SlideShare a Scribd company logo
Data and Signals
DIGITAL SIGNALS
In addition to being represented by an analog signal,
information can also be represented by a digital signal.
For example, a 1 can be encoded as a positive voltage
and a 0 as zero voltage. A digital signal can have more
than two levels. In this case, we can send more than 1 bit
for each level.
 Bit Rate
 Bit Length
 Digital Signal as a Composite Analog Signal
 Application Layer
Topics discussed in this section:
Figure 3.16 Two digital signals: one with two signal levels and the other
with four signal levels
A digital signal has eight levels. How many bits are
needed per level? We calculate the number of bits from
the formula
Example 3.16
Each signal level is represented by 3 bits.
A digital signal has nine levels. How many bits are
needed per level? We calculate the number of bits by
using the formula. Each signal level is represented by
3.17 bits. However, this answer is not realistic. The
number of bits sent per level needs to be an integer as
well as a power of 2. For this example, 4 bits can
represent one level.
Example 3.17
Assume we need to download text documents at the rate
of 100 pages per sec. What is the required bit rate of the
channel?
Solution
A page is an average of 24 lines with 80 characters in
each line. If we assume that one character requires 8
bits (ascii), the bit rate is
Example 3.18
A digitized voice channel, as we will see in Chapter 4, is
made by digitizing a 4-kHz bandwidth analog voice
signal. We need to sample the signal at twice the highest
frequency (two samples per hertz). We assume that each
sample requires 8 bits. What is the required bit rate?
Solution
The bit rate can be calculated as
Example 3.19
What is the bit rate for high-definition TV (HDTV)?
Solution
HDTV uses digital signals to broadcast high quality
video signals. The HDTV screen is normally a ratio of
16 : 9. There are 1920 by 1080 pixels per screen, and the
screen is renewed 30 times per second. Twenty-four bits
represents one color pixel.
Example 3.20
The TV stations reduce this rate to 20 to 40 Mbps
through compression.
Figure 3.17 The time and frequency domains of periodic and nonperiodic
digital signals
Figure 3.18 Baseband transmission
A digital signal is a composite analog
signal with an infinite bandwidth.
Note
Figure 3.19 Bandwidths of two low-pass channels
Figure 3.20 Baseband transmission using a dedicated medium
Baseband transmission of a digital
signal that preserves the shape of the
digital signal is possible only if we have
a low-pass channel with an infinite or
very wide bandwidth.
Note
An example of a dedicated channel where the entire
bandwidth of the medium is used as one single channel
is a LAN. Almost every wired LAN today uses a
dedicated channel for two stations communicating with
each other. In a bus topology LAN with multipoint
connections, only two stations can communicate with
each other at each moment in time (timesharing); the
other stations need to refrain from sending data. In a
star topology LAN, the entire channel between each
station and the hub is used for communication between
these two entities.
Example 3.21
Figure 3.21 Rough approximation of a digital signal using the first harmonic
for worst case
Figure 3.22 Simulating a digital signal with first three harmonics
In baseband transmission, the required bandwidth is
proportional to the bit rate;
if we need to send bits faster, we need more bandwidth.
Note
In baseband transmission, the required
bandwidth is proportional to the bit rate;
if we need to send bits faster, we need
more bandwidth.
Table 3.2 Bandwidth requirements
What is the required bandwidth of a low-pass channel if
we need to send 1 Mbps by using baseband transmission?
Solution
The answer depends on the accuracy desired.
a. The minimum bandwidth, is B = bit rate /2, or 500 kHz.
b. A better solution is to use the first and the third
harmonics with B = 3 × 500 kHz = 1.5 MHz.
c. Still a better solution is to use the first, third, and fifth
harmonics with B = 5 × 500 kHz = 2.5 MHz.
Example 3.22
We have a low-pass channel with bandwidth 100 kHz.
What is the maximum bit rate of this
channel?
Solution
The maximum bit rate can be achieved if we use the first
harmonic. The bit rate is 2 times the available bandwidth,
or 200 kbps.
Example 3.22
Figure 3.23 Bandwidth of a bandpass channel
If the available channel is a bandpass
channel, we cannot send the digital
signal directly to the channel;
we need to convert the digital signal to
an analog signal before transmission.
Note
Figure 3.24 Modulation of a digital signal for transmission on a bandpass
channel
An example of broadband transmission using
modulation is the sending of computer data through a
telephone subscriber line, the line connecting a resident
to the central telephone office. These lines are designed
to carry voice with a limited bandwidth. The channel is
considered a bandpass channel. We convert the digital
signal from the computer to an analog signal, and send
the analog signal. We can install two converters to
change the digital signal to analog and vice versa at the
receiving end. The converter, in this case, is called a
modem which we discuss in detail in Chapter 5.
Example 3.24
A second example is the digital cellular telephone. For
better reception, digital cellular phones convert the
analog voice signal to a digital signal . Although the
bandwidth allocated to a company providing digital
cellular phone service is very wide, we still cannot send
the digital signal without conversion. The reason is that
we only have a bandpass channel available between
caller and callee. We need to convert the digitized voice
to a composite analog signal before sending.
Example 3.25

