1. The document presents a hybrid algorithm that combines Kernelized Fuzzy C-Means (KFCM), Hybrid Ant Colony Optimization (HACO), and Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to improve clustering of electrocardiogram (ECG) beat data.
2. The algorithm maps data into a higher dimensional space using kernel functions to make clusters more linearly separable, addresses issues with KFCM being sensitive to initialization and prone to local minima.
3. It uses HACO to optimize cluster centers and membership degrees, and FAPSO to evaluate fitness values and optimize weight vectors, forming usable clusters for applications like ECG classification.