SlideShare a Scribd company logo
1
Concepts and Applications of the
Fundamental Theorem of Line Integrals
Samson Axelrod, Jacob Braginsky, Pranav Dwarakanath, Param Thakkar
May 7, 2023
The Fundamental Theorem of Line Integrals
Section 1.1
Introduction to the Fundamental Theorem of Line Integrals
Background Information: Gradient Fields and Path Independence
Understanding gradient fields is essential in order to apply the Fundamental Theorem of Line Integrals.
Consider , a continuous vector field that satisfies = โˆ‡ . This scalar-valued function is known as the
๐น
โ†’
๐น
โ†’
๐‘“ ๐‘“
potential function of . This property classifies as a conservative vector field, or a gradient field. Any
๐น
โ†’
๐น
โ†’
gradient field defined on an open, connected domain will produce path-independent line integrals. This means
that
d = d
๐ถ1
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
๐ถ2
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
for any two piecewise-smooth curves C1 and C2 with the same start and end points. It is important that these
curves are defined on the domain of .
๐น
โ†’
Defining the Fundamental Theorem of Line Integrals
Let and = โˆ‡ , where is continuous on a connected, open region in . On any
๐‘“: โ„
๐‘›
โ†’ โ„ ๐น
โ†’
๐‘“ ๐น
โ†’
โ„
๐‘›
piecewise-smooth curve from A to B,
๐ถ
.
๐ถ
โˆซ ๐น
โ†’
ยท ๐‘‘๐‘ 
โ†’
= ๐‘“(๐ต
โ†’
) โˆ’ ๐‘“(๐ด
โ†’
)
3
Proving the Fundamental Theorem of Line Integrals
Now we will prove the Fundamental Theorem of Line Integrals. Let and . We can use the
๐ด = ๐‘ฅ
โ†’
(ฮฑ) ๐ต = ๐‘ฅ
โ†’
(ฮฒ)
chain rule to obtain,
๐ถ
โˆซ ๐น
โ†’
ยท ๐‘‘๐‘ 
โ†’
=
ฮฑ
ฮฒ
โˆซ โˆ‡๐‘“(๐‘ฅ
โ†’
(๐‘ก)) ยท ๐‘ฅ
โ†’
'(๐‘ก)๐‘‘๐‘ก
=
ฮฑ
ฮฒ
โˆซ
๐‘‘
๐‘‘๐‘ก
[๐‘“(๐‘ฅ
โ†’
(๐‘ก))]๐‘‘๐‘ก
= ๐‘“(๐‘ฅ
โ†’
(ฮฒ)) โˆ’ ๐‘“(๐‘ฅ
โ†’
(ฮฑ))
= ๐‘“(๐ต
โ†’
) โˆ’ ๐‘“(๐ด
โ†’
).
This shows that the line integral only depends on the endpoints, making it path-independent. Path independence
is a corollary of the FTLI.
Section 1.2
Finding the Potential Function
Option 1 - The โ€œSafe Methodโ€
We begin by using the โ€œSafe Method.โ€ Define = for some and . Our goal is
๐น
โ†’ โˆ‚๐‘“
โˆ‚๐‘ฅ
,
โˆ‚๐‘“
โˆ‚๐‘ฆ
( ) ๐น
โ†’
: โ„
2
โ†’ โ„
2
๐‘“: โ„
2
โ†’ โ„
to find the function such that โˆ‡ = . Take the antiderivative of with respect to .
๐‘“ ๐‘“ ๐น
โ†’ โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
โˆซ
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘‘๐‘ฅ = ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐ถ(๐‘ฆ)
4
In the equation above, is a function of and . This โ€œintegration functionโ€ is the most important
๐ถ ๐‘ฆ, ๐‘”: โ„
2
โ†’ โ„
part of this process and can not be overlooked. Seeing that this is a function of y, if we took the derivative of
+ with respect to , would disappear. Letโ€™s move on to the next step. Take the derivative of
๐‘” ๐ถ(๐‘ฆ) ๐‘ฅ ๐ถ(๐‘ฆ)
+ with respect to . We can cross reference it with the component from the vector field to obtain
๐‘” ๐ถ(๐‘ฆ) ๐‘ฆ
โˆ‚๐‘“
โˆ‚๐‘ฆ
= = .
