SlideShare a Scribd company logo
1 of 44
Chapter 15
Fourier Series and Fourier Transform
15.3 - 15.8
Linear Circuit
I/P O/P
Sinusoidal Inputs OK
Nonsinusoidal Inputs
Nonsinusoidal Inputs Sinusoidal Inputs
The Fourier Series
Fourier Series
The Fourier Series
Joseph Fourier
1768 to 1830
Fourier studied the mathematical theory of heat
conduction. He established the partial differential
equation governing heat diffusion and solved it by
using infinite series of trigonometric functions.
The Fourier Series
Fourier proposed in 1807
A periodic waveform f(t) could be broken down into an
infinite series of simple sinusoids which, when added
together, would construct the exact form of the original
waveform.
Consider the periodic function
( ) ( ) ; 1, 2, 3,
f t f t nT n
     
T = Period, the smallest value of T that satisfies the above
Equation.
The Fourier Series
The expression for a Fourier Series is
0 0 0
1 1
( ) cos sin
N N
n n
n n
f t a a n t b n t
 
 
  
 
Fourier Series = a finite sum of harmonically related sinusoids
Or, alternative form
0 0
1
( ) cos( )
N
n n
n
f t C C n t
 

  

0, , and are real and are called
Fourier Trigonometric Coefficients
n n
a a b and 0
2
T

 
0 0 and are the Complex Coefficients
n
C a C

The Fourier Series
0 0
1
( ) cos( )
N
n n
n
f t C C n t
 

  

0
C is the average (or DC) value of f(t)
For n = 1 the corresponding sinusoid
is called the fundamental
1 0 1
cos( )
C t
 

For n = k the corresponding sinusoid
is called the kth harmonic term
0
cos( )
k k
C k t
 

Similarly, 0 is call the fundamental frequency
k0 is called the kth harmonic frequency
The Fourier Series
A Fourier Series is an accurate representation of a
periodic signal and consists of the sum of sinusoids at
the fundamental and harmonic frequencies.
Definition
N  
The waveform f(t) depends on the amplitude and phase
of every harmonic components, and we can generate any
non-sinusoidal waveform by an appropriate combination
of sinusoidal functions.
http://archives.math.utk.edu/topics/fourierAnalysis.html
The Fourier Series
To be described by the Fourier Series the waveform f(t)
must satisfy the following mathematical properties:
1. f(t) is a single-value function except at possibly a
finite number of points.
2. The integral for any t0.
3. f(t) has a finite number of discontinuities within
the period T.
4. f(t) has a finite number of maxima and minima
within the period T.
0
0
( )
t T
t
f t dt

 

In practice, f(t) = v(t) or i(t) so the above 4 conditions are
always satisfied.
The Fourier Series
Recall from calculus that sinusoids whose frequencies are
integer multiples of some fundamental frequency f0 = 1/T
form an orthogonal set of functions.
0
2 2 2
sin cos 0 ; ,
T nt mt
dt n m
T T T
 
 

and
0 0
2 2 2 2 2 2
sin sin cos cos
0 ;
1 ; 0
T T
nt mt nt mt
dt dt
T T T T T T
n m
n m
   



 
 

 
The Fourier Series
The Fourier Trigonometric Coefficients can be obtained
from
0
0
0
0
0
0
0
0
0
1
( )
2
( )cos
2
( )sin
t T
t
t T
n
t
t T
n
t
a f t dt
T
a f t n t dt
T
b f t n t dt
T











average value over one period
n > 0
n > 0
The Fourier Series
To obtain ak
0 0 0
0 0
0 0 0
0
1
( )cos cos
( cos sin )cos
T T
N T
n n
n
f t k t dt a k t dt
a n t b n t k t dt
 
  


 
 

The only nonzero term is for n = k
0
0
( )cos
2
T
k
T
f t k t dt a

 
  
 

Similar approach can be used to obtain bk
Example 15.3-1 determine Fourier Series and plot for N = 7
0
0
0
/ 2 / 4
/ 2 / 4
1
( )
1 1 1
( ) 1
2
t T
t
T T
T T
a f t dt
T
f t dt dt
T T

 

  

