overview of data communication part 2
3. overview of data communication   part 23. overview of data communication   part 2
3. overview of data communication part 2
 
Physical Layer Questions
Physical Layer QuestionsPhysical Layer Questions
Physical Layer Questions
 
Smoothing Filters in Spatial Domain
Smoothing Filters in Spatial DomainSmoothing Filters in Spatial Domain
Smoothing Filters in Spatial Domain
 
Data link layer
Data link layer Data link layer
Data link layer
 
Ch 05
Ch 05Ch 05
Ch 05
 
Data communications Class notes
Data communications  Class notesData communications  Class notes
Data communications Class notes
 
Ch 03
Ch 03Ch 03
Ch 03
 
Chapter 23
Chapter 23Chapter 23
Chapter 23
 
Data communication and networks by B. Forouzan
Data communication and networks by B. ForouzanData communication and networks by B. Forouzan
Data communication and networks by B. Forouzan
 
Congestion control
Congestion controlCongestion control
Congestion control
 

Similar to Ch3 2 Data communication and networking

Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
tarekrahat
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
bhagavanprasad
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
sayyed sabir
 
10069380.ppt
10069380.ppt10069380.ppt
10069380.ppt
Kevin317696
 
Data Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacityData Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacity
Dr Rajiv Srivastava
 
Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication Principles
Kamal Acharya
 
Data bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwaData bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwaAbhishek Wadhwa
 
Chap3
Chap3Chap3
2. data and signals
2. data and signals2. data and signals
2. data and signals
Humayoun Kabir
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
Neha Kurale
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
alpana12
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
bhagavanprasad
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
RiyaBatool
 
Mixed presenration
Mixed presenrationMixed presenration
Mixed presenration
azim khan
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
KALPANAC20
 
Transmisi Analog_24.pptx for lectured note
Transmisi Analog_24.pptx for lectured noteTransmisi Analog_24.pptx for lectured note
Transmisi Analog_24.pptx for lectured note
zulhelmanz
 
3-Bandwidth.pptx
3-Bandwidth.pptx3-Bandwidth.pptx
3-Bandwidth.pptx
ssuser7ba3ef
 
Ch03
Ch03Ch03
Ch3 1 Data communication and networking
Ch3 1 Data communication and networkingCh3 1 Data communication and networking
Ch3 1 Data communication and networking
Neha Kurale
 

Similar to Ch3 2 Data communication and networking (20)

Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
 
10069380.ppt
10069380.ppt10069380.ppt
10069380.ppt
 
Data Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacityData Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacity
 
Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication Principles
 
Data bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwaData bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwa
 
Chap3
Chap3Chap3
Chap3
 
2. data and signals
2. data and signals2. data and signals
2. data and signals
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
 
Mixed presenration
Mixed presenrationMixed presenration
Mixed presenration
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
 
Transmisi Analog_24.pptx for lectured note
Transmisi Analog_24.pptx for lectured noteTransmisi Analog_24.pptx for lectured note
Transmisi Analog_24.pptx for lectured note
 
Analog_to_Digital.pdf
Analog_to_Digital.pdfAnalog_to_Digital.pdf
Analog_to_Digital.pdf
 
3-Bandwidth.pptx
3-Bandwidth.pptx3-Bandwidth.pptx
3-Bandwidth.pptx
 
Ch03
Ch03Ch03
Ch03
 
Ch3 1 Data communication and networking
Ch3 1 Data communication and networkingCh3 1 Data communication and networking
Ch3 1 Data communication and networking
 

More from Neha Kurale

Ch7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kuraleCh7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kurale
Neha Kurale
 
Ch6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kuraleCh6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kurale
Neha Kurale
 
Ch6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kuraleCh6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kurale
Neha Kurale
 
Ch5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kuraleCh5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kurale
Neha Kurale
 
Ch5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleCh5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kurale
Neha Kurale
 
Ch4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kuraleCh4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kurale
Neha Kurale
 