โˆ‚
โˆ‚๐‘ฆ
(๐‘” + ๐ถ(๐‘ฆ)) โ‡’ ๐‘”๐‘ฆ
+ ๐ถ'(๐‘ฆ)
โˆ‚๐‘“
โˆ‚๐‘ฆ
โ‡’ ๐ถ'(๐‘ฆ)
โˆ‚๐‘“
โˆ‚๐‘ฆ
โˆ’ ๐‘”๐‘ฆ
Now, we take the antiderivative of with respect to , obtaining
๐ถ'(๐‘ฆ) ๐‘ฆ
.
โˆซ๐ถ'(๐‘ฆ) ๐‘‘๐‘ฆ = ๐ถ(๐‘ฆ)
Recall back to the beginning of our process when we took the antiderivative of with respect to and got
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
+ . We just discovered what is, so weโ€™ve filled in the missing piece. At this point, we have
๐‘” ๐ถ(๐‘ฆ) = ๐‘“ ๐ถ(๐‘ฆ)
fully assembled the potential function. Here is an example with a defined vector field .
๐น
โ†’
= =
๐น
โ†’ โˆ‚๐‘“
โˆ‚๐‘ฅ
,
โˆ‚๐‘“
โˆ‚๐‘ฆ
( ) ๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ
2
+ 1, sin(๐‘ฅ) + 4๐‘’
4๐‘ฆ
( )
Integrate with respect to .
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
=
โˆซ
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘‘๐‘ฅ โˆซ(๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ
2
+ 1) ๐‘‘๐‘ฅ
= ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ
3
+ ๐‘ฅ + ๐ถ(๐‘ฆ)
= ๐‘”(๐‘ฅ, ๐‘ฆ)
Differentiate with respect to .
๐‘”(๐‘ฅ, ๐‘ฆ) ๐‘ฆ
=
โˆ‚
โˆ‚๐‘ฆ
(๐‘”(๐‘ฅ, ๐‘ฆ))
โˆ‚
โˆ‚๐‘ฆ
(๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ
3
+ ๐‘ฅ + ๐ถ(๐‘ฆ))
5
= sin(๐‘ฅ) + ๐ถ'(๐‘ฆ)
Compare the result above to .
โˆ‚๐‘“
โˆ‚๐‘ฆ
=
sin(๐‘ฅ) + ๐ถ'(๐‘ฆ)
โˆ‚๐‘“
โˆ‚๐‘ฆ
= +
sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) sin(๐‘ฅ) 4๐‘’
4๐‘ฆ
=
๐ถ'(๐‘ฆ) 4๐‘’
4๐‘ฆ
Integrate with respect to to find .
๐ถ'(๐‘ฆ) = 4๐‘’
4๐‘ฆ
๐‘ฆ ๐ถ(๐‘ฆ)
โˆซ4๐‘’
4๐‘ฆ
๐‘‘๐‘ฆ = ๐‘’
4๐‘ฆ
= ๐ถ(๐‘ฆ)
Put together the scalar potential function.
๐‘“ = ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ
3
+ ๐‘ฅ + ๐‘’
4๐‘ฆ
Option 2 - The โ€œDangerous Methodโ€
We can also use the โ€œDangerous Methodโ€ to find the potential function. Weโ€™ll explain this method using an
example vector field. Define .
๐น
โ†’
(๐‘ฅ, ๐‘ฆ) = 2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’
๐‘ฅ๐‘ฆ
, โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’
๐‘ฅ๐‘ฆ
+ 3๐‘ฆ
2
( )
First, we take the antiderivative of with respect to and of with respect to .
