SlideShare a Scribd company logo
1 of 16
3.1
3-5 DATA RATE LIMITS
A very important consideration in data communications
is how fast we can send data, in bits per second, over a
channel. Data rate depends on three factors:
1. The bandwidth available
2. The level of the signals we use
3. The quality of the channel (the level of noise)
 Noiseless Channel: Nyquist Bit Rate
 Noisy Channel: Shannon Capacity
 Using Both Limits
Topics discussed in this section:
3.2
Increasing the levels of a signal
increases the probability of an error
occurring, in other words it reduces the
reliability of the system. Why??
Note
3.3
Capacity of a System
 The bit rate of a system increases with an
increase in the number of signal levels we
use to denote a symbol.
 A symbol can consist of a single bit or “n”
bits.
 The number of signal levels = 2n.
 As the number of levels goes up, the spacing
between level decreases -> increasing the
probability of an error occurring in the
presence of transmission impairments.
3.4
Nyquist Theorem
 Nyquist gives the upper bound for the bit rate
of a transmission system by calculating the
bit rate directly from the number of bits in a
symbol (or signal levels) and the bandwidth
of the system (assuming 2 symbols/per cycle
and first harmonic).
 Nyquist theorem states that for a noiseless
channel:
C = 2 B log22n
C= capacity in bps
B = bandwidth in Hz
3.5
Does the Nyquist theorem bit rate agree with the
intuitive bit rate described in baseband transmission?
Solution
They match when we have only two levels. We said, in
baseband transmission, the bit rate is 2 times the
bandwidth if we use only the first harmonic in the worst
case. However, the Nyquist formula is more general than
what we derived intuitively; it can be applied to baseband
transmission and modulation. Also, it can be applied
when we have two or more levels of signals.
Example 3.33
3.6
Consider a noiseless channel with a bandwidth of 3000
Hz transmitting a signal with two signal levels. The
maximum bit rate can be calculated as
Example 3.34
3.7
Consider the same noiseless channel transmitting a
signal with four signal levels (for each level, we send 2
bits). The maximum bit rate can be calculated as
Example 3.35
3.8
We need to send 265 kbps over a noiseless channel with
a bandwidth of 20 kHz. How many signal levels do we
need?
Solution
We can use the Nyquist formula as shown:
Example 3.36
Since this result is not a power of 2, we need to either
increase the number of levels or reduce the bit rate. If we
have 128 levels, the bit rate is 280 kbps. If we have 64
levels, the bit rate is 240 kbps.
3.9
Shannon’s Theorem
 Shannon’s theorem gives the capacity
of a system in the presence of noise.
C = B log2(1 + SNR)
3.10
Consider an extremely noisy channel in which the value
of the signal-to-noise ratio is almost zero. In other
words, the noise is so strong that the signal is faint. For
this channel the capacity C is calculated as
Example 3.37
This means that the capacity of this channel is zero
regardless of the bandwidth. In other words, we cannot
receive any data through this channel.
3.11
We can calculate the theoretical highest bit rate of a
regular telephone line. A telephone line normally has a
bandwidth of 3000. The signal-to-noise ratio is usually
3162. For this channel the capacity is calculated as
Example 3.38
This means that the highest bit rate for a telephone line
is 34.860 kbps. If we want to send data faster than this,
we can either increase the bandwidth of the line or
improve the signal-to-noise ratio.
3.12
The signal-to-noise ratio is often given in decibels.
Assume that SNRdB = 36 and the channel bandwidth is 2
MHz. The theoretical channel capacity can be calculated
as
Example 3.39
3.13
For practical purposes, when the SNR is very high, we
can assume that SNR + 1 is almost the same as SNR. In
these cases, the theoretical channel capacity can be
simplified to
Example 3.40
For example, we can calculate the theoretical capacity of
the previous example as
3.14
We have a channel with a 1-MHz bandwidth. The SNR
for this channel is 63. What are the appropriate bit rate
and signal level?
Solution
First, we use the Shannon formula to find the upper
limit.
Example 3.41
3.15
The Shannon formula gives us 6 Mbps, the upper limit.
For better performance we choose something lower, 4
Mbps, for example. Then we use the Nyquist formula to
find the number of signal levels.
Example 3.41 (continued)
3.16
The Shannon capacity gives us the
upper limit; the Nyquist formula tells us
how many signal levels we need.
Note