Ch3 3 Data communication and networking
Ch3 3  Data communication and networking Ch3 3  Data communication and networking
Ch3 3 Data communication and networking
Neha Kurale
 
Ch3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kuraleCh3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kurale
Neha Kurale
 
Ch2
Ch2Ch2
Ch1
Ch1Ch1
Application layer
Application layerApplication layer
Application layer
Neha Kurale
 
Application layer
Application layerApplication layer
Application layer
Neha Kurale
 
Computer funda bsc_hs
Computer funda bsc_hsComputer funda bsc_hs
Computer funda bsc_hs
Neha Kurale
 
Unit1 three part secondary storage devices
Unit1 three part secondary storage devicesUnit1 three part secondary storage devices
Unit1 three part secondary storage devices
Neha Kurale
 
Unit1 four part basic computer organization
Unit1 four part basic computer organizationUnit1 four part basic computer organization
Unit1 four part basic computer organization
Neha Kurale
 
Unit 1 two part hw sw os app sw
Unit 1 two part hw sw os app swUnit 1 two part hw sw os app sw
Unit 1 two part hw sw os app sw
Neha Kurale
 
Unit 1 one part introduction to computers
Unit 1 one part introduction to computersUnit 1 one part introduction to computers
Unit 1 one part introduction to computers
Neha Kurale
 
Unit 1 four part pocessor and memory
Unit 1 four part pocessor and memoryUnit 1 four part pocessor and memory
Unit 1 four part pocessor and memory
Neha Kurale
 
Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)
Neha Kurale
 
8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardware8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardware
Neha Kurale
 

More from Neha Kurale (20)

Ch7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kuraleCh7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kurale
 
Ch6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kuraleCh6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kurale
 
Ch6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kuraleCh6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kurale
 
Ch5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kuraleCh5 1 Data communication and networking by neha g. kurale
Ch5 1 Data communication and networking by neha g. kurale
 
Ch5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kuraleCh5 Data communication and networking by neha g. kurale
Ch5 Data communication and networking by neha g. kurale
 
Ch4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kuraleCh4 Data communication and networking by neha g. kurale
Ch4 Data communication and networking by neha g. kurale
 
Ch3 3 Data communication and networking
Ch3 3  Data communication and networking Ch3 3  Data communication and networking
Ch3 3 Data communication and networking
 
Ch3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kuraleCh3Data communication and networking by neha g. kurale
Ch3Data communication and networking by neha g. kurale
 
Ch2
Ch2Ch2
Ch2
 
Ch1
Ch1Ch1
Ch1
 
Application layer
Application layerApplication layer
Application layer
 
Application layer
Application layerApplication layer
Application layer
 
Computer funda bsc_hs
Computer funda bsc_hsComputer funda bsc_hs
Computer funda bsc_hs
 
Unit1 three part secondary storage devices
Unit1 three part secondary storage devicesUnit1 three part secondary storage devices
Unit1 three part secondary storage devices
 
Unit1 four part basic computer organization
Unit1 four part basic computer organizationUnit1 four part basic computer organization
Unit1 four part basic computer organization
 
Unit 1 two part hw sw os app sw
Unit 1 two part hw sw os app swUnit 1 two part hw sw os app sw
Unit 1 two part hw sw os app sw
 
Unit 1 one part introduction to computers
Unit 1 one part introduction to computersUnit 1 one part introduction to computers
Unit 1 one part introduction to computers
 
Unit 1 four part pocessor and memory
Unit 1 four part pocessor and memoryUnit 1 four part pocessor and memory
Unit 1 four part pocessor and memory
 
Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)
 
8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardware8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardware
 

Recently uploaded

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 

Recently uploaded (20)