 
0
1
2
a 
average or DC value
Example 15.3-1(cont.)
An even function exhibits symmetry around the vertical axis
at t = 0 so that f(t) = f(-t).
0
0
0
/ 4
0
/ 4
2
( )sin
2
1 sin 0
t T
n
t
T
T
b f t n t dt
T
n t dt
T




 
 


/ 4
0
/ 4
/ 4
0 / 4
0
2
1 cos
2
sin |
T
n
T
T
T
a n t dt
T
n t
T n








Determine only an
Example 15.3-1(cont.)
1
sin sin
2 2
n
n n
a
n
 


 
   
 
   
 
   
 
0 when 2, 4, 6,
n
a n
  
and 2( 1)
when 1, 3, 5,
q
n
a n
n


  
where
( 1)
2
n
q


0
1,
1 2( 1)
( ) cos
2
q
N
n odd
f t n t
n




  
1 3 5 7
2 2 2 2
, , ,
3 5 7
a a a a
   
 
   
Symmetry of the Function
Four types
1. Even-function symmetry
2. Odd-function symmetry
3. Half-wave symmetry
4. Quarter-wave symmetry
Even function
( ) ( )
f t f t
  All bn = 0
/ 2
0
0
4
( )cos
T
n
a f t n t dt
T

 
Symmetry of the Function
Odd function
( ) ( )
f t f t
   All an = 0
/ 2
0
0
4
( )sin
T
n
b f t n t dt
T

 
Half-wave symmetry
( ) ( )
2
T
f t f t
  
an and bn = 0 for even values of n and a0 = 0
Quarter-wave symmetry
Symmetry of the Function
All an = 0 and bn = 0 for even values of n and a0 = 0
/ 4
0
0
8
( )sin ; for odd
T
n
b f t n t dt n
T

 
Odd & Quarter-wave
For Even & Quarter-wave
Symmetry of the Function
All bn = 0 and an = 0 for even values of n and a0 = 0
/ 4
0
0
8
( )cos ; for odd
T
n
a f t n t dt n
T

 
Table 15.4-1 gives a summary of Fourier coefficients
and symmetry.
Example 15.4-1 determine Fourier Series and N = ?
4 and s
2
m
f T

 
0
2
4 rad/s
2
T
T
 

   
To obtain the most advantages form of symmetry,
we choose t1 = 0 s
0
Odd & Quarter-wave
All an = 0 and bn = 0 for even values of n and a0 = 0

/ 4
0
0
8
( )sin ; for odd
T
n
b f t n t dt n
T

 
Example 15.4-1(cont.)
4
( ) ; 0 / 4
/ 4
m m
f f
f t t t t T
T T
   
2

4
32
( ) ; 0 / 4
f t t t T

   
/ 4
0
0
/ 4
0 0
2 2 2
0 0 0
2 2
8 32
sin
512 sin cos
32
sin ; for odd
2
T
n
T
b t n t dt
T
n t t n t
n n
n
n
n


 
  


 
  
 
 
 
 
 


Example 15.4-1(cont.)
The Fourier Series is
0
2
1
1
( ) 3.24 sin sin ; for odd
2
N
n
n
f t n t n
n



 
2
32

The first 4 terms (upto and including N = 7)
1 1 1
( ) 3.24(sin4 sin12 sin20 sin28 )
9 25 49
f t t t t t
   
Next harmonic is for N = 9 which has magnitude
3.24/81 = 0.04 < 2 % of b1 ( = 3.24)
Therefore the first 4 terms (including N = 7) is enough for
the desired approximation
Exponential Form of the Fourier Series
0 0
1
( ) cos( )
N
n n
n
f t C C n t
 

  

is the average (or DC) value of f(t) and
0
C
( )
2
n n
n n n
a jb
C 

  
C
2 2
2
n n
n n
a b
C

 
C
and
where
1
1
tan ; if 0
180 tan ; if 0
n
n
n
n
n
n
n
b
a
a
b
a
a



  

  
  
 
 
    
 

 

Exponential Form of the Fourier Series
or
2 cos and 2 sin
n n n n n n
a C b C
 
 
Writing in exponential form using
Euler’s identity with
0
cos( )
n
n t
 

N  
0 0
0
0
( ) jn t jn t
n n
n n
n
f t C e e
 
 
 