More Related Content

What's hot (20)

DIGITAL TRANSMISSION
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
DIGITAL TRANSMISSION
 
Data Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSData Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITS
 
Data Communication And Networking - DIGITAL TRANSMISSION
Data Communication And Networking - DIGITAL TRANSMISSIONData Communication And Networking - DIGITAL TRANSMISSION
Data Communication And Networking - DIGITAL TRANSMISSION
 
DATA RATE LIMITS
DATA RATE LIMITSDATA RATE LIMITS
DATA RATE LIMITS
 
Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication Principles
 
Data bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwaData bit rate_by_abhishek_wadhwa
Data bit rate_by_abhishek_wadhwa
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Ch4 1 v1
Ch4 1 v1Ch4 1 v1
Ch4 1 v1
 
BANDWIDTH UTILIZATION
BANDWIDTH UTILIZATIONBANDWIDTH UTILIZATION
BANDWIDTH UTILIZATION
 
Ch4 2 v1
Ch4 2 v1Ch4 2 v1
Ch4 2 v1
 
Ch5 1 v1
Ch5 1 v1Ch5 1 v1
Ch5 1 v1
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Data and signals
Data and signalsData and signals
Data and signals
 
Chap4 d t-d conversion
Chap4 d t-d conversionChap4 d t-d conversion
Chap4 d t-d conversion
 
Ch 03
Ch 03Ch 03
Ch 03
 
Data Communication And Networking
Data Communication And NetworkingData Communication And Networking
Data Communication And Networking
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
Data communication
Data communicationData communication
Data communication
 
Ch6 1 v1
Ch6 1 v1Ch6 1 v1
Ch6 1 v1
 
Ch3 1 v1
Ch3 1 v1Ch3 1 v1
Ch3 1 v1
 

Similar to Ch3 1 Data communication and networking

Networks data and signals
Networks data and signalsNetworks data and signals
Networks data and signalsvimalraman
 
ch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.pptch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.pptOwaisKMughal1
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university studenttarekrahat
 
Data and Signals.ppt
Data and Signals.pptData and Signals.ppt
Data and Signals.pptlathass5
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.pptRiyaBatool
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxKALPANAC20
 
ch04-digital-transmission.ppt
ch04-digital-transmission.pptch04-digital-transmission.ppt
ch04-digital-transmission.pptCDSukte
 
Data Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacityData Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacityDr Rajiv Srivastava
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsNURAINBINTIBAHRUDIN
 
Multiplexing
MultiplexingMultiplexing
Multiplexingnimay1
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionWayne Jones Jnr
 

Similar to Ch3 1 Data communication and networking (20)