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
โˆ‚๐‘“
โˆ‚๐‘ฆ
๐‘ฆ
โˆซ(2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’
๐‘ฅ๐‘ฆ
) ๐‘‘๐‘ฅ = sin(2๐‘ฅ) cos(๐‘ฆ) โˆ’ ๐‘ฅ + ๐‘’
๐‘ฅ๐‘ฆ
+ ๐ถ(๐‘ฆ)
โˆซ(โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’
๐‘ฅ๐‘ฆ
+ 3๐‘ฆ
2
)๐‘‘๐‘ฆ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
+ ๐‘ฆ
3
+ ๐ถ(๐‘ฅ)
Now, we compare the two antiderivatives to see what they have in common. We do this to synthesize a โ€œguessโ€
as to what the scalar potential function might be by writing down function components that both
๐‘“
antiderivatives exhibited, followed by each unique component seen in either antiderivative. In this case, both
6
antiderivatives had and with unique components being - and . Combing these gives
๐‘ ๐‘–๐‘›(2๐‘ฅ)๐‘๐‘œ๐‘ (๐‘ฆ) ๐‘’
๐‘ฅ๐‘ฆ
๐‘ฅ ๐‘ฆ
3
us
.
๐‘“ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ ๐‘ฅ + ๐‘ฆ
3
Next, we verify we got the correct function by confirming = .
๐‘“ โˆ‡๐‘“ ๐น
โ†’
โˆ‡ = , )
๐‘“ (
โˆ‚
โˆ‚๐‘ฅ
(sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ ๐‘ฅ + ๐‘ฆ
3
)
โˆ‚
โˆ‚๐‘ฆ
(sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ ๐‘ฅ + ๐‘ฆ
3
)
= ( )
2 cos(2๐‘ฅ) cos(๐‘ฆ) + ๐‘ฆ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ 1, โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’
๐‘ฅ๐‘ฆ
+ 3๐‘ฆ
2
= ๐น
โ†’
Section 1.3
FTLI Examples
A โ€œMundaneโ€ Example
Suppose we have the vector field = We wish to compute where C is any piecewise smooth
๐น
โ†’
(4๐‘ฅ
3
, 2).
๐ถ
โˆซ๐น
โ†’
ยท๐‘‘๐‘ 
โ†’
,
curve from the point (0,0) to (3,4). The first step for us is to integrate with respect to . We solve to obtain
4๐‘ฅ
3
๐‘ฅ
=
โˆซ4๐‘ฅ
3
๐‘‘๐‘ฅ ๐‘ฅ
4
+ ๐ถ(๐‘ฆ).
The next step is to integrate 2 with respect to so we then obtain
๐‘ฆ,
=
โˆซ 2 ๐‘‘๐‘ฆ 2๐‘ฆ + ๐ถ(๐‘ฅ).
7
Combining our two results, we see that We can double check our answer by computing the
๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ
4
+ 2๐‘ฆ.
gradient of .
๐‘“
โˆ‡๐‘“ = (
โˆ‚๐‘“
โˆ‚๐‘ฅ
,
โˆ‚๐‘“
โˆ‚๐‘ฆ
) = (4๐‘ฅ
3
, 2)
Now that we have checked our function we are ready to apply the Fundamental Theorem of Line Integrals
๐‘“,
and compute our integral.
๐ถ
โˆซ๐น
โ†’
ยท๐‘‘๐‘ 
โ†’
= ๐‘“(3, 4) โˆ’ ๐‘“(0, 0)
= 3
4
+ 2 ยท 4 โˆ’ 0
4
โˆ’ 0 ยท 8
= 81 + 8
= 89
For any paths from (0,0) to (3,4) to which the FTLI is applicable, for , the line integral will always be 89
๐น
โ†’
because of path-independence.
To further our understanding, let's compute an integral using the definition of line integral over a path to show
that the FTLI works and is indeed equal to what we computed. Let our first curve be where
๐‘ฅ(๐‘ก) = (3๐‘ก, 4๐‘ก),
Plugging everything in,
๐‘ก ฯต [0, 1].
0
1
โˆซ (4 ยท (3๐‘ก)
3
, 2) ยท (3, 4) ๐‘‘๐‘ก =
0
1
โˆซ 324๐‘ก
3
+ 8 ๐‘‘๐‘ก
= 81 (1)
3
+ 8 โˆ’ 81 (0)
3
+ 8 ยท 0
= 81 + 8
.
= 89
8
Thus, the Fundamental of Line Integrals indeed works as both of our computations were equal, showing that we
may use this shortcut.