  
 
C C
where the complex coefficients are defined as
0
0
0
1
( ) n
t T
jn t j
n n
t
f t e dt C e
T
 


 

C
And ; the coefficients for negative n are the
complex conjugates of the coefficients for positive n
*
n n


C C
Example 15.5-1 determine complex Fourier Series
The average value of f(t) is zero 0 0
C
 
Even function
0
0
0
1
( )
t T
jn t
n
t
f t e dt
T



 
C
We select and define
0
2
T
t   0
jn m
 
 
 
0
/ 2
/ 2
/ 4 / 4 / 2
/ 2 / 4 / 4
/ 4 / 4 / 2
/ 2 / 4 / 4
/ 2 / 2
0
1
( )
1 1 1
| | |
2 2
0
4sin 2sin( )
2 2
T
jn t
n
T
T T T
mt mt mt
T T T
mt T mt T mt T
T T T
jn jn jn jn
f t e dt
T
Ae dt Ae dt Ae dt
T T T
A
e e e
mT
A
e e e e
jn T
A n
n
n

   







  
 
   
 
 

    
  
   
 
  
 
 

  
C
; for even
2
sin ; for odd
2
sin
where
2
n
A
n n
n
x n
A x
x








 
Example 15.5-1(cont.)
Example 15.5-1(cont.)
Since f(t) is even function, all Cn are real and = 0 for n even
1 1
sin / 2 2
/ 2
A A

  
  
C C
For n = 1
For n = 2
2 2
sin
0
A

 
  
C C
For n = 3
3 3
sin(3 / 2) 2
3 / 2 3
A A

  

  
C C
Example 15.5-1(cont.)
The complex Fourier Series is
   
0 0 0 0
0 0 0 0
3 3
3 3
0 0
0
1
2 2 2 2
( )
3 3
2 2
3
4 4
cos cos3
3
4 ( 1)
cos
j t j t j t j t
j t j t j t j t
q
n
n odd
A A A A
f t e e e e
A A
e e e e
A A
t t
A
n t
n
   
   
   
 
 
 


 
 



 
     

    
  

  where
1
2
n
q


For real f(t) n n

 
C C
2cos
2 sin
jx jx
jx jx
e e x
e e j x


 
 
Example 15.5-2 determine complex Fourier Series
Even function
 
/ 4
/ 4
/ 4
/ 4
/ 4 / 4
1
1
1
|
1
T
mt
n
T
mt T
T
mT mT
e dt
T
e
mT
e e
mT




 



 


C
0
jn m
 
Use
 
/ 2 / 2
( 1)/ 2
1
2
0 ; even, 0
( 1) ; odd
jn jn
n
n
e e
jn
n n
n
 

 

 



 


C
Example 15.5-2(cont.)
To find C0
0
0
/ 4
/ 4
1
( )
1 1
1
2
T
T
T
C f t dt
T
dt
T 

 


The Fourier Spectrum
The complex Fourier coefficients
n n n

 
C C
n
C

Amplitude spectrum

n

Phase spectrum
The Fourier Spectrum
The Fourier Spectrum is a graphical display of the
amplitude and phase of the complex Fourier coeff.
at the fundamental and harmonic frequencies.
Example
A periodic sequence of pulses each of width 
The Fourier Spectrum
The Fourier coefficients are
0
/ 2
/ 2
1 T
jn t
n
T
Ae dt
T



 
C
For 0
n 
 
0
0 0
/ 2
/ 2
/ 2 / 2
0
0
0
2
sin
2
jn t
n
jn jn
A
e dt
T
A
e e
jn T
A n
n T
 

   

 






 
 
  
 

C
0
0
sin( / 2)
( / 2)
sin
n
A n
T n
A x
T x
  
 



C
The Fourier Spectrum
where 0 /2
x n 

For 0
n 
/ 2
0
/ 2
1 A
Adt
T T




 

C
The Fourier Spectrum
ˆ
L'Hopital's rule
sin
1 for 0
x
x
x
 
sin( )
0 ; 1, 2, 3,
n
n
n


 
0
5
 

0
10
 

0
 
The Truncated Fourier Series
0
( ) ( )
N
jn t
n N
n N
f t e S t


 
 C
A practical calculation of the Fourier series requires that
we truncate the series to a finite number of terms.
The error for N terms is
( ) ( ) ( )
N
t f t S t
  