Networks data and signals
Networks data and signalsNetworks data and signals
Networks data and signals
 
ch3_2_v1.ppt
ch3_2_v1.pptch3_2_v1.ppt
ch3_2_v1.ppt
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
 
Data and Signals.ppt
Data and Signals.pptData and Signals.ppt
Data and Signals.ppt
 
ch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.pptch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.ppt
 
Shannon Capacity.pptx
Shannon Capacity.pptxShannon Capacity.pptx
Shannon Capacity.pptx
 
Data Rate Limits A class element for university student
Data Rate Limits A class element  for university studentData Rate Limits A class element  for university student
Data Rate Limits A class element for university student
 
Data and Signals.ppt
Data and Signals.pptData and Signals.ppt
Data and Signals.ppt
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
 
ch04-digital-transmission.ppt
ch04-digital-transmission.pptch04-digital-transmission.ppt
ch04-digital-transmission.ppt
 
Multi level multi transition
Multi level multi transitionMulti level multi transition
Multi level multi transition
 
10069380.ppt
10069380.ppt10069380.ppt
10069380.ppt
 
Data Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacityData Communication & Computer network: Channel capacity
Data Communication & Computer network: Channel capacity
 
digital layer
digital layerdigital layer
digital layer
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
 
Multiplexing
MultiplexingMultiplexing
Multiplexing
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital Transmission
 

More from Neha Kurale

Ch7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kuraleCh7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kuraleNeha Kurale
 
Ch6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kuraleCh6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kuraleNeha Kurale
 
Application layer
Application layerApplication layer
Application layerNeha Kurale
 
Application layer
Application layerApplication layer
Application layerNeha Kurale
 
Computer funda bsc_hs
Computer funda bsc_hsComputer funda bsc_hs
Computer funda bsc_hsNeha Kurale
 
Unit1 three part secondary storage devices
Unit1 three part secondary storage devicesUnit1 three part secondary storage devices
Unit1 three part secondary storage devicesNeha Kurale
 
Unit1 four part basic computer organization
Unit1 four part basic computer organizationUnit1 four part basic computer organization
Unit1 four part basic computer organizationNeha Kurale
 
Unit 1 two part hw sw os app sw
Unit 1 two part hw sw os app swUnit 1 two part hw sw os app sw
Unit 1 two part hw sw os app swNeha Kurale
 
Unit 1 one part introduction to computers
Unit 1 one part introduction to computersUnit 1 one part introduction to computers
Unit 1 one part introduction to computersNeha Kurale
 
Unit 1 four part pocessor and memory
Unit 1 four part pocessor and memoryUnit 1 four part pocessor and memory
Unit 1 four part pocessor and memoryNeha Kurale
 
Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)Neha Kurale
 
8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardware8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardwareNeha Kurale
 
6unit1 virus and their types
6unit1 virus and their types6unit1 virus and their types
6unit1 virus and their typesNeha Kurale
 
1unit two input output
1unit two input output1unit two input output
1unit two input outputNeha Kurale
 

More from Neha Kurale (18)

Ch7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kuraleCh7 Data communication and networking by neha g. kurale
Ch7 Data communication and networking by neha g. kurale
 
Ch6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kuraleCh6 2 Data communication and networking by neha g. kurale
Ch6 2 Data communication and networking by neha g. kurale
 
Ch2
Ch2Ch2
Ch2
 
Ch1
Ch1Ch1
Ch1
 
Application layer
Application layerApplication layer
Application layer
 
Application layer
Application layerApplication layer
Application layer
 
Computer funda bsc_hs
Computer funda bsc_hsComputer funda bsc_hs
Computer funda bsc_hs
 
Unit1 three part secondary storage devices
Unit1 three part secondary storage devicesUnit1 three part secondary storage devices
Unit1 three part secondary storage devices
 
Unit1 four part basic computer organization
Unit1 four part basic computer organizationUnit1 four part basic computer organization
Unit1 four part basic computer organization
 