Solving the Circulation Integral with FTLI
Define a gradient field on an open, connected space in , with a scalar-valued potential function . Consider
๐น
โ†’
โ„
๐‘›
๐‘“
C, a closed curve with a counterclockwise parameterization defined on the same space. Using the Fundamental
Theorem of Line Integrals, we can prove that d = 0. Points A and B lie on curve C, dividing it into two
๐ถ
โˆฎ๐น
โ†’
ยท ๐‘ 
โ†’
open curves. We label the curve traveling from A to B as C1, and the curve traveling from B to A as C2, as shown
in Fig. 1.
Since both C1 and C2 are open paths with initial and terminal points, we can apply the Fundamental Theorem of
Line Integrals to calculate the following line integrals:
9
d = (B) - (A)
๐ถ1
โˆซ ๐น
โ†’
ยท ๐‘ 
โ†’
๐‘“ ๐‘“
d = (A) - (B)
๐ถ2
โˆซ ๐น
โ†’
ยท ๐‘ 
โ†’
๐‘“ ๐‘“
Our objective is to calculate the circulation integral over C. Seeing that C1 and C2 combined form C, we
accomplish our objective by finding the sum of the line integrals over C1 and C2. Thus, we obtain
d = d + d
๐ถ
โˆฎ ๐น
โ†’
ยท ๐‘ 
โ†’
๐ถ1
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
๐ถ2
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
= (B) - (A) + (A) - (B)
๐‘“ ๐‘“ ๐‘“ ๐‘“
= 0.
The relationship between the circulation integral and the FTLI can be conceptualized using path independence.
Since we know that the line integral over a single point is zero, we can deduce that the line integral over a curve
with the same initial and terminal point is also zero, regardless of the curveโ€™s length. Thus, d = 0 for any
๐ถ
โˆฎ๐น
โ†’
ยท ๐‘ 
โ†’
closed curve C.

More Related Content

Similar to Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf

A05330107
A05330107A05330107
A05330107IOSR-JEN
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethmJasonleav
ย 
Unidad i limites y continuidad
Unidad i    limites y continuidadUnidad i    limites y continuidad
Unidad i limites y continuidadJavierZerpaPerez
ย 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptxHappy Ladher
ย 
Slope of the Tangent Line.pptx
Slope of the Tangent Line.pptxSlope of the Tangent Line.pptx
Slope of the Tangent Line.pptxRoquiMabugayGonzaga
ย 
Differential calculus
Differential calculus  Differential calculus
Differential calculus Santhanam Krishnan
ย 
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchezTaller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchezkevinct2001
ย 
Integrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partesIntegrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partescrysmari mujica
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
ย 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
ย 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
ย 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
ย 
Basic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxBasic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxSalwaAbdulkarim1
ย 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308IJERA Editor
ย 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodSEMINARGROOT
ย 
Calculus academic journal (sample)
Calculus academic journal (sample)Calculus academic journal (sample)
Calculus academic journal (sample)Vincentius Soesanto
ย 

Similar to Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf (20)

A05330107
A05330107A05330107
A05330107
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethm
ย 
Unidad i limites y continuidad
Unidad i    limites y continuidadUnidad i    limites y continuidad
Unidad i limites y continuidad
ย 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx
ย 
Slope of the Tangent Line.pptx
Slope of the Tangent Line.pptxSlope of the Tangent Line.pptx
Slope of the Tangent Line.pptx
ย 
Differential calculus
Differential calculus  Differential calculus
Differential calculus
ย 
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchezTaller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchez
ย 
Differentiation
DifferentiationDifferentiation
Differentiation
ย 
Integrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partesIntegrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partes
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
ย 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
ย 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
ย 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
ย 
Basic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxBasic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docx
ย 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308
ย 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's method
ย 
Calculus academic journal (sample)
Calculus academic journal (sample)Calculus academic journal (sample)
Calculus academic journal (sample)
ย 
E04 06 3943
E04 06 3943E04 06 3943
E04 06 3943
ย 
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
ย 
doc
docdoc
doc
ย 

Recently uploaded

Keeping Your Information Safe with Centralized Security Services
Keeping Your Information Safe with Centralized Security ServicesKeeping Your Information Safe with Centralized Security Services
Keeping Your Information Safe with Centralized Security ServicesTechSoup
ย 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxjmorse8
ย 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXMIRIAMSALINAS13
ย 
Gyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptxGyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptxShibin Azad
ย 
50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...