We use the mean-square error (MSE) defined as
2
0
1
( )
T
MSE t dt
T

 
MSE is minimum when Cn = Fourier series’ coefficients
The Truncated Fourier Series
overshoot 10%

Circuits and Fourier Series
An RC circuit excited by a periodic voltage vS(t).
It is often desired to determine the response of a circuit
excited by a periodic signal vS(t).
Example 15.8-1 An RC Circuit vO(t) = ?
1 , 2 F, sec
R C T 
   
Example 15.3-1
Circuits and Fourier Series
An equivalent circuit.
Each voltage source
is a term of the
Fourier series of vs(f).
Using
phasors
to find
steady-state
responses
to the
sinusoids.
Each
input
is a
Sinusoid.
Example 15.8-1
(cont.)
0
1,
1 2( 1)
( ) cos
2
q
N
s
n odd
v t n t
n




  
Example 15.8-1 (cont.)
( 1)
2
n
q


where
The first 4 terms of vS(t) is
0 1 3 5
1 2 2 2
( ) cos2 cos6 cos10
2 3
( ) ) ( ( )
5
( )
s
v t t
v t v t v t v t
s s s s
t t
  
   
0 2 rad/s
 
The steady state response vO(t) can then be found using
superposition. 0 1 3 5
( ) ( ) ( ) ( ) ( )
o o o o o
v t v t v t v t v t
   
Example 15.8-1 (cont.)
The impedance of the capacitor is
0
1
; for 0,1, 3, 5,
C n
jn C

 
Z
0
0
0
1
; for 0,1, 3, 5
1
4
,
1
on sn
sn
jn C
n
R
jn C
jn CR



 



V V
V
We can find
Example 15.8-1 (cont.)
The steady-state response can be written as
0
1
0
2
( ) cos(
cos( tan 4 )
1 16
on on on
sn
sn
v t n t
n t n
n

 
  
   

V V
V
V
0
1
2
2
for 1, 3, 5
0 for 0,1, 3, 5
s
sn
sn
n
n
n


 
  
V
V
V
In this example we have
Example 15.8-1 (cont.)
0
1
2
1
( )
2
2
( ) cos( 2 tan 4 ) ; for 1,3,5
1 16
o
on
v t
v t n t n n
n n



  

1
3
5
( ) 0.154cos(2 76 )
( ) 0.018cos(6 85 )
( ) 0.006cos(10 87 )
o
o
o
v t t
v t t
v t t
  
  
  
1
( ) 0.154cos(2 76 ) 0.018cos(6 85 )
2
0.006cos(10 87 )
o
v t t t
t
       
  
Summary
The Fourier Series
Symmetry of the Function
Exponential Form of the Fourier Series
The Fourier Spectrum
The Truncated Fourier Series
Circuits and Fourier Series

More Related Content

Similar to Fourier series and Fourier transform in po physics

Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformSandilya Sridhara
 
Orthogonality relations pdf
Orthogonality relations pdfOrthogonality relations pdf
Orthogonality relations pdfamirhashemian
 
Ist module 3
Ist module 3Ist module 3
Ist module 3Vijaya79
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Fourier Specturm via MATLAB
Fourier Specturm via MATLABFourier Specturm via MATLAB
Fourier Specturm via MATLABZunAib Ali
 
SP_SNS_C2.pptx
SP_SNS_C2.pptxSP_SNS_C2.pptx
SP_SNS_C2.pptxIffahSkmd
 
Ss important questions
Ss important questionsSs important questions
Ss important questionsSowji Laddu
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systemsbabak danyal
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Iidiarmseven
 
Ch1 representation of signal pg 130
Ch1 representation of signal pg 130Ch1 representation of signal pg 130
Ch1 representation of signal pg 130Prateek Omer
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download Edhole.com
 
07 periodic functions and fourier series
07 periodic functions and fourier series07 periodic functions and fourier series
07 periodic functions and fourier seriesKrishna Gali
 

Similar to Fourier series and Fourier transform in po physics (20)

Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Orthogonality relations pdf
Orthogonality relations pdfOrthogonality relations pdf
Orthogonality relations pdf
 