Unit 1 two part hw sw os app sw
Unit 1 two part hw sw os app swUnit 1 two part hw sw os app sw
Unit 1 two part hw sw os app sw
 
Unit 1 one part introduction to computers
Unit 1 one part introduction to computersUnit 1 one part introduction to computers
Unit 1 one part introduction to computers
 
Unit 1 four part pocessor and memory
Unit 1 four part pocessor and memoryUnit 1 four part pocessor and memory
Unit 1 four part pocessor and memory
 
Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)Introduction to computer_networks (unit1)
Introduction to computer_networks (unit1)
 
8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardware8unit1 introduction to computer software hardware
8unit1 introduction to computer software hardware
 
6unit1 virus and their types
6unit1 virus and their types6unit1 virus and their types
6unit1 virus and their types
 
memory unit
 memory unit memory unit
memory unit
 
3unit1 intro
3unit1 intro3unit1 intro
3unit1 intro
 
1unit two input output
1unit two input output1unit two input output
1unit two input output
 

Recently uploaded

Pharmacy management system project report..pdf
Pharmacy management system project report..pdfPharmacy management system project report..pdf
Pharmacy management system project report..pdfKamal Acharya
 
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical EngineeringC Sai Kiran
 
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationKIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationDr. Radhey Shyam
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectRased Khan
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfRESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfKamal Acharya
 
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data StreamKIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data StreamDr. Radhey Shyam
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfPipe Restoration Solutions
 
Top 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering ScientistTop 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering Scientistgettygaming1
 
Electrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineElectrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineJulioCesarSalazarHer1
 
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfKamal Acharya
 
retail automation billing system ppt.pptx
retail automation billing system ppt.pptxretail automation billing system ppt.pptx
retail automation billing system ppt.pptxfaamieahmd
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-IVigneshvaranMech
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdfKamal Acharya
 
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringC Sai Kiran
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdfKamal Acharya
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdfKamal Acharya
 
Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfAbrahamGadissa
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxR&R Consult
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...Amil baba
 
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...Amil baba
 

Recently uploaded (20)

Pharmacy management system project report..pdf
Pharmacy management system project report..pdfPharmacy management system project report..pdf
Pharmacy management system project report..pdf
 
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
 
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationKIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker project
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfRESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
 
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data StreamKIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
KIT-601 Lecture Notes-UNIT-3.pdf Mining Data Stream
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Top 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering ScientistTop 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering Scientist
 
Electrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineElectrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission line
 
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
 
retail automation billing system ppt.pptx
retail automation billing system ppt.pptxretail automation billing system ppt.pptx
retail automation billing system ppt.pptx
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdf
 
