Ch-6 
Linear Inequalities 
Submitted by-Lucky Choudhary 
Submitted To – Mr. N.K Rai Sir 
Date – 8th Sept. 2014
YYEESS WWee CCaann !!!! aallwwaayyss ttrraannssllaattee aa ssttaatteemmeenntt 
pprroobblleemm iinn tthhee ffoorrmm ooff aann eeqquuaattiioonn 
By Using IInneeqquuaalliittiieess ??? 
• i.e., using equations which have the following 
signs between L.H.S And R.H.S 
• For eg :- 40x + 20y ≥ 120
ProPerties of inequalities. 
 Essentially, all of the properties that you learned 
to solve linear equations apply to solving linear 
inequalities with the exception that if you 
multiply or divide by a negative you must 
reverse the inequality sign. 
 So to solve an inequality just do the same steps 
as with an equality to get the variable alone but if 
in the process you multiply or divide by a negative 
let it ring an alarm in your brain that says "Oh 
yeah, I have to turn the sign the other way to 
keep it true".
2x - 6 < 4x + 8 
- 4x - 4x 
- 2x - 6 < 8 
Example 
: 
+ 6 +6 
- 2x <14 
-2 -2 
Ring the alarm! We 
divided by a 
negative! 
We turned the sign! x > -7
Types of inequalities 
STRICT 
• TThhee iinneeqqaalliittiieess wwiitthh << oorr >> 
bbeettwweeeenn tthhee LL..HH..SS && RR..HH..SS 
SLACK 
• TThhee iinneeqqaalliittiieess wwiitthh ≤≤,, oorr ≥≥ 
bbeettwweeeenn tthhee LL..HH..SS && RR..HH..SS 
LINEAR QUADRATIC 
• TThhee iinneeqqaalliittiieess hhaavviinngg tthhee 
ddeeggrreeee 11 
EEgg ::-- 55xx ++22yy >> 1100 
• TThhee iinneeqqaalliittiieess hhaavviinngg tthhee 
ddeeggrreeee 22 
EEgg ::-- 55xx^^22 ++22yy >> 1100
RRuulleess FFoorr SSoollvviinngg IInneeqquuaalliittiieess
Solving Linear Inequalities On A Number Line 
Q1 » » Solve and Show solution on Number LLiinnee 77xx ++33 << 55xx ++99 
Sol » » 77xx –– 55xx << 99 –– 33 » 22xx << 66 » xx << 33 
-5 -4 -3 -2 -1 0 1 2 3 4 5 
PPooiinntt ttoo nnoottee :: -- IIff tthhee eeqquuaalliittyy hhaadd bbeeeenn 77xx ++33 ≤≤ 55xx ++99 tthhee tthhee 
nnuummbbeerr lliinnee wwoouulldd hhaadd bbeeeenn lliikkee tthhiiss 
-5 -4 -3 -2 -1 0 1 2 3 4 5 
IItt iiss iimmppoorrttaanntt ttoo nnoottiiccee tthhee ooppeenn oorr cclloosseedd iinntteerrvvaall ,, wwhhiicchh hhaass ttoo bbee 
uusseedd aaccccoorrddiinngg ttoo tthhee ssiiggnn bbeettwweeeenn tthhee iinneeqquuaalliittyy 
WWhhaatt aabboouutt ssoollvviinngg tthhiiss oonnee 
22 ≤≤ 33xx –– 44 ≤≤ 55 
View Here
QQ11 » » SSoollvvee aanndd SShhooww ssoolluuttiioonn oonn NNuummbbeerr LLiinnee 22 ≤≤ 33xx –– 44 ≤≤ 55 
SSooll » » 
22 ≤≤ 33xx –– 44 ≤≤ 55 » 22 ++ 4 ≤≤ .. 33 x ≤≤ 5 ++ 4 » 
» 66 ≤≤ 33xx ≤≤ 99 » 22 ≤≤ xx ≤≤ 33 
--55 --44 --33 --22 --11 00 11 22 33 44 55 
CClloosseedd IInntteerrvvaall (( )) 
OOppeenn IInntteerrvvaall (( )) 
22..00 22..11 22..22 22..33 22..44 22..55 22..66 22..77 22..88 22..99 33..00
Introduction To Types Of Graphs 
I 
II 
X - Axis 
Y - Axis 
Left half 
plane 
Right half 
plane 
OO 
X - Axis 
Y - Axis 
Upper half 
plane 
Lower half 
plane 
OO
QQss.. » SSoollvvee GGrraapphhiiccaallllyy xx ++yy << 55 X 0 5 
Y 5 0 