Signal & system
Signal & systemSignal & system
Signal & system
 
Ist module 3
Ist module 3Ist module 3
Ist module 3
 
4945427.ppt
4945427.ppt4945427.ppt
4945427.ppt
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
 
Fourier Specturm via MATLAB
Fourier Specturm via MATLABFourier Specturm via MATLAB
Fourier Specturm via MATLAB
 
SP_SNS_C2.pptx
SP_SNS_C2.pptxSP_SNS_C2.pptx
SP_SNS_C2.pptx
 
Ss important questions
Ss important questionsSs important questions
Ss important questions
 
D021018022
D021018022D021018022
D021018022
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
Chapter 2 fourier transform
Chapter 2 fourier transformChapter 2 fourier transform
Chapter 2 fourier transform
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
 
Ch1 representation of signal pg 130
Ch1 representation of signal pg 130Ch1 representation of signal pg 130
Ch1 representation of signal pg 130
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
M4.pdf
M4.pdfM4.pdf
M4.pdf
 
07 periodic functions and fourier series
07 periodic functions and fourier series07 periodic functions and fourier series
07 periodic functions and fourier series
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 

More from RakeshPatil2528

NP Nuclear physics and properties of nuclear
NP Nuclear physics and  properties of nuclearNP Nuclear physics and  properties of nuclear
NP Nuclear physics and properties of nuclearRakeshPatil2528
 
Future of microprocessor in applied physics
Future of microprocessor in applied physicsFuture of microprocessor in applied physics
Future of microprocessor in applied physicsRakeshPatil2528
 
fourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physicsfourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physicsRakeshPatil2528
 
Schrodinger equation in QM Reminders.ppt
Schrodinger equation in QM Reminders.pptSchrodinger equation in QM Reminders.ppt
Schrodinger equation in QM Reminders.pptRakeshPatil2528
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsRakeshPatil2528
 
Introduction of quantum mechanics for s.y bsc
Introduction of quantum mechanics for s.y bscIntroduction of quantum mechanics for s.y bsc
Introduction of quantum mechanics for s.y bscRakeshPatil2528
 

More from RakeshPatil2528 (6)

NP Nuclear physics and properties of nuclear
NP Nuclear physics and  properties of nuclearNP Nuclear physics and  properties of nuclear
NP Nuclear physics and properties of nuclear
 
Future of microprocessor in applied physics
Future of microprocessor in applied physicsFuture of microprocessor in applied physics
Future of microprocessor in applied physics
 
fourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physicsfourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physics
 
Schrodinger equation in QM Reminders.ppt
Schrodinger equation in QM Reminders.pptSchrodinger equation in QM Reminders.ppt
Schrodinger equation in QM Reminders.ppt
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
Introduction of quantum mechanics for s.y bsc
Introduction of quantum mechanics for s.y bscIntroduction of quantum mechanics for s.y bsc
Introduction of quantum mechanics for s.y bsc
 

Recently uploaded

Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 

Recently uploaded (20)

Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 

Fourier series and Fourier transform in po physics

  • 1. Chapter 15 Fourier Series and Fourier Transform 15.3 - 15.8
  • 2. Linear Circuit I/P O/P Sinusoidal Inputs OK Nonsinusoidal Inputs Nonsinusoidal Inputs Sinusoidal Inputs The Fourier Series Fourier Series
  • 3. The Fourier Series Joseph Fourier 1768 to 1830 Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.
  • 4. The Fourier Series Fourier proposed in 1807 A periodic waveform f(t) could be broken down into an infinite series of simple sinusoids which, when added together, would construct the exact form of the original waveform. Consider the periodic function ( ) ( ) ; 1, 2, 3, f t f t nT n       T = Period, the smallest value of T that satisfies the above Equation.
  • 5. The Fourier Series The expression for a Fourier Series is 0 0 0 1 1 ( ) cos sin N N n n n n f t a a n t b n t          Fourier Series = a finite sum of harmonically related sinusoids Or, alternative form 0 0 1 ( ) cos( ) N n n n f t C C n t        0, , and are real and are called Fourier Trigonometric Coefficients n n a a b and 0 2 T    0 0 and are the Complex Coefficients n C a C 
  • 6. The Fourier Series 0 0 1 ( ) cos( ) N n n n f t C C n t        0 C is the average (or DC) value of f(t) For n = 1 the corresponding sinusoid is called the fundamental 1 0 1 cos( ) C t    For n = k the corresponding sinusoid is called the kth harmonic term 0 cos( ) k k C k t    Similarly, 0 is call the fundamental frequency k0 is called the kth harmonic frequency
  • 7. The Fourier Series A Fourier Series is an accurate representation of a periodic signal and consists of the sum of sinusoids at the fundamental and harmonic frequencies. Definition N   The waveform f(t) depends on the amplitude and phase of every harmonic components, and we can generate any non-sinusoidal waveform by an appropriate combination of sinusoidal functions. http://archives.math.utk.edu/topics/fourierAnalysis.html
  • 8. The Fourier Series To be described by the Fourier Series the waveform f(t) must satisfy the following mathematical properties: 1. f(t) is a single-value function except at possibly a finite number of points. 2. The integral for any t0. 3. f(t) has a finite number of discontinuities within the period T. 4. f(t) has a finite number of maxima and minima within the period T. 0 0 ( ) t T t f t dt     In practice, f(t) = v(t) or i(t) so the above 4 conditions are always satisfied.
  • 9. The Fourier Series Recall from calculus that sinusoids whose frequencies are integer multiples of some fundamental frequency f0 = 1/T form an orthogonal set of functions. 0 2 2 2 sin cos 0 ; , T nt mt dt n m T T T      and 0 0 2 2 2 2 2 2 sin sin cos cos 0 ; 1 ; 0 T T nt mt nt mt dt dt T T T T T T n m n m              
  • 10. The Fourier Series The Fourier Trigonometric Coefficients can be obtained from 0 0 0 0 0 0 0 0 0 1 ( ) 2 ( )cos 2 ( )sin t T t t T n t t T n t a f t dt T a f t n t dt T b f t n t dt T            average value over one period n > 0 n > 0
  • 11. The Fourier Series To obtain ak 0 0 0 0 0 0 0 0 0 1 ( )cos cos ( cos sin )cos T T N T n n n f t k t dt a k t dt a n t b n t k t dt             The only nonzero term is for n = k 0 0 ( )cos 2 T k T f t k t dt a          Similar approach can be used to obtain bk
  • 12. Example 15.3-1 determine Fourier Series and plot for N = 7 0 0 0 / 2 / 4 / 2 / 4 1 ( ) 1 1 1 ( ) 1 2 t T t T T T T a f t dt T f t dt dt T T           0 1 2 a  average or DC value
  • 13. Example 15.3-1(cont.) An even function exhibits symmetry around the vertical axis at t = 0 so that f(t) = f(-t). 0 0 0 / 4 0 / 4 2 ( )sin 2 1 sin 0 t T n t T T b f t n t dt T n t dt T           / 4 0 / 4 / 4 0 / 4 0 2 1 cos 2 sin | T n T T T a n t dt T n t T n         Determine only an