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
 
Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
 
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
 

Ch3 1 Data communication and networking

  • 2. DIGITAL SIGNALS In addition to being represented by an analog signal, information can also be represented by a digital signal. For example, a 1 can be encoded as a positive voltage and a 0 as zero voltage. A digital signal can have more than two levels. In this case, we can send more than 1 bit for each level.  Bit Rate  Bit Length  Digital Signal as a Composite Analog Signal  Application Layer Topics discussed in this section:
  • 3. Figure 3.16 Two digital signals: one with two signal levels and the other with four signal levels
  • 4. A digital signal has eight levels. How many bits are needed per level? We calculate the number of bits from the formula Example 3.16 Each signal level is represented by 3 bits.
  • 5. A digital signal has nine levels. How many bits are needed per level? We calculate the number of bits by using the formula. Each signal level is represented by 3.17 bits. However, this answer is not realistic. The number of bits sent per level needs to be an integer as well as a power of 2. For this example, 4 bits can represent one level. Example 3.17
  • 6. Assume we need to download text documents at the rate of 100 pages per sec. What is the required bit rate of the channel? Solution A page is an average of 24 lines with 80 characters in each line. If we assume that one character requires 8 bits (ascii), the bit rate is Example 3.18
  • 7. A digitized voice channel, as we will see in Chapter 4, is made by digitizing a 4-kHz bandwidth analog voice signal. We need to sample the signal at twice the highest frequency (two samples per hertz). We assume that each sample requires 8 bits. What is the required bit rate? Solution The bit rate can be calculated as Example 3.19
  • 8. What is the bit rate for high-definition TV (HDTV)? Solution HDTV uses digital signals to broadcast high quality video signals. The HDTV screen is normally a ratio of 16 : 9. There are 1920 by 1080 pixels per screen, and the screen is renewed 30 times per second. Twenty-four bits represents one color pixel. Example 3.20 The TV stations reduce this rate to 20 to 40 Mbps through compression.
  • 9. Figure 3.17 The time and frequency domains of periodic and nonperiodic digital signals
  • 10. Figure 3.18 Baseband transmission
  • 11. A digital signal is a composite analog signal with an infinite bandwidth. Note
  • 12. Figure 3.19 Bandwidths of two low-pass channels
  • 13. Figure 3.20 Baseband transmission using a dedicated medium
  • 14. Baseband transmission of a digital signal that preserves the shape of the digital signal is possible only if we have a low-pass channel with an infinite or very wide bandwidth. Note
  • 15. An example of a dedicated channel where the entire bandwidth of the medium is used as one single channel is a LAN. Almost every wired LAN today uses a dedicated channel for two stations communicating with each other. In a bus topology LAN with multipoint connections, only two stations can communicate with each other at each moment in time (timesharing); the other stations need to refrain from sending data. In a star topology LAN, the entire channel between each station and the hub is used for communication between these two entities. Example 3.21
  • 16. Figure 3.21 Rough approximation of a digital signal using the first harmonic for worst case
  • 17. Figure 3.22 Simulating a digital signal with first three harmonics
  • 18. In baseband transmission, the required bandwidth is proportional to the bit rate; if we need to send bits faster, we need more bandwidth. Note In baseband transmission, the required bandwidth is proportional to the bit rate; if we need to send bits faster, we need more bandwidth.
  • 19. Table 3.2 Bandwidth requirements
  • 20. What is the required bandwidth of a low-pass channel if we need to send 1 Mbps by using baseband transmission? Solution The answer depends on the accuracy desired. a. The minimum bandwidth, is B = bit rate /2, or 500 kHz. b. A better solution is to use the first and the third harmonics with B = 3 × 500 kHz = 1.5 MHz. c. Still a better solution is to use the first, third, and fifth harmonics with B = 5 × 500 kHz = 2.5 MHz. Example 3.22
  • 21. We have a low-pass channel with bandwidth 100 kHz. What is the maximum bit rate of this channel? Solution The maximum bit rate can be achieved if we use the first harmonic. The bit rate is 2 times the available bandwidth, or 200 kbps. Example 3.22
  • 22. Figure 3.23 Bandwidth of a bandpass channel
  • 23. If the available channel is a bandpass channel, we cannot send the digital signal directly to the channel; we need to convert the digital signal to an analog signal before transmission. Note
  • 24. Figure 3.24 Modulation of a digital signal for transmission on a bandpass channel
  • 25. An example of broadband transmission using modulation is the sending of computer data through a telephone subscriber line, the line connecting a resident to the central telephone office. These lines are designed to carry voice with a limited bandwidth. The channel is considered a bandpass channel. We convert the digital signal from the computer to an analog signal, and send the analog signal. We can install two converters to change the digital signal to analog and vice versa at the receiving end. The converter, in this case, is called a modem which we discuss in detail in Chapter 5. Example 3.24
  • 26. A second example is the digital cellular telephone. For better reception, digital cellular phones convert the analog voice signal to a digital signal . Although the bandwidth allocated to a company providing digital cellular phone service is very wide, we still cannot send the digital signal without conversion. The reason is that we only have a bandpass channel available between caller and callee. We need to convert the digitized voice to a composite analog signal before sending. Example 3.25