50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...
50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...Nguyen Thanh Tu Collection
ย 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxJenilouCasareno
ย 
GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...
GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...
GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...Nguyen Thanh Tu Collection
ย 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePedroFerreira53928
ย 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxricssacare
ย 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...Denish Jangid
ย 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resourcesaileywriter
ย 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsCol Mukteshwar Prasad
ย 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleCeline George
ย 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptSourabh Kumar
ย 
How to the fix Attribute Error in odoo 17
How to the fix Attribute Error in odoo 17How to the fix Attribute Error in odoo 17
How to the fix Attribute Error in odoo 17Celine George
ย 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfVivekanand Anglo Vedic Academy
ย 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxEduSkills OECD
ย 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryEugene Lysak
ย 

Recently uploaded (20)

Keeping Your Information Safe with Centralized Security Services
Keeping Your Information Safe with Centralized Security ServicesKeeping Your Information Safe with Centralized Security Services
Keeping Your Information Safe with Centralized Security Services
ย 
Morse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptxMorse OER Some Benefits and Challenges.pptx
Morse OER Some Benefits and Challenges.pptx
ย 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
ย 
Gyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptxGyanartha SciBizTech Quiz slideshare.pptx
Gyanartha SciBizTech Quiz slideshare.pptx
ย 
50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...
50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...
50 ฤแป€ LUYแป†N THI IOE LแปšP 9 - Nฤ‚M HแปŒC 2022-2023 (Cร“ LINK HรŒNH, FILE AUDIO Vร€ ฤร...
ย 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
ย 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
ย 
GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...
GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...
GIรO รN Dแบ Y THรŠM (Kแบพ HOแบ CH Bร€I BUแป”I 2) - TIแบพNG ANH 8 GLOBAL SUCCESS (2 Cแป˜T) N...
ย 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
ย 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
ย 
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...Basic Civil Engineering Notes of Chapter-6,  Topic- Ecosystem, Biodiversity G...
Basic Civil Engineering Notes of Chapter-6, Topic- Ecosystem, Biodiversity G...
ย 
The Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational ResourcesThe Benefits and Challenges of Open Educational Resources
The Benefits and Challenges of Open Educational Resources
ย 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
ย 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
ย 
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
ย 
How to the fix Attribute Error in odoo 17
How to the fix Attribute Error in odoo 17How to the fix Attribute Error in odoo 17
How to the fix Attribute Error in odoo 17
ย 
NCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdfNCERT Solutions Power Sharing Class 10 Notes pdf