  • 14. Example 15.3-1(cont.) 1 sin sin 2 2 n n n a n                         0 when 2, 4, 6, n a n    and 2( 1) when 1, 3, 5, q n a n n      where ( 1) 2 n q   0 1, 1 2( 1) ( ) cos 2 q N n odd f t n t n        1 3 5 7 2 2 2 2 , , , 3 5 7 a a a a          
  • 15. Symmetry of the Function Four types 1. Even-function symmetry 2. Odd-function symmetry 3. Half-wave symmetry 4. Quarter-wave symmetry Even function ( ) ( ) f t f t   All bn = 0 / 2 0 0 4 ( )cos T n a f t n t dt T   
  • 16. Symmetry of the Function Odd function ( ) ( ) f t f t    All an = 0 / 2 0 0 4 ( )sin T n b f t n t dt T    Half-wave symmetry ( ) ( ) 2 T f t f t    an and bn = 0 for even values of n and a0 = 0
  • 17. Quarter-wave symmetry Symmetry of the Function All an = 0 and bn = 0 for even values of n and a0 = 0 / 4 0 0 8 ( )sin ; for odd T n b f t n t dt n T    Odd & Quarter-wave
  • 18. For Even & Quarter-wave Symmetry of the Function All bn = 0 and an = 0 for even values of n and a0 = 0 / 4 0 0 8 ( )cos ; for odd T n a f t n t dt n T    Table 15.4-1 gives a summary of Fourier coefficients and symmetry.
  • 19. Example 15.4-1 determine Fourier Series and N = ? 4 and s 2 m f T    0 2 4 rad/s 2 T T        To obtain the most advantages form of symmetry, we choose t1 = 0 s 0 Odd & Quarter-wave All an = 0 and bn = 0 for even values of n and a0 = 0  / 4 0 0 8 ( )sin ; for odd T n b f t n t dt n T   
  • 20. Example 15.4-1(cont.) 4 ( ) ; 0 / 4 / 4 m m f f f t t t t T T T     2  4 32 ( ) ; 0 / 4 f t t t T      / 4 0 0 / 4 0 0 2 2 2 0 0 0 2 2 8 32 sin 512 sin cos 32 sin ; for odd 2 T n T b t n t dt T n t t n t n n n n n                          
  • 21. Example 15.4-1(cont.) The Fourier Series is 0 2 1 1 ( ) 3.24 sin sin ; for odd 2 N n n f t n t n n      2 32  The first 4 terms (upto and including N = 7) 1 1 1 ( ) 3.24(sin4 sin12 sin20 sin28 ) 9 25 49 f t t t t t     Next harmonic is for N = 9 which has magnitude 3.24/81 = 0.04 < 2 % of b1 ( = 3.24) Therefore the first 4 terms (including N = 7) is enough for the desired approximation
  • 22. Exponential Form of the Fourier Series 0 0 1 ( ) cos( ) N n n n f t C C n t        is the average (or DC) value of f(t) and 0 C ( ) 2 n n n n n a jb C      C 2 2 2 n n n n a b C    C and where 1 1 tan ; if 0 180 tan ; if 0 n n n n n n n b a a b a a                            
  • 23. Exponential Form of the Fourier Series or 2 cos and 2 sin n n n n n n a C b C     Writing in exponential form using Euler’s identity with 0 cos( ) n n t    N   0 0 0 0 ( ) jn t jn t n n n n n f t C e e             C C where the complex coefficients are defined as 0 0 0 1 ( ) n t T jn t j n n t f t e dt C e T        C And ; the coefficients for negative n are the complex conjugates of the coefficients for positive n * n n   C C
  • 24. Example 15.5-1 determine complex Fourier Series The average value of f(t) is zero 0 0 C   Even function 0 0 0 1 ( ) t T jn t n t f t e dt T      C We select and define 0 2 T t   0 jn m  
  • 25.     0 / 2 / 2 / 4 / 4 / 2 / 2 / 4 / 4 / 4 / 4 / 2 / 2 / 4 / 4 / 2 / 2 0 1 ( ) 1 1 1 | | | 2 2 0 4sin 2sin( ) 2 2 T jn t n T T T T mt mt mt T T T mt T mt T mt T T T T jn jn jn jn f t e dt T Ae dt Ae dt Ae dt T T T A e e e mT A e e e e jn T A n n n                                                    C ; for even 2 sin ; for odd 2 sin where 2 n A n n n x n A x x           Example 15.5-1(cont.)
  • 26. Example 15.5-1(cont.) Since f(t) is even function, all Cn are real and = 0 for n even 1 1 sin / 2 2 / 2 A A        C C For n = 1 For n = 2 2 2 sin 0 A       C C For n = 3 3 3 sin(3 / 2) 2 3 / 2 3 A A         C C