More Related Content

Similar to Data Rate Limits A class element for university student

Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication PrinciplesKamal Acharya
 
DATA RATE LIMITS
DATA RATE LIMITSDATA RATE LIMITS
DATA RATE LIMITSChAwais15
 
ch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.pptch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.pptOwaisKMughal1
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsNURAINBINTIBAHRUDIN
 
Ch3 1 Data communication and networking
Ch3 1 Data communication and networkingCh3 1 Data communication and networking
Ch3 1 Data communication and networkingNeha Kurale
 
Networks data and signals
Networks data and signalsNetworks data and signals
Networks data and signalsvimalraman
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxKALPANAC20
 
Computer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfComputer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfabdnazar2003
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleNeha Kurale
 
Ch03
Ch03Ch03
Ch03H K
 
Chapter 3 - Data and Signals
Chapter 3 - Data and SignalsChapter 3 - Data and Signals
Chapter 3 - Data and SignalsWayne Jones Jnr
 

Similar to Data Rate Limits A class element for university student (20)

Data Communication Principles
Data Communication PrinciplesData Communication Principles
Data Communication Principles
 
Ch03
Ch03Ch03
Ch03
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
Data and Signals.ppt
Data and Signals.pptData and Signals.ppt
Data and Signals.ppt
 
DATA RATE LIMITS
DATA RATE LIMITSDATA RATE LIMITS
DATA RATE LIMITS
 
ch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.pptch3-1-v1-14102022-105042pm.ppt
ch3-1-v1-14102022-105042pm.ppt
 
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshsch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
ch03_DATA_and_SIGNAL.pdfhdjwdhdwhhgsgfhshs
 
2. data and signals
2. data and signals2. data and signals
2. data and signals
 
Ch3 1 Data communication and networking
Ch3 1 Data communication and networkingCh3 1 Data communication and networking
Ch3 1 Data communication and networking
 
Lecture 2.ppt
Lecture 2.pptLecture 2.ppt
Lecture 2.ppt
 
Networks data and signals
Networks data and signalsNetworks data and signals
Networks data and signals
 
ch3_2_v1.ppt
ch3_2_v1.pptch3_2_v1.ppt
ch3_2_v1.ppt
 
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptxCOMPUTER NETWORKS DATAS AND SIGNALS.pptx
COMPUTER NETWORKS DATAS AND SIGNALS.pptx
 
Computer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdfComputer Networks/Computer Engineering.pdf
Computer Networks/Computer Engineering.pdf
 
Ch 03
Ch 03Ch 03
Ch 03
 
Bandwidth.ppt
Bandwidth.pptBandwidth.ppt
Bandwidth.ppt
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
 
Ch03
Ch03Ch03
Ch03
 
Chapter 3 - Data and Signals
Chapter 3 - Data and SignalsChapter 3 - Data and Signals
Chapter 3 - Data and Signals
 

Recently uploaded

Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Recently uploaded (20)

Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 

Data Rate Limits A class element for university student

  • 1. 3.1 3-5 DATA RATE LIMITS A very important consideration in data communications is how fast we can send data, in bits per second, over a channel. Data rate depends on three factors: 1. The bandwidth available 2. The level of the signals we use 3. The quality of the channel (the level of noise)  Noiseless Channel: Nyquist Bit Rate  Noisy Channel: Shannon Capacity  Using Both Limits Topics discussed in this section:
  • 2. 3.2 Increasing the levels of a signal increases the probability of an error occurring, in other words it reduces the reliability of the system. Why?? Note
  • 3. 3.3 Capacity of a System  The bit rate of a system increases with an increase in the number of signal levels we use to denote a symbol.  A symbol can consist of a single bit or “n” bits.  The number of signal levels = 2n.  As the number of levels goes up, the spacing between level decreases -> increasing the probability of an error occurring in the presence of transmission impairments.
  • 4. 3.4 Nyquist Theorem  Nyquist gives the upper bound for the bit rate of a transmission system by calculating the bit rate directly from the number of bits in a symbol (or signal levels) and the bandwidth of the system (assuming 2 symbols/per cycle and first harmonic).  Nyquist theorem states that for a noiseless channel: C = 2 B log22n C= capacity in bps B = bandwidth in Hz
  • 5. 3.5 Does the Nyquist theorem bit rate agree with the intuitive bit rate described in baseband transmission? Solution They match when we have only two levels. We said, in baseband transmission, the bit rate is 2 times the bandwidth if we use only the first harmonic in the worst case. However, the Nyquist formula is more general than what we derived intuitively; it can be applied to baseband transmission and modulation. Also, it can be applied when we have two or more levels of signals. Example 3.33
  • 6. 3.6 Consider a noiseless channel with a bandwidth of 3000 Hz transmitting a signal with two signal levels. The maximum bit rate can be calculated as Example 3.34
  • 7. 3.7 Consider the same noiseless channel transmitting a signal with four signal levels (for each level, we send 2 bits). The maximum bit rate can be calculated as Example 3.35
  • 8. 3.8 We need to send 265 kbps over a noiseless channel with a bandwidth of 20 kHz. How many signal levels do we need? Solution We can use the Nyquist formula as shown: Example 3.36 Since this result is not a power of 2, we need to either increase the number of levels or reduce the bit rate. If we have 128 levels, the bit rate is 280 kbps. If we have 64 levels, the bit rate is 240 kbps.
  • 9. 3.9 Shannon’s Theorem  Shannon’s theorem gives the capacity of a system in the presence of noise. C = B log2(1 + SNR)
  • 10. 3.10 Consider an extremely noisy channel in which the value of the signal-to-noise ratio is almost zero. In other words, the noise is so strong that the signal is faint. For this channel the capacity C is calculated as Example 3.37 This means that the capacity of this channel is zero regardless of the bandwidth. In other words, we cannot receive any data through this channel.
  • 11. 3.11 We can calculate the theoretical highest bit rate of a regular telephone line. A telephone line normally has a bandwidth of 3000. The signal-to-noise ratio is usually 3162. For this channel the capacity is calculated as Example 3.38 This means that the highest bit rate for a telephone line is 34.860 kbps. If we want to send data faster than this, we can either increase the bandwidth of the line or improve the signal-to-noise ratio.
  • 12. 3.12 The signal-to-noise ratio is often given in decibels. Assume that SNRdB = 36 and the channel bandwidth is 2 MHz. The theoretical channel capacity can be calculated as Example 3.39
  • 13. 3.13 For practical purposes, when the SNR is very high, we can assume that SNR + 1 is almost the same as SNR. In these cases, the theoretical channel capacity can be simplified to Example 3.40 For example, we can calculate the theoretical capacity of the previous example as
  • 14. 3.14 We have a channel with a 1-MHz bandwidth. The SNR for this channel is 63. What are the appropriate bit rate and signal level? Solution First, we use the Shannon formula to find the upper limit. Example 3.41
  • 15. 3.15 The Shannon formula gives us 6 Mbps, the upper limit. For better performance we choose something lower, 4 Mbps, for example. Then we use the Nyquist formula to find the number of signal levels. Example 3.41 (continued)
  • 16. 3.16 The Shannon capacity gives us the upper limit; the Nyquist formula tells us how many signal levels we need. Note