NCERT Solutions Power Sharing Class 10 Notes pdf
ย 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
ย 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
ย 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
ย 

Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf

  • 1. 1 Concepts and Applications of the Fundamental Theorem of Line Integrals Samson Axelrod, Jacob Braginsky, Pranav Dwarakanath, Param Thakkar May 7, 2023
  • 2. The Fundamental Theorem of Line Integrals Section 1.1 Introduction to the Fundamental Theorem of Line Integrals Background Information: Gradient Fields and Path Independence Understanding gradient fields is essential in order to apply the Fundamental Theorem of Line Integrals. Consider , a continuous vector field that satisfies = โˆ‡ . This scalar-valued function is known as the ๐น โ†’ ๐น โ†’ ๐‘“ ๐‘“ potential function of . This property classifies as a conservative vector field, or a gradient field. Any ๐น โ†’ ๐น โ†’ gradient field defined on an open, connected domain will produce path-independent line integrals. This means that d = d ๐ถ1 โˆซ๐น โ†’ ยท ๐‘  โ†’ ๐ถ2 โˆซ๐น โ†’ ยท ๐‘  โ†’ for any two piecewise-smooth curves C1 and C2 with the same start and end points. It is important that these curves are defined on the domain of . ๐น โ†’ Defining the Fundamental Theorem of Line Integrals Let and = โˆ‡ , where is continuous on a connected, open region in . On any ๐‘“: โ„ ๐‘› โ†’ โ„ ๐น โ†’ ๐‘“ ๐น โ†’ โ„ ๐‘› piecewise-smooth curve from A to B, ๐ถ . ๐ถ โˆซ ๐น โ†’ ยท ๐‘‘๐‘  โ†’ = ๐‘“(๐ต โ†’ ) โˆ’ ๐‘“(๐ด โ†’ )
  • 3. 3 Proving the Fundamental Theorem of Line Integrals Now we will prove the Fundamental Theorem of Line Integrals. Let and . We can use the ๐ด = ๐‘ฅ โ†’ (ฮฑ) ๐ต = ๐‘ฅ โ†’ (ฮฒ) chain rule to obtain, ๐ถ โˆซ ๐น โ†’ ยท ๐‘‘๐‘  โ†’ = ฮฑ ฮฒ โˆซ โˆ‡๐‘“(๐‘ฅ โ†’ (๐‘ก)) ยท ๐‘ฅ โ†’ '(๐‘ก)๐‘‘๐‘ก = ฮฑ ฮฒ โˆซ ๐‘‘ ๐‘‘๐‘ก [๐‘“(๐‘ฅ โ†’ (๐‘ก))]๐‘‘๐‘ก = ๐‘“(๐‘ฅ โ†’ (ฮฒ)) โˆ’ ๐‘“(๐‘ฅ โ†’ (ฮฑ)) = ๐‘“(๐ต โ†’ ) โˆ’ ๐‘“(๐ด โ†’ ). This shows that the line integral only depends on the endpoints, making it path-independent. Path independence is a corollary of the FTLI. Section 1.2 Finding the Potential Function Option 1 - The โ€œSafe Methodโ€ We begin by using the โ€œSafe Method.โ€ Define = for some and . Our goal is ๐น โ†’ โˆ‚๐‘“ โˆ‚๐‘ฅ , โˆ‚๐‘“ โˆ‚๐‘ฆ ( ) ๐น โ†’ : โ„ 2 โ†’ โ„ 2 ๐‘“: โ„ 2 โ†’ โ„ to find the function such that โˆ‡ = . Take the antiderivative of with respect to . ๐‘“ ๐‘“ ๐น โ†’ โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ โˆซ โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘‘๐‘ฅ = ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐ถ(๐‘ฆ)
  • 4. 4 In the equation above, is a function of and . This โ€œintegration functionโ€ is the most important ๐ถ ๐‘ฆ, ๐‘”: โ„ 2 โ†’ โ„ part of this process and can not be overlooked. Seeing that this is a function of y, if we took the derivative of + with respect to , would disappear. Letโ€™s move on to the next step. Take the derivative of ๐‘” ๐ถ(๐‘ฆ) ๐‘ฅ ๐ถ(๐‘ฆ) + with respect to . We can cross reference it with the component from the vector field to obtain ๐‘” ๐ถ(๐‘ฆ) ๐‘ฆ โˆ‚๐‘“ โˆ‚๐‘ฆ = = . โˆ‚ โˆ‚๐‘ฆ (๐‘” + ๐ถ(๐‘ฆ)) โ‡’ ๐‘”๐‘ฆ + ๐ถ'(๐‘ฆ) โˆ‚๐‘“ โˆ‚๐‘ฆ โ‡’ ๐ถ'(๐‘ฆ) โˆ‚๐‘“ โˆ‚๐‘ฆ โˆ’ ๐‘”๐‘ฆ Now, we take the antiderivative of with respect to , obtaining ๐ถ'(๐‘ฆ) ๐‘ฆ . โˆซ๐ถ'(๐‘ฆ) ๐‘‘๐‘ฆ = ๐ถ(๐‘ฆ) Recall back to the beginning of our process when we took the antiderivative of with respect to and got โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ + . We just