  • 27. Example 15.5-1(cont.) The complex Fourier Series is     0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 1 2 2 2 2 ( ) 3 3 2 2 3 4 4 cos cos3 3 4 ( 1) cos j t j t j t j t j t j t j t j t q n n odd A A A A f t e e e e A A e e e e A A t t A n t n                                                where 1 2 n q   For real f(t) n n    C C 2cos 2 sin jx jx jx jx e e x e e j x      
  • 28. Example 15.5-2 determine complex Fourier Series Even function   / 4 / 4 / 4 / 4 / 4 / 4 1 1 1 | 1 T mt n T mt T T mT mT e dt T e mT e e mT              C 0 jn m   Use
  • 29.   / 2 / 2 ( 1)/ 2 1 2 0 ; even, 0 ( 1) ; odd jn jn n n e e jn n n n                C Example 15.5-2(cont.) To find C0 0 0 / 4 / 4 1 ( ) 1 1 1 2 T T T C f t dt T dt T      
  • 30. The Fourier Spectrum The complex Fourier coefficients n n n    C C n C  Amplitude spectrum  n  Phase spectrum
  • 31. The Fourier Spectrum The Fourier Spectrum is a graphical display of the amplitude and phase of the complex Fourier coeff. at the fundamental and harmonic frequencies. Example A periodic sequence of pulses each of width 
  • 32. The Fourier Spectrum The Fourier coefficients are 0 / 2 / 2 1 T jn t n T Ae dt T      C For 0 n    0 0 0 / 2 / 2 / 2 / 2 0 0 0 2 sin 2 jn t n jn jn A e dt T A e e jn T A n n T                           C
  • 33. 0 0 sin( / 2) ( / 2) sin n A n T n A x T x         C The Fourier Spectrum where 0 /2 x n   For 0 n  / 2 0 / 2 1 A Adt T T        C
  • 34. The Fourier Spectrum ˆ L'Hopital's rule sin 1 for 0 x x x   sin( ) 0 ; 1, 2, 3, n n n     0 5    0 10    0  
  • 35. The Truncated Fourier Series 0 ( ) ( ) N jn t n N n N f t e S t      C A practical calculation of the Fourier series requires that we truncate the series to a finite number of terms. The error for N terms is ( ) ( ) ( ) N t f t S t    We use the mean-square error (MSE) defined as 2 0 1 ( ) T MSE t dt T    MSE is minimum when Cn = Fourier series’ coefficients
  • 36. The Truncated Fourier Series overshoot 10% 
  • 37. Circuits and Fourier Series An RC circuit excited by a periodic voltage vS(t). It is often desired to determine the response of a circuit excited by a periodic signal vS(t). Example 15.8-1 An RC Circuit vO(t) = ? 1 , 2 F, sec R C T      Example 15.3-1
  • 38. Circuits and Fourier Series An equivalent circuit. Each voltage source is a term of the Fourier series of vs(f).
  • 40. 0 1, 1 2( 1) ( ) cos 2 q N s n odd v t n t n        Example 15.8-1 (cont.) ( 1) 2 n q   where The first 4 terms of vS(t) is 0 1 3 5 1 2 2 2 ( ) cos2 cos6 cos10 2 3 ( ) ) ( ( ) 5 ( ) s v t t v t v t v t v t s s s s t t        0 2 rad/s   The steady state response vO(t) can then be found using superposition. 0 1 3 5 ( ) ( ) ( ) ( ) ( ) o o o o o v t v t v t v t v t    
  • 41. Example 15.8-1 (cont.) The impedance of the capacitor is 0 1 ; for 0,1, 3, 5, C n jn C    Z 0 0 0 1 ; for 0,1, 3, 5 1 4 , 1 on sn sn jn C n R jn C jn CR         V V V We can find
  • 42. Example 15.8-1 (cont.) The steady-state response can be written as 0 1 0 2 ( ) cos( cos( tan 4 ) 1 16 on on on sn sn v t n t n t n n            V V V V 0 1 2 2 for 1, 3, 5 0 for 0,1, 3, 5 s sn sn n n n        V V V In this example we have
  • 43. Example 15.8-1 (cont.) 0 1 2 1 ( ) 2 2 ( ) cos( 2 tan 4 ) ; for 1,3,5 1 16 o on v t v t n t n n n n        1 3 5 ( ) 0.154cos(2 76 ) ( ) 0.018cos(6 85 ) ( ) 0.006cos(10 87 ) o o o v t t v t t v t t          1 ( ) 0.154cos(2 76 ) 0.018cos(6 85 ) 2 0.006cos(10 87 ) o v t t t t           
  • 44. Summary The Fourier Series Symmetry of the Function Exponential Form of the Fourier Series The Fourier Spectrum The Truncated Fourier Series Circuits and Fourier Series