SSooll.. » SStteeppss ttoo ssoollvviinngg aanndd ggrraapphhiinngg tthhee IInneeqquuaalliittyy 
Step 1 :- Assume that X + Y = 5 and find the following values 
Step 2 :- Plot these points on graph 
Step 3 :- Choose the half by taking some value for X or Y. if it satisfies the 
inequality then shade that region as the Answer and if doesn’t then the other 
graph is the solution 
Graph of Equation x + y = 5 
If the inequality has ≤ or ≥ 
sign then the the line of 
equation is also the part of 
the graph otherwise it isn’t 
GGrraapphh ooff GGiivveenn IInneeqquuaalliittyy
QQss.. » SSoollvvee GGrraapphhiiccaallllyy xx ++yy << 55 ,, xx >> 33 
X 0 5 
Y 5 0 
SSooll.. » SStteeppss ttoo ssoollvviinngg aanndd ggrraapphhiinngg tthhee IInneeqquuaalliittyy 
Step 1 :- Assume that X + Y = 5 and find the following values 
Step 2 :- Plot these points on graph 
Step 3 :- Choose the half by taking some value for X or Y. if it satisfies the 
inequality then shade that region as the Answer and if doesn’t then the other 
graph is the solution 
Step 4 : - For x > 3 , if we follow the above 
3 steps we get the graphs (green colour) 
And the solution of the given question 
will be the part of the graph common 
to both the inequalities. (Dark Green Colour) 
Graph of Equation x + y = 5 
0 
6 
5 
4 
3 
2 
1 
-2 -1 1 2 33 4 5 6 
-1 
Graph of Equation x = 3
 Hope All Of You Like the 
Presentation 
Thank You

Ch- 6 Linear inequalities of class 11

  • 1.
    Ch-6 Linear Inequalities Submitted by-Lucky Choudhary Submitted To – Mr. N.K Rai Sir Date – 8th Sept. 2014
  • 3.
    YYEESS WWee CCaann!!!! aallwwaayyss ttrraannssllaattee aa ssttaatteemmeenntt pprroobblleemm iinn tthhee ffoorrmm ooff aann eeqquuaattiioonn By Using IInneeqquuaalliittiieess ??? • i.e., using equations which have the following signs between L.H.S And R.H.S • For eg :- 40x + 20y ≥ 120
  • 4.
    ProPerties of inequalities.  Essentially, all of the properties that you learned to solve linear equations apply to solving linear inequalities with the exception that if you multiply or divide by a negative you must reverse the inequality sign.  So to solve an inequality just do the same steps as with an equality to get the variable alone but if in the process you multiply or divide by a negative let it ring an alarm in your brain that says "Oh yeah, I have to turn the sign the other way to keep it true".
  • 5.
    2x - 6< 4x + 8 - 4x - 4x - 2x - 6 < 8 Example : + 6 +6 - 2x <14 -2 -2 Ring the alarm! We divided by a negative! We turned the sign! x > -7
  • 6.
    Types of inequalities STRICT • TThhee iinneeqqaalliittiieess wwiitthh << oorr >> bbeettwweeeenn tthhee LL..HH..SS && RR..HH..SS SLACK • TThhee iinneeqqaalliittiieess wwiitthh ≤≤,, oorr ≥≥ bbeettwweeeenn tthhee LL..HH..SS && RR..HH..SS LINEAR QUADRATIC • TThhee iinneeqqaalliittiieess hhaavviinngg tthhee ddeeggrreeee 11 EEgg ::-- 55xx ++22yy >> 1100 • TThhee iinneeqqaalliittiieess hhaavviinngg tthhee ddeeggrreeee 22 EEgg ::-- 55xx^^22 ++22yy >> 1100
  • 7.