discovered what is, so weโ€™ve filled in the missing piece. At this point, we have ๐‘” ๐ถ(๐‘ฆ) = ๐‘“ ๐ถ(๐‘ฆ) fully assembled the potential function. Here is an example with a defined vector field . ๐น โ†’ = = ๐น โ†’ โˆ‚๐‘“ โˆ‚๐‘ฅ , โˆ‚๐‘“ โˆ‚๐‘ฆ ( ) ๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ 2 + 1, sin(๐‘ฅ) + 4๐‘’ 4๐‘ฆ ( ) Integrate with respect to . โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ = โˆซ โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘‘๐‘ฅ โˆซ(๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ 2 + 1) ๐‘‘๐‘ฅ = ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ 3 + ๐‘ฅ + ๐ถ(๐‘ฆ) = ๐‘”(๐‘ฅ, ๐‘ฆ) Differentiate with respect to . ๐‘”(๐‘ฅ, ๐‘ฆ) ๐‘ฆ = โˆ‚ โˆ‚๐‘ฆ (๐‘”(๐‘ฅ, ๐‘ฆ)) โˆ‚ โˆ‚๐‘ฆ (๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ 3 + ๐‘ฅ + ๐ถ(๐‘ฆ))
  • 5. 5 = sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) Compare the result above to . โˆ‚๐‘“ โˆ‚๐‘ฆ = sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) โˆ‚๐‘“ โˆ‚๐‘ฆ = + sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) sin(๐‘ฅ) 4๐‘’ 4๐‘ฆ = ๐ถ'(๐‘ฆ) 4๐‘’ 4๐‘ฆ Integrate with respect to to find . ๐ถ'(๐‘ฆ) = 4๐‘’ 4๐‘ฆ ๐‘ฆ ๐ถ(๐‘ฆ) โˆซ4๐‘’ 4๐‘ฆ ๐‘‘๐‘ฆ = ๐‘’ 4๐‘ฆ = ๐ถ(๐‘ฆ) Put together the scalar potential function. ๐‘“ = ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ 3 + ๐‘ฅ + ๐‘’ 4๐‘ฆ Option 2 - The โ€œDangerous Methodโ€ We can also use the โ€œDangerous Methodโ€ to find the potential function. Weโ€™ll explain this method using an example vector field. Define . ๐น โ†’ (๐‘ฅ, ๐‘ฆ) = 2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’ ๐‘ฅ๐‘ฆ , โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’ ๐‘ฅ๐‘ฆ + 3๐‘ฆ 2 ( ) First, we take the antiderivative of with respect to and of with respect to . โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ โˆ‚๐‘“ โˆ‚๐‘ฆ ๐‘ฆ โˆซ(2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’ ๐‘ฅ๐‘ฆ ) ๐‘‘๐‘ฅ = sin(2๐‘ฅ) cos(๐‘ฆ) โˆ’ ๐‘ฅ + ๐‘’ ๐‘ฅ๐‘ฆ + ๐ถ(๐‘ฆ) โˆซ(โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’ ๐‘ฅ๐‘ฆ + 3๐‘ฆ 2 )๐‘‘๐‘ฆ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ + ๐‘ฆ 3 + ๐ถ(๐‘ฅ) Now, we compare the two antiderivatives to see what they have in common. We do this to synthesize a โ€œguessโ€ as to what the scalar potential function might be by writing down function components that both ๐‘“ antiderivatives exhibited, followed by each unique component seen in either antiderivative. In this case, both
  • 6. 6 antiderivatives had and with unique components being - and . Combing these gives ๐‘ ๐‘–๐‘›(2๐‘ฅ)๐‘๐‘œ๐‘ (๐‘ฆ) ๐‘’ ๐‘ฅ๐‘ฆ ๐‘ฅ ๐‘ฆ 3 us . ๐‘“ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฅ + ๐‘ฆ 3 Next, we verify we got the correct function by confirming = . ๐‘“ โˆ‡๐‘“ ๐น โ†’ โˆ‡ = , ) ๐‘“ ( โˆ‚ โˆ‚๐‘ฅ (sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฅ + ๐‘ฆ 3 ) โˆ‚ โˆ‚๐‘ฆ (sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฅ + ๐‘ฆ 3 ) = ( ) 2 cos(2๐‘ฅ) cos(๐‘ฆ) + ๐‘ฆ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ 1, โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’ ๐‘ฅ๐‘ฆ + 3๐‘ฆ 2 = ๐น โ†’ Section 1.3 FTLI Examples A โ€œMundaneโ€ Example Suppose we have the vector field = We wish to compute where C is any piecewise smooth ๐น โ†’ (4๐‘ฅ 3 , 2). ๐ถ โˆซ๐น โ†’ ยท๐‘‘๐‘  โ†’ , curve from the point (0,0) to (3,4). The first step for us is to integrate with respect to . We solve to obtain 4๐‘ฅ 3 ๐‘ฅ = โˆซ4๐‘ฅ 3 ๐‘‘๐‘ฅ ๐‘ฅ 4 + ๐ถ(๐‘ฆ). The next step is to integrate 2 with respect to so we then obtain ๐‘ฆ, = โˆซ 2 ๐‘‘๐‘ฆ 2๐‘ฆ + ๐ถ(๐‘ฅ).