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 

Ch3 2 Data communication and networking

  • 1. DATA RATE LIMITS A very important consideration in data communications is how fast we can send data, in bits per second, over a channel. Data rate depends on three factors: 1. The bandwidth available 2. The level of the signals we use 3. The quality of the channel (the level of noise)  Noiseless Channel: Nyquist Bit Rate  Noisy Channel: Shannon Capacity  Using Both Limits Topics discussed in this section:
  • 2. Increasing the levels of a signal increases the probability of an error occurring, in other words it reduces the reliability of the system. Why?? Note
  • 3. Capacity of a System  The bit rate of a system increases with an increase in the number of signal levels we use to denote a symbol.  A symbol can consist of a single bit or “n” bits.  The number of signal levels = 2n.  As the number of levels goes up, the spacing between level decreases -> increasing the probability of an error occurring in the presence of transmission impairments.
  • 4. Nyquist Theorem  Nyquist gives the upper bound for the bit rate of a transmission system by calculating the bit rate directly from the number of bits in a symbol (or signal levels) and the bandwidth of the system (assuming 2 symbols/per cycle and first harmonic).  Nyquist theorem states that for a noiseless channel: C = 2 B log22n C= capacity in bps B = bandwidth in Hz
  • 5. Does the Nyquist theorem bit rate agree with the intuitive bit rate described in baseband transmission? Solution They match when we have only two levels. We said, in baseband transmission, the bit rate is 2 times the bandwidth if we use only the first harmonic in the worst case. However, the Nyquist formula is more general than what we derived intuitively; it can be applied to baseband transmission and modulation. Also, it can be applied when we have two or more levels of signals. Example 3.33
  • 6. Consider a noiseless channel with a bandwidth of 3000 Hz transmitting a signal with two signal levels. The maximum bit rate can be calculated as Example 3.34
  • 7. Consider the same noiseless channel transmitting a signal with four signal levels (for each level, we send 2 bits). The maximum bit rate can be calculated as Example 3.35
  • 8. We need to send 265 kbps over a noiseless channel with a bandwidth of 20 kHz. How many signal levels do we need? Solution We can use the Nyquist formula as shown: Example 3.36 Since this result is not a power of 2, we need to either increase the number of levels or reduce the bit rate. If we have 128 levels, the bit rate is 280 kbps. If we have 64 levels, the bit rate is 240 kbps.
  • 9. Shannon’s Theorem  Shannon’s theorem gives the capacity of a system in the presence of noise. C = B log2(1 + SNR)
  • 10. Consider an extremely noisy channel in which the value of the signal-to-noise ratio is almost zero. In other words, the noise is so strong that the signal is faint. For this channel the capacity C is calculated as Example 3.37 This means that the capacity of this channel is zero regardless of the bandwidth. In other words, we cannot receive any data through this channel.
  • 11. We can calculate the theoretical highest bit rate of a regular telephone line. A telephone line normally has a bandwidth of 3000. The signal-to-noise ratio is usually 3162. For this channel the capacity is calculated as Example 3.38 This means that the highest bit rate for a telephone line is 34.860 kbps. If we want to send data faster than this, we can either increase the bandwidth of the line or improve the signal-to-noise ratio.
  • 12. The signal-to-noise ratio is often given in decibels. Assume that SNRdB = 36 and the channel bandwidth is 2 MHz. The theoretical channel capacity can be calculated as Example 3.39
  • 13. For practical purposes, when the SNR is very high, we can assume that SNR + 1 is almost the same as SNR. In these cases, the theoretical channel capacity can be simplified to Example 3.40 For example, we can calculate the theoretical capacity of the previous example as
  • 14. We have a channel with a 1-MHz bandwidth. The SNR for this channel is 63. What are the appropriate bit rate and signal level? Solution First, we use the Shannon formula to find the upper limit. Example 3.41
  • 15. The Shannon formula gives us 6 Mbps, the upper limit. For better performance we choose something lower, 4 Mbps, for example. Then we use the Nyquist formula to find the number of signal levels. Example 3.41 (continued)
  • 16. The Shannon capacity gives us the upper limit; the Nyquist formula tells us how many signal levels we need. Note