    RRuulleess FFoorr SSoollvviinnggIInneeqquuaalliittiieess
  • 8.
    Solving Linear InequalitiesOn A Number Line Q1 » » Solve and Show solution on Number LLiinnee 77xx ++33 << 55xx ++99 Sol » » 77xx –– 55xx << 99 –– 33 » 22xx << 66 » xx << 33 -5 -4 -3 -2 -1 0 1 2 3 4 5 PPooiinntt ttoo nnoottee :: -- IIff tthhee eeqquuaalliittyy hhaadd bbeeeenn 77xx ++33 ≤≤ 55xx ++99 tthhee tthhee nnuummbbeerr lliinnee wwoouulldd hhaadd bbeeeenn lliikkee tthhiiss -5 -4 -3 -2 -1 0 1 2 3 4 5 IItt iiss iimmppoorrttaanntt ttoo nnoottiiccee tthhee ooppeenn oorr cclloosseedd iinntteerrvvaall ,, wwhhiicchh hhaass ttoo bbee uusseedd aaccccoorrddiinngg ttoo tthhee ssiiggnn bbeettwweeeenn tthhee iinneeqquuaalliittyy WWhhaatt aabboouutt ssoollvviinngg tthhiiss oonnee 22 ≤≤ 33xx –– 44 ≤≤ 55 View Here
  • 9.
    QQ11 » »SSoollvvee aanndd SShhooww ssoolluuttiioonn oonn NNuummbbeerr LLiinnee 22 ≤≤ 33xx –– 44 ≤≤ 55 SSooll » » 22 ≤≤ 33xx –– 44 ≤≤ 55 » 22 ++ 4 ≤≤ .. 33 x ≤≤ 5 ++ 4 » » 66 ≤≤ 33xx ≤≤ 99 » 22 ≤≤ xx ≤≤ 33 --55 --44 --33 --22 --11 00 11 22 33 44 55 CClloosseedd IInntteerrvvaall (( )) OOppeenn IInntteerrvvaall (( )) 22..00 22..11 22..22 22..33 22..44 22..55 22..66 22..77 22..88 22..99 33..00
  • 11.
    Introduction To TypesOf Graphs I II X - Axis Y - Axis Left half plane Right half plane OO X - Axis Y - Axis Upper half plane Lower half plane OO
  • 12.
    QQss.. » SSoollvveeGGrraapphhiiccaallllyy xx ++yy << 55 X 0 5 Y 5 0 SSooll.. » SStteeppss ttoo ssoollvviinngg aanndd ggrraapphhiinngg tthhee IInneeqquuaalliittyy Step 1 :- Assume that X + Y = 5 and find the following values Step 2 :- Plot these points on graph Step 3 :- Choose the half by taking some value for X or Y. if it satisfies the inequality then shade that region as the Answer and if doesn’t then the other graph is the solution Graph of Equation x + y = 5 If the inequality has ≤ or ≥ sign then the the line of equation is also the part of the graph otherwise it isn’t GGrraapphh ooff GGiivveenn IInneeqquuaalliittyy
  • 13.
    QQss.. » SSoollvveeGGrraapphhiiccaallllyy xx ++yy << 55 ,, xx >> 33 X 0 5 Y 5 0 SSooll.. » SStteeppss ttoo ssoollvviinngg aanndd ggrraapphhiinngg tthhee IInneeqquuaalliittyy Step 1 :- Assume that X + Y = 5 and find the following values Step 2 :- Plot these points on graph Step 3 :- Choose the half by taking some value for X or Y. if it satisfies the inequality then shade that region as the Answer and if doesn’t then the other graph is the solution Step 4 : - For x > 3 , if we follow the above 3 steps we get the graphs (green colour) And the solution of the given question will be the part of the graph common to both the inequalities. (Dark Green Colour) Graph of Equation x + y = 5 0 6 5 4 3 2 1 -2 -1 1 2 33 4 5 6 -1 Graph of Equation x = 3
  • 14.
     Hope AllOf You Like the Presentation Thank You