  • 7. 7 Combining our two results, we see that We can double check our answer by computing the ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ 4 + 2๐‘ฆ. gradient of . ๐‘“ โˆ‡๐‘“ = ( โˆ‚๐‘“ โˆ‚๐‘ฅ , โˆ‚๐‘“ โˆ‚๐‘ฆ ) = (4๐‘ฅ 3 , 2) Now that we have checked our function we are ready to apply the Fundamental Theorem of Line Integrals ๐‘“, and compute our integral. ๐ถ โˆซ๐น โ†’ ยท๐‘‘๐‘  โ†’ = ๐‘“(3, 4) โˆ’ ๐‘“(0, 0) = 3 4 + 2 ยท 4 โˆ’ 0 4 โˆ’ 0 ยท 8 = 81 + 8 = 89 For any paths from (0,0) to (3,4) to which the FTLI is applicable, for , the line integral will always be 89 ๐น โ†’ because of path-independence. To further our understanding, let's compute an integral using the definition of line integral over a path to show that the FTLI works and is indeed equal to what we computed. Let our first curve be where ๐‘ฅ(๐‘ก) = (3๐‘ก, 4๐‘ก), Plugging everything in, ๐‘ก ฯต [0, 1]. 0 1 โˆซ (4 ยท (3๐‘ก) 3 , 2) ยท (3, 4) ๐‘‘๐‘ก = 0 1 โˆซ 324๐‘ก 3 + 8 ๐‘‘๐‘ก = 81 (1) 3 + 8 โˆ’ 81 (0) 3 + 8 ยท 0 = 81 + 8 . = 89
  • 8. 8 Thus, the Fundamental of Line Integrals indeed works as both of our computations were equal, showing that we may use this shortcut. Solving the Circulation Integral with FTLI Define a gradient field on an open, connected space in , with a scalar-valued potential function . Consider ๐น โ†’ โ„ ๐‘› ๐‘“ C, a closed curve with a counterclockwise parameterization defined on the same space. Using the Fundamental Theorem of Line Integrals, we can prove that d = 0. Points A and B lie on curve C, dividing it into two ๐ถ โˆฎ๐น โ†’ ยท ๐‘  โ†’ open curves. We label the curve traveling from A to B as C1, and the curve traveling from B to A as C2, as shown in Fig. 1. Since both C1 and C2 are open paths with initial and terminal points, we can apply the Fundamental Theorem of Line Integrals to calculate the following line integrals:
  • 9. 9 d = (B) - (A) ๐ถ1 โˆซ ๐น โ†’ ยท ๐‘  โ†’ ๐‘“ ๐‘“ d = (A) - (B) ๐ถ2 โˆซ ๐น โ†’ ยท ๐‘  โ†’ ๐‘“ ๐‘“ Our objective is to calculate the circulation integral over C. Seeing that C1 and C2 combined form C, we accomplish our objective by finding the sum of the line integrals over C1 and C2. Thus, we obtain d = d + d ๐ถ โˆฎ ๐น โ†’ ยท ๐‘  โ†’ ๐ถ1 โˆซ๐น โ†’ ยท ๐‘  โ†’ ๐ถ2 โˆซ๐น โ†’ ยท ๐‘  โ†’ = (B) - (A) + (A) - (B) ๐‘“ ๐‘“ ๐‘“ ๐‘“ = 0. The relationship between the circulation integral and the FTLI can be conceptualized using path independence. Since we know that the line integral over a single point is zero, we can deduce that the line integral over a curve with the same initial and terminal point is also zero, regardless of the curveโ€™s length. Thus, d = 0 for any ๐ถ โˆฎ๐น โ†’ ยท ๐‘  โ†’ closed curve C.